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Abstract

One of the most succesfull approach to automatic soft-
ware verification is SAT based Bounded Model Checking
(BMC). One of the main factors limiting the size of pro-
grams that can be automatically verified via BMC is the
huge number of clauses that the backend SAT solver has to
process. In fact, because of this, the SAT solver may easily
run out of RAM.

We present two disk based algorithms that can consid-
erably decrease the number of clauses that a BMC backend
SAT solver has to process in RAM. Our experimental results
show that using our disk based algorithms we can automat-
ically verify programs that are out of reach for RAM based
BMC.

1 Introduction

1.1 Motivations

Model checking [25] technology is enabling automatic
verification of larger and larger programs. For example see
[40] for Java programs verification via explicit model check-
ing (e.g. [20]) and [12] for C programs verification via SAT
based Bounded Model Checking (BMC, e.g. see [7, 6]).

The main obstruction to automatic Software Verification
via Model Checking is the huge number of reachable states
that even a moderate size program may have (state explo-
sion) (e.g. see [2]). Indeed, state explosion may force us to
give up a verification task because of lack of RAM.

Many approaches have been studied to counteract state
explosion in software verification. For example, see [14, 38,
27] for approaches exploiting parallelism or randomization
in an explicit model checking framework.

As for BMC based software verification, it has seen
tremendous advances thanks to the use of state-of-the-art
SAT solvers (e.g. see SATO [36, 42], zChaff [41, 29], Min-
iSat [16, 28]) as BMC backends. In fact, using BMC based
model checkers it is now possible to automatically verify
nontrivial C programs (e.g. see CBMC [12, 9]).

Moreover, also (discrete time) linear hybrid systems (e.g.
see [3, 19]) defining specifications for embedded software

can be effectively verified using SAT based BMC (e.g. see
[24]).

Of course BMC has its own limitations too. In fact, the
size of the Conjunctive Normal Form (CNF) generated by
the BMC frontend can get huge as the system to be verified
or the verification horizon grow. This, in turn, fills in the
SAT solver RAM thus limiting the size of the systems that
can be verified as well as the verification horizon.

CNF preprocessing [15] reduces the size of a CNF by
applying suitable transformations to CNF clauses. The re-
sulting CNF is smaller and often can be handled by a SAT
solver whereas the original CNF could not.

To the best of our knowledge, the state-of-the-art CNF
preprocessor is SatELite [15, 35]. SatELite performs all of
its computations in RAM and reduces the CNF size by ex-
ploiting subsumption, self-subsuming resolution, and vari-
able elimination by substitution. Preprocessing CNFs with
SatELite allows handling of verification problems out of
reach for state-of-the-art SAT solvers alone, like MiniSat.

Needless to say, SatELite does not solve all of our prob-
lems. In fact, SatELite performs all of its computations in
RAM and therefore may itself run out of memory. This has
motivated our search for disk based CNF preprocessing al-
gorithms.

Our approach rests on the following observations. First,
even relatively small unsatisfiable CNFs may be hard to
solve for a SAT solver. Second, quite often large satisfi-
able CNFs are not hard if the SAT solver had enough RAM.
Thus a CNF preprocessing that can reduce the size of a large
satisfiable CNF can enlarge the class of problems tractable
with BMC. This is exactly what our preprocessing algo-
rithms aim to do: reduce the size of large (satisfiable) CNFs
in order to make them tractable for a SAT solver. Of course
our algorithms will work on any CNF, however we expect
them to be effective mainly on satisfiable CNFs.

1.2 Our Contribution

We present two disk based CNF preprocessing algo-
rithms. To the best of our knowledge there are no disk based
CNF preprocessing algorithms previously published. Our
algorithms are mainly useful on large CNFs that cannot be
handled by SatELite because of lack of RAM.



1.2.1 DSATshrink

The first algorithm, Disk SAT Shrink (DSATshrink), takes as
input a CNF F and returns a smaller CNF G which is satis-
fiable iff F is satisfiable. DSATshrink (Sects. 3, 4, 5 and 6)
applies to F the following transformations: Boolean Con-
straint Propagation (BCP), Cone of Influence (COI) and
Thinning (i.e. elimination of equality constraints). The
RAM versions of BCP, COI and Thinning are well known
and widely used algorithms. For example, all (DPLL based)
SAT solvers implement a RAM based BCP (e.g. as in
SATO, zChaff, MiniSat) and many BMC frontends (e.g.
VIS [39], NuSMV [31]) implement RAM based Thinning
and COI (but not BCP). DSATshrink usefulness stems from
the fact that it uses disk based algorithms to implement
BCP, COI and Thinning as well. This allows DSATshrink
to handle CNFs that cannot be handled by SatELite.

1.2.2 DSATsplit

The second algorithm, Disk SAT Split (DSATsplit), is a disk
based implementation of the first iterations of the DPLL al-
gorithm [13] used by most SAT solvers (e.g. as in SATO,
zChaff, MiniSat). DSATsplit (Sect. 7) splits the input CNF
F into two subproblems as follows. First, DSATsplit selects
a literal l (using a strategy similar to VSIDS [29]) and then
uses a disk based BCP to compute the CNF Fl (F¬l), ob-
tained by setting literal l to true (false). If the size of Fl can
be handled by the SAT solver (MiniSat in our case) then
DSATsplit calls the SAT solver to solve Fl. Analogously
for F¬l. If Fl and F¬l are too big to be handled by the SAT
solver, the above splitting process is repeated with another
literal (as in DPLL) until a manageable CNF is obtained or
we run out of time. Of course as soon as we find a satis-
fiable CNF during the splitting process we can stop the all
procedure and return a solution. Shortly, DSATsplit is an
effective disk based implementation of a DPLL-like wrap-
ping to MiniSat.

