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Abstract

To foster effective use of Al planning and scheduling systémthe real world it is of great importance
to both (a) broaden direct access to the technology for tdeusars and (b) significantly increase their
trust in such technology. Automated Planning and Schedyf&S) systems often bring solutions to
the users which are neither “obvious” nor immediately atalgle for them. This is because these tools
directly reason on causal, temporal and resource consranoreover, they employ resolution processes
designed to optimize the solution with respect to non thisiluation functions. Knowledge-engineering
environments aim at simplifying direct access to the tetdmyofor people other than the original system
designers, while the integration of Validation and Verifica (V&V) capabilities in such environments
may potentially enhance the users’ trust in the technol8gymehow V&V techniques may represent
a complementary technology with respect to planning aneéduing, that contribute to develop richer
software environments to synthesize a new generation obtqiyoblem-solving applications.

The integration of V&V and P&S techniques in a knowledge aegring environment is the topic
of this paper. In particular, it analyzes the use of statéhiefart validation and verification technology
to support knowledge engineering for a timeline-basedrpiansystem called MrSPOCK. The paper
presents the application domain for which the automatedesdias been developed, introduces the
timeline-based planning ideas and then describes theelitfgpossibilities to apply V&V to planning.
Hence it continues by describing the step of adding V&V fiomalities around the specialized planner
MrSPOCK. New functionalities have been added to perfornh pobddel validation and plan verification.
Lastly, a specific section describes the benefits as welleagdtformance of such functionalities.

1 Introduction

Designing Artificial Intelligence (Al) planning and scheihg systems able to support human activities
in critical environments, for example in space missionsansimportant task that has been achieving
increasing success for the last decade. Neverthelesguttifs remain in the widespread utilization
of such technologies outside the research laboratorigsusgust consider as an example the space
applications, an area that generally introduces very ehgihg problems for Planning and Scheduling
(P&S) technologies. Very often, the proposed models andtisols turn out to be complex and even
engineers, designers and scientists have difficultieslidatang and verifying them by simple inspection.
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For this reason, automated Validation and Verification (V)&€&chniques may represent an important
contribution, adding value to these kinds of applicatiors/led they can be gracefully integrated with
P&S technology (e.g., see Menzies and Pecheur (2005)).cin dafailure on behalf of an automated
decision support system may have a dramatic impact in tefrias® of science activities, money, and
even human life.

It is worth reminding thavalidationallows us to check whether models, knowledge bases, antbtont
knowledge accurately represent the knowledge as well asijleetives of the human experts that provided
them (i.e.,validation has to do withbuilding the right systein while verificationtells us whether the
system (and its components) meets the specified requirsrfientbuilding the system right

Validation of planning models has been studied in severaksiand it is naturally considered as an
important add-on technology for knowledge-engineeringrenments. For instance, in the context of the
Remote Agent Experiment, both Livingstone and RAX-PS domaddels have been validated exploiting
model checking techniques (Pecheur and Simmons, 2001jiKéaal., 2001); in (Smith et al., 2005)
formal verification is used to check the existence of undésr plans with respect to the domain model;
Simpson et al. (2007) present an integrated tool for creatia validation of planning domains, while a
plan validation tool for PDDL is provided by Howey and Lon@(@3). In (Fox et al., 2005; Bensalem et al.,
2005; Giannakopoulou et al., 2005) formal methods are gepldo verify and validate plan execution
and executive systems.

Current Al planning literature shows how timeline-baseahping can be an effective competitor to
classical planning in capturing complex domains that neqgthe use of both temporal reasoning and
scheduling features — see (Muscettola, 1994; Jonsson 2080; Frank and Jonsson, 2003; Smith et al.,
2000b). Timelines represent entities whose propertieg ivatime, and represent one or more physical
(or logical) subsystems relevant to the planning contele imeline-based approach models the P&S
problem by identifying a set of relevafgaturesof the planning domain which need to be controlled to
obtain a desired temporal behavior. A planner/schedulardscision making software that synthesizes
the controller for the temporal entities, and reasons imssofconstraintsto bind the internal evolutions
anddesired propertieggoals) of the generated temporal behaviors. Continuingesearch line related
to planning and scheduling with timelines, see (Fratinilgt2008), we have implemented a reusable
software framework (Cesta and Fratini, 2008) for modelimg solving problems using the timeline-based
approach. The resulting framework is the core softwarastfucture on top of which, among others, a
specific planner for the long-term planning of theRs ExPRESSmission of the European Space Agency
(EsA) has been developed. Such special-purpose planner, dateEOCK for “Mars Express Science
Plan Opportunities Coordination Kit”, is now in the phaseadfvanced testing in theda operational
environment (Cesta et al., 2009).

This paper describes our effort in exploring different pergives in the integration of V&V with
timeline-based planning and scheduling techniques. Ting term goal of this research is to synthesize
a software environment in which both technologies are nategl, so that the application developers can
take advantage of the co-existence of both previous todidewncoding knowledge of new applications.
We present here a significant step in this direction comgjstf adding V&YV functionalities around the
MrSPOCK specialized planner. In particular, we have addadtfonalities in order to perform both model
validation and verification of the solutions found by MrSPKQQo this purpose we have considered and
used two state-of-the-art formal verification tools, nanidiSMV and UPPAAL.

The rest of the paper is organized as follows. In Section 2intveduce the target work on timeline-
based planning and in particular the MrSPOCK system. Ini@e@&, we survey the possible use of
validation and verification in planning systems. Sectionrdspnts V&V applied to MrSPOCK. Some
discussion and conclusions end the paper.

