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Abstract— Many Embedded Systems are indeed Software used to design control software implementing functional
Based Control Systems, that is control systems whose controller  gpecifications. Such a separation-of-concerns approagh ha
consists ofcontrol software running on a microcontroller device. several drawbacks. For example, correctness of the control

This motivates investigation on Formal Model Based Design ftw . tf I ified and i :
approaches for automatic synthesis of embedded systems eon SO'Ware Is notformally veried and ISsues concerning non-

trol software. This paper addresses control software syntesis functional requirements (such as computational resources
for discrete time nonlinear hybrid systems. We present a control softwareWorst Case Execution TIim&CET), are

methodology to overapproximate the dynamics of a discrete considered very late in the SBCS design activity and this
time nonlinear hybrid system # by means of a discrete time .44 |ead to new iterations of the control design (e.g., if

linear hybrid system L4, in such a way that controllers for £ . . .
are guaranteed to be controllers forH. We present experimental the WCET is greater than the sampling time).

results on control software synthesis for the inverted pendlum, The previous considerations motivate research on methods
a challenging and meaningful control problem. and tools focusing on control software synthesis. The ebjec
. INTRODUCTION tive is that from the plant model, from formal specifications

Many Embedded Systemare indeedSoftware Based forthe closed loop system behavior and fromplementation
Control Systemg¢SBCSs). An SBCS consists of two mainSpecificationgthat is, number of bits used in the quantization
subsystems: theontroller and theplant, that together form process) such methods can generate correct-by-constructi
aclosed loop systerypically, the plant is a physical system control software satisfying the given specifications.

whereas the controller consists odntrol softwarerunning The tool QKS [19] has been designed following an SBCS
on a microcontroller. Software generation from models anghodel based design approach. Given a plant modeled as a
formal specifications forms the core bfodel Based Design Discrete Time Linear Hybrid Syste(®@TLHS) QKS auto-
of embedded software [16]. This approach is particularlyhatically synthesises control software meeting giventgafe
interesting for SBCSs since in such a case system levghd liveness closed loop specifications. The dynamics of a
specifications are much easier to define than the contrpITLHS is modeled as a set tihear constraintsover a set
software behavior itself. of continuous as well as discrete variables describingesyst
Regarding filtering, if any, as a part of the state sensingtate, system inputs and disturbances. Although the dontro
process and assuming that the plant state is observable, §agtware synthesis problem for DTLHSs is undecidable [18],
typical control loop skeleton for an SBCS is the following.the semi-algorithm implemented in QKS usually succeeds
In an endless loop, measwuxef the system state from plant in generating control software. However, the dynamics of
sensorsgo through ananalog-to-digital (AD) conversion, many interesting hybrid systems cannot be directly modeled
yielding a quantizedvalue X to the control software. A by linear constraints. This motivates the focus of the prese
function ctrl Regi on checks ifX’belongs to the region in paper: control software synthesis fosnlinear Discrete Time
which the control software works correctly. If this is notHybrid Systemg¢DTHS).
the case, d&ault Isolation and Recover{FDIR) procedure

IS trlggfatreg, othetr\;wsel ar;u?cntcm r Ifi_aw zqqpﬂes a clom- possibly allowing more behaviours than) a given DTHS
manduto be sent o plaraciuatorsafter adigital-to-analiog by means of a DTLHS 4 such that controllers fo£, are

(DA) conversior!, in order to guarantee t_h_at t_he closed IOO{;’uaranteed to be controllers fét. Control software fori
system meets givesafetyandlivenessspecifications$ystem is thus obtained by giving as input to the tool QKS [19] the