1.3 Related Works

Not surprisingly, CNF preprocessing has been exten-
sively studied in an effort of finding effective tradeoffs
between amount of reduction achieved and preprocessing
time.

The works in [4, 8, 23, 30, 37] propose RAM-based tech-
niques focusing on deriving units, implications and equiv-
alent literals. Most of these techniques are embedded in
MiniSat or in other SAT solvers outperformed by MiniSat
[34]. Since we will be using MiniSat as our SAT solver,
we will be using (obliviously) the above techniques when
passing the preprocessed CNF to MiniSat.

The works in [22, 21, 17] propose RAM-based simpli-
fications of digital circuits. Such simplifications are per-
formed before the generation of the CNF, whereas our focus
here is on CNF preprocessing.

Techniques involving CNF splitting have been proposed
for parallel (e.g. see [18, 43]) and Grid-based (e.g. see [11,
10]) SAT solvers. Note however that in such cases splitting
aims at partitioning the original CNF among computational
nodes in order to minimize communication between them.

On the other hand, our focus here is on reducing the CNF
size.

1.4 Experimental Results

SatELite is a state-of-the-art CNF preprocessor and Min-
iSat is a state-of-the-art SAT solver. Thus, to understand
if and when it is advantageous to use our disk based algo-
rithms, we can compare them with SatELite using MiniSat
as a SAT solver to handle the processed CNFs for all prepro-
cessing algorithms (i.e. SatELite, DSATshrink, DSATsplit).
This is done in Sect. 8 with CNFs generated from CBMC
and VIS. Our findings can be summarized as follows.

As for DSATshrink, our experimental results show that
DSATshrink can make tractable by MiniSat CNFs that can-
not even be handled by SatELite. For example, using DSAT-
shrink and MiniSat with 1GB of RAM we can solve a SAT
problem with 9 million variables and 33 million clauses.
This problem cannot be solved using SatELite and MiniSat.

As for DSATsplit, our experimental results show that
DSATsplit can solve problems that are out of reach for
SatELite as well as for DSATshrink. For example, using
DSATsplit and MiniSat with 1GB of RAM we can solve
a SAT problem with 8.4 million variables and 29 million
clauses. This problem cannot be solved by MiniSat neither
with a SatELite preprocessing nor with a DSATshrink pre-
processing.

Computation times, as to be expected, are our bottleneck
here: when enough RAM is available SatELite+MiniSat
(i.e. SatELite followed by MiniSat) is faster than DSAT-
shrink+MiniSat and than DSATsplit+MiniSat. More-
over, DSATshrink+MiniSat is typically faster than DSAT-
split+MiniSat when the CNF produced by DSATshrink
can be handled by MiniSat. For large problems both
SatELite and MiniSat run out of memory while DSAT-
shrink+MiniSat or DSATsplit+MiniSat can handle such
large problems within about 20 hours of computation on
our PC.

2 Background

We denote with B the set of boolean values, that is,
B = {0, 1}. As usual, 0 stands for false and 1 for true.
A literal is a boolean variable or the logical negation of a
boolean variable. A clause C is a disjunction (∨) of literals.
A unit clause is a clause with just one literal. A CNF is a
conjunction (∧) of clauses. As usual, we also regard a CNF
(clause) as a set of clauses (literals). We denote with |F | the
number of clauses in CNF F , and with |C| the number of
literals in clause C. Finally, given a literal l, we denote with
Fl the CNF obtained by assigning 1 to l. Moreover, a literal
l is said to be pure iff ¬∃C ∈ F s.t. ¬l ∈ C (i.e., l always
appear in positive or in negated form).

3 CNF Preprocessing on Disk

In this Section we give an overview of our DSATshrink
algorithm. DSATshrink takes as input a CNF F and returns
a CNF F ′ s.t. F is satisfiable iff F ′ is satisfiable.
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CNF DskThinning(CNF F) {
do{ toBeSub:=DskFindEqIneqConstr(F);
toBeSub:=TransClosureSubs(toBeSub);
NSubs:=DskApplyChanges(F, toBeSub);

} whi le(NSubs > 0);
re turn DskFindMaskedUnit(F); }

Figure 1. Function DskThinning

More in detail, DSATshrink consists of three disk based
algorithms: Thinning, COI and BCP. Thinning removes
from the given CNF clauses defining equality or inequality
constraints between pair of variables by choosing for each
such pairs only one witness variable to appear in the CNF.
COI removes from the given CNF clauses all clauses not
containing relevant variables (w.r.t. the specification con-
straints). Finally, BCP propagates unit clauses and pure lit-
erals forced assignments.

Algorithms to implement the above algorithms are well
known. For example BCP is used in many SAT solver (e.g.
see SATO, zChaff, MiniSat) and COI algorithms are used in
many model checkers (e.g. VIS, NuSMV). Finally, a trans-
formation close to Thinning is described in SatELite.

However, the algorithms presented in the previous litera-
ture store all clauses in RAM. Thus, if the CNF is too large
they run out of memory. This is unfortunate since we have
noticed that quite often preprocessing with even just one of
DSATshrink algorithms can drastically reduce the size of
the problem at hand thus making it manageable for a SAT
solver like MiniSat or zChaff.