Level Formal SpecificatiopsBasically, the control software linear plant modelC,. Since L, overapproximates{, the

des:gn pr?ble;n fotr_ SB,[CSIT conS|dsts£ IlnR(eie_SIinng Sc)ﬂv"‘”‘r(,eontrollers that we synthesize are inheremtpust that is

implementing functionstri Law andctriRegi on. _ they meet the given closed loop requiremamt$withstand-
Traditionally, the control software is designed using Tﬁlng nondeterministic smalflisturbances

separation-of-concernapproach. That iSControl Engineer- , , ,
ing techniques (e.g., see [6]) are used to dedigictional As in the linear case, the automatically generated control

specificationgcontrol law) from the closed loop system level Software has a WCET guaranteed to be linear in the number

specifications, wherea8oftware Engineeringechniques are ©f Pits of the state quantization schema and it implements
a (near)time optimalstrategy [10] to reach the goal for the
The authors are with the Computer Science Department, 8apieni- the closed loop system. We show the effectiveness of our
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We present a general approactoteerapproximatéthat is



A. Related Work A. Predicates

The paper closer to our is [17] which studies the problem An expression EX) over a set of variableX is an expres-
of control synthesis for discrete time (possibly nonlinearsjon of the formZicn ai fi(X), wheref; (X) are possibly non
systems. However, while we present an automatic methoghear functions andy are rational constants. For example,
the approach in [17] is not automatic since it requires thgsinx, %|ngy7 ¥, x are expressions oveix,y}. E(X) is
user to provide a suitable Lyapunov function. alinear expressiorif it is a linear combination of variables

In [21] it is presented an automatic method that, takzig[n]am, i.e. for alli, fi(X)=x for somex; ¢ X. Observe
ing as input a continuous time linear system and a goghat our notion of linearity is merelgyntacticalmuch as
specification, produces a control law (represented as a@hithmetic expressions are in programming languages. For
OBDD) through ESSOA[ZO]. In contrast, our contribution examp|e’ for usx+y is a linear expression’ Whi|g+y+
focuses on (discrete time) possibly nonlinagbrid systems  sinx - sinx is not, even though they “semantically” denote
(DTHS). Furthermore, [21] does not supply an effectivghe same function. Aonstraintis an expression of the form
method to generate control software and as a consequencg@() <b, whereb is a rational constant. Aredicateis a
does not give any guarantee on WCET. logical combination of constraints. Bonjunctive predicate

Stemming from suitable symbolic models for nonlineas 5 conjunction of constraints. We also wrigX) > b for
control systems [22], a method to find overapproximationsE(x) <-b, E(X) =b for (E(X) <b) A (E(X)>b), and
of switched systems presented in [11]. In combination 5<x<p for (x>a) A (x<b). Given a constrain®(X) and a
with [21], such results provide a semi-automatic method foggglean variablg ¢ X, theguarded constraint y> C(X) (if y
finding a control law for nonlinear and switched systemshen C(X)) denotes the predicatg = 0) vC(X). Similarly,
However, we note that nonlinear systems in [22] are ngf_. c(X) denotes(y = 1) vC(X). A guarded predicates
hybrid, since they cannot handle discrete variables, ara ing conjunction of either constraints or guarded constraints

switched system as in [11] mode transitions can only depend guarded predicate idinear if it contains only linear
on control inputs, whereas in a hybrid system they can hpressions.

triggered also by state changes. Moreover, [21] combined
with [11] and [22] provides semi-automatic methods sinc®. Control Problem for a Labeled Transition System
they rely on a Lyapunov function provided by the user, much A Labeled Transition Syste(hTS) is a tupleS = (S A, T)
in the spirit of [17]. whereSis a (possibly infinite) set of stated,is a (possibly
Verification and control law synthesis fainear Hybrid infinite) set ofactions andT : Sx A x S— B is thetransition
Automata(LHA) [1], [2] has been investigated in [2], [12], relation of S. Let se SandacA. The set Adn(S,s) = {a«
[15], [24], [8], [23], [5]. Control law synthesis foPiecewise A|35 :T(sa,5)} is the set of actions admissible & and
Affine Discrete Time Hybrid SysterfBWA-DTHS) has been Img(S,s,a) = {s' ¢ S| T(s,a,5)} is the set of next states
investigated in [3], [4]. Explicit control synthesis algiyms from s via a. A run or path for an LTS S is a sequence
for discrete time hybrid systems have been studied in [7ft = s9,a9,51,81,,8y,... Of statess and actionsa; such
All such approaches do not account for quantization sinadat vt >0 T(s,a,%.1). The length|r] of a finite runm
they all assumexactstate measures. Thus, they do not offeis the number of actions im. We denote withr® (t) the
any formal guarantee about system level correctness of tiie+ 1)-th state element oft, and with ) (t) the (t+1)-
generated software, which is instead our focus here. th action element oft That isT{® (t) = g, and ™ (t) =
The tool QKS [19] synthesizes control software fromg,. Given two LTSsS1=(S A, T1) andS;=(S, A, T,), we
system level specifications for DTLHSs. Here, we addressay thatS, overapproximatesS; (notationS;c S») when
control software synthesis for a more general class of didy(s,a,s') implies Tx(s,a,8') for all s,s' e Sandac A. Note
crete time hybrid systems. The overapproximation of hybri¢hat = defines a partial order over LTSs.
systems with linear hybrid systems has been studied in [14], A controller restricts the dynamics of an LTS so that
[13]. Such works consider dense time models, and focus @il states in a given initial region will eventually reach a
verification rather than control synthesis. given goal region. We formalize such a concept by defining
Il. BACKGROUND solutions to an LTS control problem. In what follows, let
We denote with[n] an initial segment{1,....n} of the S=(SAT) be anLTS|, G c She, respectively, thaitial
natural numbers. We denote with = [xq,...,X,] a finite andgoalregions ofS. A controller for S is a functionKk : Sx
sequence of distinct variables, that we may regard, wheh— B such thatvse S, VaeA, if K(s,a) then3s' T(s,a,9).
convenient, as a set. Each variatderanges on a known The set dorfK) = {se S| JaK(s,a)} is the set of states for
bounded intervalDy either of the reals or of the integerswhich at least a control action is enabled. Td¢lesed loop
(discrete variables). Boolean variables are discretebles systemS(K) is the LTS (S A, T®), whereTK)(sa ) =
ranging on the seB = {0, 1}. We denote withDx the set T(sas)AK(sa). We call a pathr fullpath if either it
[Teex Dx. To clarify that a variable is continuoug(resp. dis- is infinite or its last state®® (|rf) has no successors. We
crete, boolean) we may writé (resp.x, x°). Analogously denote with Patfs,a) the set of fullpaths starting in stage
X" (X9, XP) denotes the sequence of real (integer, booleam)ith actiona. Given a pathitin S, we definej(S, . G) as
variables inX. Finally, if x is a boolean variable we write ~ follows. If there exist$1> 0 s.t.7{® (n) € G, then (S, .G) =
for (1-x). min{n|n>0AT®(n) e G}. Otherwise,j(S,T,G) = +o0. We



X2 is the angular speeﬂ

. S 1
X1 = X Xo = =SiNX; + —=U 1
1=X 2= SiMXL+ s 1)

The DTHS model# for the pendulum is the tuple
(X,U,Y,N), whereX = {x1,%} is the set of continuous state
variables,U = {u} is the set of input variables, aiM= .
Differently from [17], we consider the problem of finding
Fig. 1: Inverted Pendulum with Stationary Pivot Point. a discrete controller, whose decisions may be “apply the
aiérce clockwise” (1= 1), “apply the force counterclockwise”

reql:we”n EIO S'tmie our Isyijs_tems are Inotn-ttermlna;urrl]g and eadiy _ -1)”, or “do nothing” (u=0). The intensity of the force

c?n o .? elsateh(tmcu mglatg(t)a ?_akg) mus avetha PN be given as a constanf. Finally, the discrete time

0 p‘:S' ve :n? ofa g?a; sfa €. tr? Ny Tﬁjp +.°°rG ' transition relationN is obtained from the equations ifl (1)

worst case distancer a states Irom the goal regiorts IS - 55 the Eyler approximation with sampling tirie i.e. the

J(5,G,8) = sup(j(5,mG) | ac Adm(S,s), me Pati(s,a)}. predicate(X; = x; + Txo) A (X, = Xo+ T Isinxy + T2, Fu).