The above observation led us to design disk based al-
gorithms for Thinning, COI and BCP with the goal of get-
ting a CNF suitable for, say, MiniSat. More specifically,
we look for algorithms that never store all CNF clauses in
RAM and only access (input as well as temporary) disk files
in a sequential in order to keep computation times reason-
able. Sects. 4, 5 and 6 describes our algorithms meeting the
above requirements.

4 Thinning

The set of clauses {(¬l1 ∨ l2), (l1 ∨ ¬l2)} is equiv-
alent to the equality constraint l1 = l2. Analogously,
{(¬l1 ∨ ¬l2), (l1 ∨ l2)} is equivalent to the inequality con-
straint l1 = ¬l2. Thus, it is possible to simplify a CNF F
containing one of the above sets of clauses by replacing l2
with l1 (respectively ¬l1) and deleting the two clauses. This
is done by the Thinning algorithm, implemented in function
DskThinning of Fig. 1. Note that in this way we reduce
the number of clauses and variables in the given CNF. Func-
tion DskThinning works as follows.

First, in function DskFindEqIneqConstr in Fig.
1 we read the input CNF F and look for consecutive
clauses defining an equality (inequality) constraint between,
say, literals l1, l2. Each time such clauses are found
DskFindEqIneqConstr updates array toBeSub by
setting toBeSub[l2]=l1 (toBeSub[l2]=¬l1). Upon
termination DskFindEqIneqConstr returns in array
toBeSub the substitution to be carried out on F . That
is we have toBeSub[l2]=l1 iff l2 may be replaced

by l1 in F . Note that we only look for consecutive
clauses defining equality. Since bounded model check-
ers typically generate this kind of clauses consecutively
DskFindEqIneqConstr usually detects most of the
equality or inequality constraints contained in F .

Equalities may chain. That is we may have
toBeSub[l3]=l2 and toBeSub[l2]=l1. In such a case
we should replace l3 with l1 rather than with l2. That is
we should compute the transitive closure of the equalities
in toBeSub. Moreover, to avoid loading the SAT solver
with unused variable indexes, we should rename variables
in order to avoid gaps of unused indexes. All these opera-
tion are carried out by function TransClosureSubs in
Fig. 1 which updates toBeSub accordingly. Note that
TransClosureSubs works on array toBeSub stored
in RAM so it is quite fast. Moreover toBeSub takes space
O(V ), where V is number of variables in the CNF. This fits
in RAM without any problem. For example, even with a
naive implementation of toBeSub as an array of (4 bytes)
int, with 108 variables in the CNF we would have need
4 · 108 bytes of RAM.

Function DskApplyChanges in Fig. 1 reads the
clauses in F , applies to each of them the substitutions in
toBeSub and appends the clauses to a new temporary file
G. Finally DskApplyChanges removes F , sets F file
pointer to G file pointer and returns to NSubs the number
of substitutions performed.

The above sequence of operations
(DskFindEqIneqConstr, TransClosureSubs,
DskApplyChanges) may generate new equality or
inequality constraints. For this reason the above operations
are in the body of a do-while loop which terminates
when a fixpoint has been reached, that is when no more
substitutions are possible (NSubs = 0).

The thinning process may create expanded unit clauses
of the form {(l1 ∨ l2), (l1 ∨ ¬l2)} which indeed represent
the unit clause (l1). Function DskFindMaskedUnit in
Fig. 1 detects and simplifies all such expanded unit clauses.
This entails a last scan to the disk file containing F , and the
creation of a new CNF file which is returned as the output
of DskThinning.

5 COI

The COI [5] reduction algorithm has been originally de-
signed for digital hardware verification. COI preprocessing
removes from a digital circuit gates that do not contribute
(directly or indirectly) to the circuit signals (variables) oc-
curring in the property to be verified.

To use COI preprocessing in a CNF context we need to
overlay a logic gate structure on the given CNF. Of course
this, in general, is neither possible nor computationally fea-
sible. However for CNF generated from BMC problems
this is usually possible and computationally feasible. For
example this is the case for the CNF generated by VIS and
CBMC.

In Sections 5.1, 5.2 we present our algorithm to recon-
struct the logic gate structure of a given CNF. Our algo-
rithm is inspired to that in [33], however, unlike the one in
[33] our algorithm is disk based. This allows us to handle
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larger CNF than [33] can. On the other hand our gate recon-
struction algorithm may fail to recognize some of the gate
structures recognized by [33].

In Sect. 5.3 we present our disk based COI algorithm for
CNF preprocessing.

5.1 Logic Gates Identification

Table 1 gives the set of clauses used to represent gates
OR (A ∨ B), AND (A ∧ B), XOR (A ⊕ B) and XNOR
(A⊕B). Note that in Table 1 vx represents the variable
associated with the boolean expression x. We say that a set
of clauses is a logic gate (or just a gate) if it has one of the
forms in Table 1.

We say that a set FLG = {F1, . . . , Fk} is a logic gate
structure for the CNF F iff, for all 1 ≤ i ≤ k, Fi ⊆ F ,
Fi is a logic gate and for all j 6= i Fi ∩ Fj = ∅. We also
define the constraint set of F as FCM = F \ (∪k

i=1Fi). All
clauses in FCM are referred to as constraints.