A control problemfor S is a triple? = (S,1,G). A solution Lo 2 ! me
Example 2:Disturbances can be modeled by using aux-

t(ilp isda cintrglle‘;rﬁ()focgs s_ucfh 'FhatIAg don_‘(K? ar:d .for iliary variables as uncontrollable inputs. For exampld, le
al se om( I)" (K* .G:9) 'Sf m'tﬁ' Inqptlgla S0 ut]|con us consider the DTLHSH; = (X,U,Y1,N1) with: X = {x},
to P is a solutionK™ to P s.t. for all solutionK to P, for U={u}, Yi=2 and Ni(X,U,Y1,X') = {X = 3x+u}. Let

(K") (K)
all se Dx we have)(§T 7, G,s) <J(S™,G,9). Ho = (X.U.Yo,Np) with: Y, = {d} (e.g., withDg = [~1,1])
[Il. DISCRETETIME HYBRID SYSTEMS and NZ(X’U’YZ’.X,.) = {x'= 3x+U+d}. Then 3, models
disturbances withir#; ranging in the real interval-1,1].

In this section we introduce our classiscrete Time Hy- Note that?{, overaporoximatedls since any traiectory of
brid SystemgDTHS), together with the DTHS representing,,, . 2 overapp 1 y tra) y
H, is also a trajectory of».

the inverted pendulum on which our experiments will focus.
Moreover, we will define th&@uantized Control Problem  A. Quantized Control Problem for DTHSs

Definition 1: A Discrete Time Hybrid Systems a tuple A DTHS control problem(#,1,G) is defined as the LTS
H=(X,U,Y, N) where: control problem (LT$#), I, G). To manage real variables,
X = X"uXx%is a finite sequence of reaX{) and discrete in classical control theory the concept gfiantizationis
(X9) present statevariables. The sequenc€ of next state introduced (e.g., see [9]). Quantization is the processpef a
variables is obtained by decorating witfall variables inX.  proximating a continuous interval by a set of integer values

U =U"uUis a finite sequence dhput variables. A quantization functiory for a real interval = [a,b] is a non-

Y = Y'uY? s a finite sequence afuxiliary variables. decreasing functioy: | ~ Z s.t. y(1) is a bounded integer

N(X,U,Y,X") is a guarded predicate ov&ruU uY uX’ interval. We extend quantizations to integer intervals, by
defining thetransition relationof the system. stipulating that in such a case the quantization functidhés

A Discrete Time Linear Hybrid SystedDTLHS) is a identity function. Given a DTHS{ = (X,U,Y,N), a quanti-
DTHS whose transition relatioN is linear. zationr™ is a set of quantization functiofis= {yy | we XuU }.

Input variables modetontrollable inputs whereas auxil- If W = [wy,...w] is a list of variables and = [vy,... V] €
iary variables modelincontrollable inputsi.e. disturbances. Dy, we write (v) for the tuple[yw, (V1),- .- Yw (Vk)]-

We do not have output variables since we focus on systemsExample 3:In our experiments we use uniform quanti-
whose state is fully observable. zation functions dividing the domain of each state variable
The semantics of a DTH3{ is given in terms of the D, =[-1.1m 1.1m] (we write Tt for a rational approximation

labeled transition system LT%) = (Dx, Dy, N) where: of it) and Dy, = [-4,4] into 2° equal intervals, wheré is

N:Dx x Dy x Dx —» B is a function s.tN(x,u,x’) =3ye the number of bits used by AD conversion. Since we have

Dy :N(x,u,y,x") (observe that ifY is empty therN is justN  two quantized variables, each one whttbits, the number of

since no existentialization takes place). We say that DTHguantized states is exactly®2

‘Ho overapproximateDTHS 7, when LTS H1) = LTS(Hz). A control problem admits @uantizedsolution if control
Example 1:Let us consider a simple inverted pendu-decisions can be made by just looking at quantized values.

lum [17], as shown in Figl]1l. The system is modeled byhis enables a software implementation for a controller.

taking the angle® and the angular velocityp as state Definition 2: Let H = (X,U,Y,N) be a DTHS,I" be a

variables. The input of the system is the torquing fouce quantization forH and P = (#,1,G) be a DTHS control

that can influence the velocity in both directions. Moregveiproblem. AT Quantized Feedback Contr¢QFC) solution

the behaviour of the system depends on the pendulum massP is a solutionK (x,u) to P s. t. there exist& : [ (Dx ) x

m, the length of the penduluinand the gravitational accel- I'(Dy) — B such thatk (x,u) = K(I'(x),T (u)).

erationg. Given such parameters, the motion of the system Example 4:The typical goal for the inverted pendulum

is described by the differential equatién- %sin9+ #u. in Ex. [ is to turn the pendulum steady to the upright
In order to obtain a state space representation, we consigersition, starting from any possible initial position, it

the following normalized system, whexgis the angléd and  a given speed interval. In our experiments, the goal region i



defined by the predicatd(X) = (-p<x1<p) A (—p<X2<p),
wherep € {0.05,0.1}, and the initial region is defined by the T fi(2) (@)
predicatel (X) = (-T< X3 < T) A (-4< X2 < 4). ; L \ /
1 2
IV. LINEAR OVERAPPROXIMATION OFDTHSS

The tool QKS [19], given a DTLHS control problef = AN B
(H,1,G) and a quantization schema as input, yields as output , I3 1y
control software implementing an optimal quantized con- @) \
troller for P, whenever a sufficient condition holds. In this fa(z)
section we show how a DTH# can be overapproximated
by a DTLHS L4, in such a way that LT&{) c LTS(Ly). Fig. 2: Linearization of sim in [Tt 11].
Corollary[3 ensures that controllers fdy, are guaranteed
to be controllers forH.

Example 5:The DTHS modelH for the inverted pen-
dulum in Ex.[d contains the nonlinear function %in We
A. DTHS linearization define the linearizationC; = (X,U,Y,N) as follows. In

Let C(V), with V. c XuUuYuX’, be a constraint in order to exploit sinus periodicity, we consider the equatio
N that contains a nonlinear function as a subterm. Theq = 2ny, +y,, Where y, represents the period in which
C(V) has the shapd (RW)+E(V) <b, whereRcV" is x; lies andy, € [-T, 7] represents the actual inside a
a set ofn real variables{rs,...,rn}, andW cV? is a set of given period. This allows us to apply our linearization to
discrete variables. For eashe Dy, we define the function y, e [-m ] only. We partition the interva[-T 1] into
fw(R) obtained fromf, by instantiating discrete variablesfour sub-intervalsly, I, 13, 14 as shown in Fig[]2. For
with w, i.e fy(R) = f(R,w). ThenC(V) is equivalent to the y, ¢l = [-m-3] we define f{(yq) as the line passing
predicate Awep,, [ fw(R) + E(V) < b]. In order to make the through pointg -t sin(-T)) and(-3,sin(-3)), i.e. f; (Ya)
overapproximation tighter, we partition the domdix of = -0.63694 +2. Moreover, we definef; (ya) as the line
each functionfy,(R) into m hyperintervaldy,l>...Im, where which is tangent to the curve sip at I; medium point,

li = Mjem[aj. b} ]. In the following Re I will denote the i.e. f; (yq) = 0.7073ya+0.785) -0.7068. Functionss, f%
conjunctive predicate\ jc[n a'j <rj < b'j. and f; are obtained analogously. Finally, we have tifat