Form Clauses Form Clauses

A∨B

¬v(A∨B) ∨ vA ∨ vB

¬vA ∨ v(A∨B)

¬vB ∨ v(A∨B)

A⊕B

¬vA ∨ ¬vB ∨ ¬v(A⊕B)

¬vA ∨ vB ∨ v(A⊕B)

vA ∨ ¬vB ∨ v(A⊕B)

vA ∨ vB ∨ ¬v(A⊕B)

A∧B

¬vA ∨ ¬vB ∨ v(A∧B)

¬v(A∧B) ∨ vA

¬v(A∧B) ∨ vB

A⊕B

vA ∨ vB ∨ vA⊕B

vA ∨ ¬vB ∨ ¬vA⊕B

¬vA ∨ ¬vB ∨ vA⊕B

¬vA ∨ vB ∨ ¬vA⊕B

Table 1. CNF translation of some logic gates
The COI reduction algorithm cannot directly operate on

a CNF F , but it needs to know the partition of F in gates
and constraints, i.e. it needs FLG and FCM .

We devised a disk based algorithm, DskBuildGates
, to compute FLG and FCM from a CNF F . Our algo-
rithm is inspired by the technique described in [33], but
unlike [33] we never store in RAM the full CNF. Shortly,
DskBuildGates is a predictive parser [1] which sequen-
tially reads the disk file containing F . As soon as a set of
clauses G defining a gate is recognized, G is appended to
the file defining FLG. All clauses that are not recognized as
logic gates are considered constraints and thus appended to
the file defining FCM .

Note that DskBuildGates only recognizes gates
whose clauses appear consecutively in the disk file contain-
ing F . This is the typical situations for CNF generated from
a BMC problem.

5.2 Logic Gate Input-Output Variables

Let g ∈ FLG be a logic gate. We denote with
output var(g) the output variable of g, namely vAopB

in Table 1, where op = ∨, ∧, ⊕, ⊕.
Of course in an actual CNF file variables are not labeled

with formulas. Thus finding the output variable of a (set
of clauses defining a) gate may not be obvious. For the
case of the AND (∧) and OR (∨) operators form Table 1 we
immediately see that the output variable is the only one that

CNF DskCOI(CNF F) {
(FLG, FCM) := DskBuildGates(F);
i f (Dsk2Gates1Output(FLG)) re turn F;
(G,Q):=DskLoadGraphQueue(FLG, FCM);
i f (ContainsCycles(G)) re turn F;
COI := ComputeCOI_BFS(G, Q);
re turn DskApplyCOI(F, COI); }

Figure 2. Function DskCOI

appears in all clauses. Thus for such gates output variables
are easily defined.

For the case of the XOR (⊕) and XNOR (⊕) gates in-
stead all variables appear in the same way. For such gates
we simply assume that the output variable is the one with
the largest index. Of course this hypothesis is false in gen-
eral, however it does hold for many BMC frontends (e.g.
VIS, CBMC). Note that indeed this hypothesis is also the
main limitation of our algorithm with respect to the one
in [33]. This approach, however, avoids us storing CNF
clauses in RAM, our goal here.

The set input vars(g) of a gate g ∈ FLG is the set of
variables of g that are not output variables.

5.3 COI Reduction Algorithm

Once FLG and FCM have been computed, the COI re-
duction may take place.

Indeed, without constraints, any acyclic set of logic gates
yields a satisfiable CNF, since any combinational circuit
will provide output values given input values. Therefore,
the SAT solver actually needs to check only the satisfiability
of the set of clauses that represent the constraints together
with the logic gates whose output is (directly or indirectly)
involved in such constraints. Such set of clauses is com-
puted by function DskCOI of Fig. 2, to which, unless oth-
erwise stated, the following discussion refers to.

First, DskCOI computes FLG and FCM from the in-
put CNF F , by calling DskBuildGates described in
Sect. 5.1.

Function Dsk2Gates1Output checks if in FLG there
are two gates with the same output. In such a case COI pre-
processing cannot be done and DskCOI just returns F . Of
course for well formed BMC problem this situation should
never arise. However our input is a CNF. Thus to avoid giv-
ing possibly wrong answers we should make sure that our
input CNF satisfies our working hypotheses.

Function DskLoadGraphQueue sequentially reads
files FLG and FCM and builds in RAM the following struc-
tures: an oriented graph G representing the logic gate struc-
ture and a queue Q representing constraints. Graph G ver-
tices are the variables of F . There is an edge (v1, v2) in G
iff vi (i = 1, 2) is the output of a gate gi and the output of
g1 is the input of g2. Queue Q consists of all variables in
FCM .

Function ContainsCycles checks if the graph G
is acyclic. In such a case COI preprocessing can-

not be done and DskCOI just returns F . Since G is
in RAM we can use well known techniques for cycle
detection in ContainsCycles, for example see [32,
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CNF DskBCP(CNF F) {
do{ (A,P):= DskFindAssignPresLit(F);

i f (∃l (A[l]=A[¬l]=1)) re turn UNSAT;
NSubs := DskApplyAssign(F, A);
i f (NSubs = -1) re turn UNSAT;

} whi le (NSubs > 0);
re turn DskRescaleVars(F, P); }

Figure 3. Function DskBCP

26]. Of course the same considerations done for function
Dsk2Gates1Output apply also to such a case.