Let f,7;(R) and fy; (R) be over- and under- linear approx-YauY" = {yk,Vq,21,2,23,24} U{yo} andN = (x| = xq + 2Ttyq +
imations of fy(R) over the hyperinterval, i.e. such that Tx) A (X, =X+ T $ya+T 5 Fu) AXg = 2Ty +Ya A AL, Z —
Reli implies fy; (R) < fw(R) < f;;(R). Taking|Dw/|xn fresh fm<Ya< P AALLZ > X el AY L z> 1
continuous variable¥ = {Yw; }wepy,ie[n) and [Dw|xn fresh

boolean variable€ = {2 }wep,.ic[n). We define the guarded B. Linearization: a systematic approach
predicateC(V,Y, Z): ' When nonlinear subexpressions e functions, a sys-

_ _ tematic approach to compute linear overapproximations of
/\V/V\EXW /\Ie[r;\]_ [y“';sivgf(%< <t (R) a DTHS makes use of Taylor polynomial of degree 1 as
weDw AAie[m] Al Rl = Y M piecewise affine functions that over- and under-approxémat
A Awepyy Niefm) Zui = RETiA Avepy 2ie[m) Zui 2 the value of aC? function. Let f(x) be aC? function of n
This transformation eliminates a nonlinear subexpressiq@,| variables over a given intervhl By Taylor’s theorem,
of a constraintC(V) and yields a constrain€(V,Y,Z) e may derivelinear under- and over-approximations for
such that3Y,Z[C(V,Y,Z) = C(V)]. Given a DTHS# = {(x) around a given poink ¢ | as follows. Namely, we
(X,U,Y,N), without loss of generality, we may SUP-nave that there existse [0,1] such thatf(x) = f(xo) +
pose that the transition relatioiN is a conjunction vf(xo)(x—xo)+%(x—xo)TH(x+t(x—xo))(x—xo), beingH
Niem) Gi(X,U,Y,X") of constraints. By applying the above the Hessian matrix of. If we know two real numbersn
transformation to each nonlinear subexpressions oc@uUIriBng M that are the minimum and the maximum value of
in N, we obtain a conjunction of linear constraimb= 1 (x_x;)TH (x+t(x-xo))(X-Xo), in a given interval around
Niera Gi(X,U, Y, X"), such thalN = N. Hence, starting from ' \e can choose * () = f (%) + v (X0)(x—%) + M and
a DTHS #, we find a DTLHS Ly, = (X,U,Y,N), whose - (x) = f(xg) + v f (o) (X—Xo) + M.
dynamics overapproximate the dynamics?of
Theorem 1:Let H = (X,U,Y,N) be a DTHS and leL V. EXPERIMENTAL RESULTS

be its linearization. Then we have that L(7) = LTS(Ly,). In this section we present our experiments that aim at
Theorem 2:Let S; = (SATy) andS; = (SA Tz) be tWo  evaluating effectiveness of our linearization technigée
LTSs, and letk be a solution for the LTS control prob- present experimental results obtained by using QKS [19] on
lem (S2,1,G). If S =8, and for all se S AdM(S1,S) = the inverted pendulum described in EX. 1. In order to let
Adm(Sy,s), thenK is a solution also fo(Sy,1,G). QKS handle such a case study, we linearize the DTH®
Corollary 3: Let # = (X,U,Y,N) be a DTHS and leLy  Ex.[] with the DTLHSL of Ex.[8. In all our experiments,

be its linearization. Letk be a solution for the DTLHS g5 in [17] we set parametetsand m in such a way that

control problem(£4,1,G). ThenK is a solution also for %: 1 (i.e.1=g) and % =1 (i.e.m= %2)' The quantization
mi

the DTHS control problen{#,1,G). [ is as in Ex[B. The initial regioh and goal regiorG are
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Fig. 3: don(Ké_gs)) (T=01) Fig. 4: Trajectoriesf}-[('(fg?) and1(&s”)  Fig. 5: Traj. of Fig[& in the phases space.

As for Ké? performance, it is easy to show that by
reducing the sampling tim& and the quantization step (i.e.
increasingb), we increase the quality d{ég) in terms of
ripple and set-up time. Fidl 4 amd 5 show the simulations
of #K62) and 255, As we can seek(X? drives the
. | ‘ LI I . o5
. B R B system to the goal with a smarter trajectory, with one swing
only. This have a significant impact on the set-up time (the
system stabilizes after about 8 seconds when controlled by

as in Ex.[%, thus the DTHS [DTLHS] control problem WeKééo) instead of about 10 seconds required when controlled

consider isP = (#, I, G) [(L#, I, G)]. o by Ké%)). Fig. @ shows that do(wKé%)) covers almost all
We run QKS for different values of the remaining pa-giates in the admissible region that we consider. Different

rameters, i.e.F (force intensity), p (goal tolerance),T  ¢q|ors mean different set of actions enabled by the comiroll

(sampling time), and (number of bits of AD). For each Finally, Fig.[7 shows the ripple of; for H(Kég})) inside the

of such experiments, QKS outputs a control softwidrén . . .
C language. In the following, we sometimes make explicigoal' Note that such ripple is very low (0.018 radiants).

the dependence oR andb by writing K. In order to B. Very Underactuated Inverted Pendulum<(p.3)

evaluate performance df, we use aninverted pendulum e sycceeded to find controllers for the inverted pendulum
simulatorwritten in C. The simulator computes the next statg,, any value ofF down to 03, with T =0.1 seconds and

by using Eq.[L) of Ex[IL, thus simulating a path&f*).  ;_ 01 However, simulations show that the behaviour of

Such simulator also introduces random disturbances (up {Qe resulting closed loop system is somewhat puzzling. As
4%) in the next state computation to ass&ssobustness . . - (KD .
it is shown in Fig.[8 forH "3/, after three swings the

w.r.t. non-modelled disturbances. Finally, in the simadat endulum is correctly driven to the goal. but at that poit th
Eq. (3) is translated into the discrete time version by means y goal, P

of a simulation time stefis much smaller than the sampling ?;Cr:tr?rlllsrcﬁn':?;llaé?lfeiot:éa'netig]uﬁzﬁﬂ;?::g'?ﬁ;&eﬁgﬂé a
time T used in# (and £4). Namely, Ts = 10°® seconds, ' P

whilst T = 0.01 or T = 0.1 seconds. This allows us to have acomplete round in order to reach again the upright position.

. . . . 1)
more accurate simulation. Accordingl,is called each 1D Th|sdb|ehaV|outE_;§ re_peatehd 27 tllmes,_ beforelﬂéé makes
(or 10P) simulation steps of{. WhenK is not called, the Pendulum stabilize into the goal region.
last chosen action is selected agasarfpling and holding As already noted in [17], all controllers for underactuated
All experiments have been carried out on an Intel(RPendmum use two very different strategies to stabilize the

Xeon(R) CPU @ 2.27GHz, with 23GiB of RAM, Debian Ssystem depending on the initial state. When the angle is

s | N

Fig. 6: H(Kz(m) phases space. Fig. 7: Ripple:x; in H(Kééo))

GNU/Linux 6.0.3 (squeeze). positive and the speed is negative (_and in a suitable rarage th
depends of), the controller turns directly the pendulum into
A. Underactuated Inverted Pendulum £0.5) the upright position. Symmetrically, this also happens nhe