Function ComputeCOI_BFS computes the COI de-
fined as the least fixpoint of the following set equation:
COI = {v ∈ vars(F ) | v ∈ vars(FCM )∨ (∃g ∈
FLG | v ∈ input var(g) ∧ output var(g) ∈ COI)},
where vars(W ) denotes the set of variables occurring in
CNF W . As suggested by the above equation we compute
COI by computing the set of nodes of G that are backward
reachable from Q. All structures are in RAM so COI can
be computed by using standard graph traversal algorithms.

Finally, function DskApplyCOI sequentially reads
clauses from the original CNF file F . A clause C of F is ap-
pended to DskApplyCOI output file if there is a variable
in C that is also in COI .

Remark 1. From the above discussion it is quite clear that
function DskCOI effectiveness relies on the gate-like struc-
ture of the CNF generated by BMC frontends (e.g. VIS,
CBMC). Thus one may wonder if the thinning preprocess-
ing (Sect. 4) performed before the COI preprocessing may
destroy such a structure. It is easy to show that indeed the
thinning preprocessing does not destroy such a structure.
However BCP does. For this reason DSATshrink calls Thin-
ning, COI and BCP exactly with such an order.

6 BCP

BCP [13] is the last step performed by DSATshrink. It
performs on disk the same preprocessing usually applied
(in RAM) by SAT solvers. However, SAT solvers typically
perform BCP very often on small CNFs. Here, we perform
BCP just once on a huge CNF, thus we can afford the extra
time due to disk accesses.

BCP algorithm finds unit clauses and pure literals in
the CNF, and propagates the corresponding assignments by
deleting falsified literals and tautologies. The process is it-
erated until a fixpoint is reached.

The above is implemented by function DskBCP in
Fig. 3. The do-while loop implements the fixpoint com-
putation. In each iteration, two bitvectors A and P are com-
puted by function DskFindAssignPresLit. Bitvector
A defines assignments induced by unit clauses and pure lit-
erals. That is, A[l] = 1 iff l must be set to 1, either be-
cause of a unit clause {l} or because ¬l never occurs in F .
Bitvector P defines the set of literals occurring in the current
CNF F . That is, P[l] = 1 iff literal l occurs in the current
CNF F . Function DskFindAssignPresLit computes
its output with a sequential read of the CNF file F .

Before doing any further work DskBCP checks if A con-
tains contradicting assignments. In such a case, (a CNF rep-
resenting) UNSAT is returned.

Function DskApplyAssign sequentially read clauses
from F and for each clause C in F does the following. First,
a new empty file G is created to hold the clauses produced
by DskApplyAssign. If there exists a literal l ∈ C s.t.
A[l] = 1 then C is discarded since it is satisfied. If there
is no literal l ∈ C s.t. A[l] = 1 then C ′ is appended
to G, where C ′ = C \ {l ∈ C | A[¬l] = 1}. If C ′

is empty (that is ∀l ∈ C A[¬l] = 1) then the problem
is UNSAT and DskApplyAssign returns −1. Finally,
DskApplyAssign removes F , sets F file pointer to G
file pointer and returns to NSubs the number of 1s in A,
that is the number of units clauses and pure literals in F .

After DskApplyAssign, function DskBCP checks if
NSubs is −1. In such a case (a CNF representing) UNSAT
is returned.

The do-while loop is repeated until NSubs becomes
0, that is no units clauses or pure literals are present in F .
When this happens the fixpoint has been reached.

Finally, function DskRescaleVars, by reusing in-
dexes of unused variables in F , renames the variables in
F in order to remove index gaps (thus saving on SAT solver
RAM). Bitvector P is used here, since it presents the set of
literals occurring in F . This step entails a last (sequential)
scan of the disk file.

7 Splitting CNFs

In this Section we present our disk-based splitting algo-
rithm DSATsplit. DSATsplit takes as input a CNF F and
returns SAT if F is satisfiable, UNSAT otherwise.

Essentially DSATsplit uses a DPLL [13] schema to split
the given CNF F into smaller and smaller CNFs until we
obtain CNFs that are small enough to be handled by a RAM
based SAT solver. At that point a SAT solver (MiniSat in
our case) is called on the small enough CNFs.

As it is usually done for DPLL, we present DSATsplit
here in a recursive form although, for efficiency reasons,
our implementation is indeed iterative.

DSATsplit is implemented by function DskSplit of
Fig. 4.

Function DskSplit behaves as follows. If F does not
have too many clauses (namely, |F | ≤ M) we try to solve
it using our backend SAT solver. If the SAT solver does
not run out of memory (res 6= OutOfMem), DskSplit
returns the SAT solver result to the callee. Note that if the
answer is SAT, the result is propagated to the other recursive
calls, thus SAT will be the final response of the algorithm.
A global variable M is used as an estimation of the number
of clauses the backend SAT solver can handle. If the SAT
solver runs out of memory (res = OutOfMem), then we
decrease M by a factor of γ (γ = 0.05 in our experiments)
and a splitting phase takes place.

As in DPLL, a literal l is chosen (function
DskPickALiteral), and two new CNFs, Fl and
F¬l are generated. Differently from RAM based DPLL,
however, Fl and F¬l are generated as disk files, so that they
can be passed to the recursive calls of DskSplit.