To stabilize anunderactuatedinverted pendulum (i.e. the angle is negative and the speed is positive. Otherwise
F <1) from the hanging position to the upright position, a&he controller lets the pendulum fall down to gain enough
controller needs to find a non obvious strategy that consistgomentum (or to smoothly slow down it). Therefore, starting
of swinging the pendulum once or more times to gain enougfom very close states may lead the system to follow very
momentum. QKS is able to synthesize such a controllgjfifferent trajectories. Reducin§ squeezes the region of
taking as inputCy with F =0.5 (note that in [17]F =0.7).  states from which the pendulum is directly turned into the
Results are in Talpl I, where each row corresponds to a QKipright position. As Fig[19 shows, when is equal to (8,
run, columnsb, T and p show the corresponding inverted e have a rather pathological situation: the frontier betwe
pendulum parameters, colunK| shows the size of the the two strategies liemsidethe goal region. The controller
C code forKé_%), and columns CPU and MEM show thesometimes is unable to keep the system inside the goal,
computation time (in seconds) and RAM usage (in KBpecause disturbances introduced by the simulator make the
needed by QKS to synthesimég). system cross the frontier between the two strategies. When



angle [x)] —— .
angular speed [x5] -
torque (0]

T

T

. NS :
J

) 50 100 150 200 250 300 350 3 2 1 0
time in seconds

1 2 3 3 2 1 o 1 2 3

Fig. 8: Simulation for’H(Kéél)) starting Fig. 9: States turned directly to the goalFig. 10: States turned directly to the goal

from (xg,%2) = (10,0). with F =0.3.

TABLE I: Experimental Results for inverted pendulum with= 0.5.

b T o | IK| CPU MEM [1]
8 0.1 0.1]|273e+04 256e+03 7.72e+04
9 01 01| 5094e+04 1.13e+04 1.10e+05 2]
10 0.1 01| 1.27e+05 5.39e+04 1.97e+05
11 0.01 0.05| 4.12e+05 1.47e+05 2.94e+05

(3]
this frontier lies far enough from the goal (see Higl 10 for y
the casd- = 2), this phenomenon is essentially harmless an& ]
leads, at worst, to suboptimal strategies. [5]

C. Overactuated Pendulum @2)
WhenF is greater than 1, finding a control strategy is less[6]
challenging. It is worth noting however that, even in thisea
. é?]
our approach allows us to find controllers that hardly can b
synthesized by means of traditional analytical methods. In

Fig.[d, we show trajectories in the phases spacﬂ6‘f2<11)) 18]
with T =0.01 secondsp = 0.05, and starting values for; [0l

are in{F,Z,3% 3} andx, =0. 1K) follows highly non- (1
smooth trajectories{z(ll) drives the system along an optimal 1
approach to the goal. Before joining this ideal path to th[e ]
goal, the controller, in order to optimize the set up time,

drives the system at the maximum possible “cruising” sped?
that allows the pendulumto be stopped in the goal. For highgyg,

values ofF, this cruising speed is even higher.

VI. CONCLUSIONS

We presented an automatic methodology to synthesize
control software for nonlinear Discrete Time Hybrid Sysll‘r’]
tems. The control software is correct-by-constructiomw-  [16]
spect both System Level Formal Specifications of the closed
loop system and Implementation Specifications, namely tHE']
quantization schema. Our experimental results on the ipg)
verted pendulum benchmark show the effectiveness of our
approach and that we synthesize near optimal controlle
that hardly can be designed by using traditional analytica{<g
methods of Control Engineering.

The present work can be extended in several direction€%
First of all, it would be interesting to consider controlj2y;
synthesis of controllers that are optimal with respect to a
cost function given as input of the control problem, rathel??
than simply time-optimal. Second, it would be interesting
to extend our approach to CTL specifications, rather tha®s]
just liveness and safety properties. Finally, a naturasindes 4
future research direction is to investigate DTHS contro[l2
software synthesis when the state is not fully observable.

[14]

with F = 2.
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