5



i n t M := |F|; /* initialization */
SAT_res DskSplt(CNF F) {

i f (|F| ≤ M) { res:=SATSolver(F);
i f (res 6= OutOfMem) re turn res;
e l s e M := dM*(1 - γ)e; }

lit := DskPickALiteral(F);
DskAssignAndBCP(F, lit);
i f (DskSplt(F) = SAT) re turn SAT;
DskAssignAndBCP(F, ¬lit);
re turn DskSplt(F); }

Figure 4. Function DskSplt

Function DskAssignAndBCP takes a literal l and a
CNF F , computes Fl and passes it to the disk BCP pro-
cedure of Sect. 6. The resulting CNF is put back into F
by using a temporary file. As a matter of fact the two steps
above are done in one single pass on the F file by preload-
ing into the BCP assignment bitvector (A in Sect. 6) the
literal l.

Function DskPickALiteral chooses a literal l for
splitting. To this end, DskPickALiteral makes a trade-
off between the VSIDS heuristic (i.e. selecting the literal
which occurs most in F ) and a heuristic that tries to maxi-
mize the number of clauses that become unit clauses. Func-
tion DskPickALiteral accomplishes this by comput-
ing two arrays, P for VSIDS and N for the other heuristic.
Namely, for all literals l, P[l] = |{C ∈ F s.t. l ∈ C}|
and N[l] = |{C ∈ F s.t. |C| = 2 ∧ ¬l ∈ C}|. Note that
only a sequential read of the CNF file is needed for comput-
ing these two arrays. A trade-off between the two heuristics
is then used to choose the literal. Namely, we choose the
literal l s.t. αP[l] + βN[l] is maximum, for suitable param-
eters α and β. The parameter α is fixed. We found experi-
mentally that 1.0 is a reasonable value. The parameter β is
instead computed as |F′|−|F|

|F′|1 , where: F ′ is the parent CNF
(i.e. the one who resolved in F after splitting) and |F′|1 is
the number of unit clauses in F ′. This allows us to take
into account the effectiveness of our heuristics for generat-
ing unit clauses. The idea is that, if too few unit clauses
have been generated, then β has to be increased.

8 Experimental Results

We implemented algorithms DSATshrink (Sections 3, 4,
5, 6) and DSATsplit (Sect. 7) in a tool named DiskSAT.
In this Section, we report the experimental results obtained
using DiskSAT. Our results show that using our approach
we can complete BMC of systems out of reach for state-of-
the-art tools.

In order to have a meaningful benchmark for our experi-
ments, we consider two categories of models.

In the first category, we consider software verification
problems, namely CNFs generated by CBMC. To this end,
we collected from the web a number of C programs im-
plementing standard computer science algorithms, added
assert’s as required from CBMC, defined for each BMC
problem the number of unwindings and, finally, generated
CNFs using CBMC. We expect DSATshrink to be the most

ID Name From #Vars #Cls
bsort80sat BubbleSort CBMC 1.0e+07 3.0e+07
bsort83sat BubbleSort CBMC 1.1e+07 3.3e+07
bsort92sat BubbleSort CBMC 1.5e+07 4.4e+07
bsort21unsat∗ BubbleSort CBMC 2.7e+05 8.0e+05
merge10sat MergeSort CBMC 1.0e+06 3.7e+06
merge15sat MergeSort CBMC 3.4e+06 1.2e+07
merge18sat MergeSort CBMC 5.8e+06 2.1e+07
merge21sat MergeSort CBMC 9.1e+06 3.3e+07
heap10sat HeapSort CBMC 1.6e+06 5.5e+06
heap18sat HeapSort CBMC 8.4e+06 2.9e+07
gen62sat AES key gen CBMC 9.2e+06 3.1e+07
gen65sat AES key gen CBMC 9.7e+06 3.2e+07
gen70sat AES key gen CBMC 1.0e+07 3.5e+07
gen72sat AES key gen CBMC 1.1e+07 3.6e+07
msum30sat Max sum subseq CBMC 7.7e+05 2.6e+06
msum100sat Max sum subseq CBMC 7.9e+06 2.7e+07
elev605sat Elevator VIS 8.1e+05 2.2e+06
elev610sat Elevator VIS 8.2e+05 2.3e+06
palu400sat ALU pipeline VIS 9.6e+05 1.4e+06
palu500sat ALU pipeline VIS 1.4e+06 2.0e+06
miim700sat MII Management VIS 5.2e+06 2.7e+06

Table 2. Models used in experiments

effective DiskSAT preprocessing on this kind of experi-
ments.

In the second category, we consider hardware verifica-
tion problems, namely CNFs generated by VIS. To this end,
for a given BMC verification horizon, we consider some
of the examples in the VIS 2.1 standard distribution. Note
that this category will be useful only to experiment with
DSATsplit, since the CNFs output by VIS are already pre-
processed (in RAM) for thinning clauses and COI reduc-
tion.

In Tab. 2 we show the benchmarks we use in our experi-
ments. Column ID denotes the identifier of the correspond-
ing model, and will be used in the following Tables report-
ing the experimental results. The number included in the ID
shows either the number of unwindings for CBMC or the
verification horizon for VIS. Column Name gives a short
description of the model itself. Column From shows if the
corresponding CNF is generated by CBMC (version 1.7) or
VIS (version 2.1). Finally, columns #Vars and #Cls give,
respectively, the number of variables and clauses of the cor-
responding CNF.

Note that, as denoted by the suffix of the experiments ID,
most of the CNFs we show are SAT, our target here. For
the sake of completeness, we also have an UNSAT CNF,
bsort21unsat, which is denoted with an asterisk.

Our experiments are organized as follows. To have a
uniform comparison for all verification experiments we set
a memory limit of 1GB of RAM (no limit is instead set for
disk). For the splitting technique we also set a time limit
(our real bottleneck here) of 20 hours. Given this, we run
experiments both with state-of-the-art techniques and with
our two approaches (DSATshrink and DSATsplit). We fi-
nally collect our results and compare them.

As state-of-the-art tools, we use: the MiniSatSAT solver
and the preprocessor SatELite,which is known to improve
MiniSat performances.

In all tables the results on CBMC-generated CNFs are
obtained with a Dual-Core 32-bits 3GHz Pentium 4 with 1
GB of RAM whereas the results on VIS-generated CNFs are
obtained with a 2 Quad-Core Xeon 3GHz Pentium 4 with
8GB of RAM. Moreover, all time results are in seconds,
while memory occupation results are in MBs.

Columns in Tabs. 3 and 4 show the results with MiniSat
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ID MS
Time Mem

bsort80sat > 3.0e+01 out-mem
bsort83sat > 2.2e+01 out-mem
bsort92sat > 1.6e+01 out-mem
bsort21unsat 2.8e+04 out-mem
merge10sat 1.2e+01 1.4e+02
merge15sat 5.1e+01 4.9e+02
merge18sat 1.3e+02 8.9e+02
merge21sat > 2.1e+01 out-mem
heap10sat 8.3e+01 2.2e+02
heap18sat > 2.1e+01 out-mem
gen62sat 2.0e+04 9.8e+02
gen65sat 2.1e+04 1.0e+03
gen70sat 2.9e+04 1.0e+03
gen72sat > 3.1e+04 out-mem
msum30sat 5.0e+00 1.6e+02
elev605sat > 5.4e+03 out-mem
elev610sat > 4.9e+03 out-mem
palu400sat > 7.9e+03 out-mem
palu500sat > 6.3e+03 out-mem
miim700sat > 1.8e+03 out-mem

Table 3. Results for MiniSat
ID SE MS(SE)

Time Mem Time Mem
bsort80sat > 3.4e+01 out-mem N/A N/A
bsort83sat > 2.6e+01 out-mem N/A N/A
bsort92sat > 2.0e+01 out-mem N/A N/A
bsort21unsat 1.0e+03 1.0e+02 4.8e+04 5.1e+02
merge10sat 3.8e+02 3.7e+02 3.0e+00 5.1e+01
merge15sat > 7.2e+02 out-mem N/A N/A
merge18sat > 2.3e+01 out-mem N/A N/A
merge21sat > 2.2e+01 out-mem N/A N/A
heap10sat 3.8e+02 5.2e+02 2.0e+00 1.8e+01
heap18sat > 2.8e+01 out-mem N/A N/A
gen62sat > 4.0e+01 out-mem N/A N/A
gen65sat > 2.4e+01 out-mem N/A N/A
gen70sat > 2.4e+01 out-mem N/A N/A
gen72sat > 2.4e+01 out-mem N/A N/A
msum30sat 4.5e+02 3.4e+02 3.0e+00 7.4e+01
elev605sat 1.1e+03 1.0e+03 2.1e+03 4.7e+02
elev610sat > 1.0e+03 out-mem N/A N/A
palu400sat 1.9e+02 5.4e+02 2.1e+03 3.5e+02
palu500sat 4.6e+02 9.2e+02 2.1e+03 4.8e+02
miim700sat > 1.0e+01 out-mem N/A N/A

Table 4. Results for SatELite and MiniSat after
SatELite

and SatELite. Their columns have the following meaning.
ID denotes the identifier of a model as in Tab. 2. MS shows
the results obtained with MiniSat. SE shows the results ob-
tained with SatELite. MS(SE) shows the results obtained
with MiniSat operating on a CNF preprocessed by SatELite.
Note that all the results are given in terms of both time and
memory. “Out-mem” indicates that the corresponding ex-
periment could not be completed within 1GB of RAM.

Finally, we run DiskSAT on the same CNFs used for
MiniSat and SatELite. We recall that CNFs generated by
VIS have been already preprocessed for thinning and unit
clauses, thus we do not perform disk preprocessing on them.

The corresponding results are in Tabs. 5 and 6. Column
ID is as in Tab. 2. Column DP shows the results obtained
with DSATshrink. Column MS(DP) shows the results ob-
tained with MiniSat operating on a CNF preprocessed with
DSATshrink. Finally, column Split shows the results ob-
tained with DSATsplit. Note that, as in Tabs. 3 and 4, all
the results are given in terms of both time and memory.

As for the splitting algorithm, we also provide the mem-
ory limit (column MemLim) used to decide whether to
solve or split a given CNF. In order to stress our splitting
algorithm, MemLim is chosen in the following way: for
models which can be solved by preprocessing, we set Mem-

ID DP MS(DP)
Time Mem Time Mem

bsort80sat 2.6e+03 2.0e+02 5.0e+02 2.6e+02
bsort83sat 2.3e+03 2.2e+02 1.7e+02 3.0e+02
bsort92sat 3.2e+03 3.0e+02 1.1e+02 3.3e+02
bsort21unsat 3.9e+01 7.8e+00 7.7e+04 9.8e+02
merge10sat 3.0e+03 2.5e+01 6.0e+00 1.0e+02
merge15sat 1.1e+04 7.5e+01 3.9e+01 3.0e+02
merge18sat 2.0e+04 1.3e+02 1.3e+02 5.4e+02
merge21sat 3.3e+04 1.9e+02 3.9e+02 8.3e+02
heap10sat 1.1e+04 6.6e+01 1.2e+02 1.4e+02
heap18sat 9.8e+04 1.7e+02 > 2.2e+04 out-mem
gen62sat 7.0e+03 1.8e+02 1.0e+04 2.7e+02
gen65sat 7.6e+03 1.9e+02 1.1e+04 2.8e+02
gen70sat 8.3e+03 2.1e+02 1.7e+04 3.3e+02
gen72sat 8.5e+03 2.1e+02 1.6e+04 3.3e+02
msum30sat 1.1e+03 2.4e+01 8.0e+00 1.5e+02

Table 5. Results for DSATshrink

Lim to be slightly less than the memory needed by MiniSat
on the disk preprocessed CNF. For the models for which
disk preprocessing was ineffective or not applicable (i.e. for
the VIS-generated ones), MemLim is set to 1GB.

ID Split
Time Mem MemLim

bsort80sat 3.6e+03 1.9e+02 2.6e+02
bsort83sat 4.9e+03 2.0e+02 2.6e+02
bsort92sat 5.7e+03 2.7e+02 3.0e+02
bsort21unsat > 7.2e+04 N/A 9.0e+02
merge10sat > 7.2e+04 N/A 6.4e+01
merge15sat > 7.2e+04 N/A 2.6e+02
merge18sat > 7.2e+04 N/A 5.1e+02
merge21sat > 7.2e+04 N/A 1.0e+03
heap10sat 6.8e+04 1.3e+02 1.3e+02
heap18sat 6.5e+04 9.0e+02 1.0e+03
gen62sat > 7.2e+04 N/A 2.6e+02
gen65sat > 7.2e+04 N/A 2.6e+02
gen70sat > 7.2e+04 N/A 2.6e+02
gen72sat > 7.2e+04 N/A 2.6e+02
msum30sat > 7.2e+04 N/A 1.3e+02
elev605sat 3.6e+04 7.4e+02 1.0e+03
elev610sat 3.6e+04 7.8e+02 1.0e+03
palu400sat 2.1e+04 8.8e+02 1.0e+03
palu500sat > 7.2e+04 N/A 1.0e+03
miim700sat 8.8e+03 1.0e+03 1.0e+03

Table 6. Results for DSATsplit

Finally, in Tab. 7, we report the total time needed by
each experiment to complete. Boldface systems are those
for which our approaches are the only capable of complet-
ing the verification.

As to be expected on unsatisfiable CNFs our algo-
rithms are not that effective. In fact, for the same
program (bubble sort, bsort in Tab. 7) we can
handle quite large satisfiable verification instances (e.g.
bsort80sat, bsort83unsat, bsort92sat in Tab.
7) but perform poorly on a not-so-large unsatisfiable in-
stance, bsort21unsat in Tab. 7.

Our results may be summarized as follows. If SatELite
terminates it is faster than any of our algorithms. However,
for large CNFs SatELite (and MiniSat) run out of memory.
In such cases only our algorithms, DSATshrink or DSAT-
split, can complete the verification task. Moreover, DSAT-
shrink appears to be more useful for CNFs generated by
software verification problems (CBMC), while DSATsplit
appears to be more useful for CNFs generated by hardware
verification problems (VIS).
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ID MS MS(SE) MS(DP) Split
bsort80sat out-mem out-mem 3.1e+03 3.6e+03
bsort83sat out-mem out-mem 2.5e+03 4.9e+03
bsort92sat out-mem out-mem 3.3e+03 5.7e+03
bsort21unsat 2.8e+04 4.9e+04 7.7e+04 out-time
merge10sat 1.2e+01 3.8e+02 3.0e+03 out-time
merge15sat 5.1e+01 out-mem 1.1e+04 out-time
merge18sat 1.3e+02 out-mem 2.0e+04 out-time
merge21sat out-mem out-mem 3.3e+04 out-time
heap10sat 8.3e+01 3.8e+02 1.1e+04 6.8e+04
heap18sat out-mem out-mem out-mem 6.5e+04
gen62sat 2.0e+04 out-mem 1.7e+04 out-time
gen65sat 2.1e+04 out-mem 1.9e+04 out-time
gen70sat 2.9e+04 out-mem 2.5e+04 out-time
gen72sat out-mem out-mem 2.4e+04 out-time
msum30sat 5.0e+00 4.5e+02 1.1e+03 out-time
elev605sat out-mem 3.2e+03 – 3.6e+04
elev610sat out-mem out-mem – 3.6e+04
palu400sat out-mem 2.3e+03 – 2.1e+04
palu500sat out-mem 2.6e+03 – out-time
miim700sat out-mem out-mem – 8.8e+03

Table 7. Methods synopsis

9 Conclusions

We have presented two disk based CNF preprocessing
algorithms: DSATshrink (Sections 3, 4, 5, 6) and DSATsplit
(Sect. 7). Both of our algorithms aim at reducing the size
of the given CNF formula thus making it manageable for a
SAT solver.

Our preprocessing algorithms target large CNF formulas
generated from BMC problems. Our experimental results
(Sect. 8) show indeed that DSATshrink is typically effective
on large CNFs generated from software verification prob-
lems (CBMC) whereas DSATshrink is typically effective on
large CNFs generated from hardware verification problems
(VIS).

As a future work, we think that DSATsplit could be ef-
fectively implemented in a distributed way on a network of
workstations. We feel that such an issue deserves further
investigation.
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