2 The Target Planning System: MrSPOCK

The long-term goal we are pursuing is the integration ofdadlon and verification techniques in a
knowledge-engineering environment for timeline-baseobf@m solving. Little previous work exists

1The interested reader may find a spectrum of approaches in the VVikShep series at ICAPS-05 and ICAPS-09.
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which specifically concerns V&YV in connection with this siolg approach even if the relevance of V&V
was strongly emphasized by the Remote Agent Experiment egheur and Simmons (2001); Khatib
et al. (2001)). In the present work, we illustrate a set ofrdomated V&YV interventions around a specific
timeline-based planner developed fa A& called MrSPOCK.

2.1 The Problem and the Required Constraints

The MrSPOCK planner is developed to support Long-Term Rienim the MARS EXPRESSMission at
EsA. The mission consists of a spacecraft which has been gglatiound Mars since the end of 2003,
returning a significant amount of data gathered by meanswveinsen-board payloads. The mission has
been extremely successful in terms of scientific return asdfiso inspired a number of interesting work
from the mission management point of view. An open problera twamprove the collaborative problem
solving process between the science team and the operasiondf the space mission. These two groups
of human planners iteratively refine a plan containing adl thission activities. The mission planning
process starts at the Long-Term Plan (LTP) level, i.e..glmenths of planning horizon, and gradually
boils down to obtain fully instantiated activities at shtatm plan level, i.e., one week of planning horizon.
The short-term plan is then further refined every two dayséalpce final executable plans. The goal of
MrSPOCK is to develop a pre-planning optimization tool farming spacecraft-operations. Specifically,
it focuses on the generation ofpse-optimized skeleton LT®hich will then be subject to refinement
on behalf of the cooperative science team and the operaan {see Cesta et al. (2008) for a detailed
description of the addressed problem).

Broadly speaking MrSPOCK has to provide an automated proeefdr producing ajood skeleton
plan, i.e., a LTP that takes into account the needs of botliegathus reducing the effort in reaching an
agreement on a medium-term plan — one-month planning hari2eerall, the generated LTP should be
such that: (a) the number of (expensive) iterations betwermce and operation team is reduced; (b) a set
of objective functions are optimized, i.e., the total vokiof data for down-link operations; the number
of pericentres for science operations; the number and tifieromdistributions of uplink windows.

For each orbit followed by the spacecraft, the baseline aijmers are split identifying three orbit
phases: (1) thpericentre(the orbital segment closest to the target planet); (2pfiecentre(the orbital
segment farthest from the planet); (3) the orbital segmieetiseerthe pericentre and apocentre. Around
pericentre, the spacecraft is generally pointing to théereaf the planet, thus allowing observations of the
planet surface — generically referred toSxgence operation8etween pericentre and apocentre passages,
the spacecraft is generally pointing to Earth for transngttlata Communicatiornwith Earth should occur
within aground-station availability windowGround-station visibility can either partially overlapfally
contain a pericentre passage. AdditionaMaintenanceoperations should occur around the apocentre
passages.

At present, given these requirements, an initial skeletan for MARS EXPRESSIs generated by the
operation team by allocating over the planning horizon ¢higenerally covers hundreds of orbits) three
different types of decisions:

— selection of thévlaintenancewvindows (centered around the apocentre events and usedryifior
momentum wheel-offloadipg

— selection of theCommunicationwindows among the set of available ground stations vigybili
windows;

— selection of the windows fdBcienceoperations, around pericentre events.

Additionally, there are manyard and soft constraints to be satisfied. Constraints on uplink windows
require four hours uplink time each 24 hours (hard condiyaamd these uplink windows must be as
regular as possible, one every about 20 hours (this is fatedlas a soft constraint since uplink windows
require ground station availability, and it is generallyiossible to state exactly their positions). Moreover,
it should be given the possibility to split a four-hour updiwindow into two two-hour uplink windows.
Apocentre slots for spacecraft maintenance windows muatibeated between min. 2 and max. 5 orbits
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(hard constraint), and the maintenance duration is of 9Qutef(to be centered around the apocentre
event).

Communication activities are the source of several hargpteat constraints. For example: (1) the
minimum/maximal durations for the X-band transmitter il tn state; (2) the minimum duration for
the X-band transmitter in theff state; (3) the periods in which the X-band transmitter habaoff
(e.g., eclipses, occultations, slewing manoeuvres andBaoth pointing status). Furthermore, there
are preferences that should be followed for ground-staglaction (calledie-overlappingn mission
terminology). Ground stations have different features tiifferent antenna diameters (there exist 70, 35,
and 34 meters dishes). Usually, antennas allow both uphakdawnlink communications, but there are
cases where downlink only is permitted.

2.2 The Timeline-based Approach

MrSPOCK is a timeline-based planner built using the modgtiapabilities of a general-purpose software
framework, named &F (Timeline-based Representation Framework), which pewitie basic elements
for modeling the relevant entities for timeline-based peab solving (Cesta and Fratini, 2008). The
TRF is designed as a layered architecture: there is an undgrlgmporal database (that provides
primitives to represent and manage time points and temporatraints), a timeline management and
representation layer above the temporal database (thatipeoprimitives to represent temporal flexible
plans as timelines), and an upper level that provides a dréfiel shared representation of both the domain
theory information and the network of planning decisiongdktfolio of domain-independent planning
and scheduling procedures is defined on top of tRe dlong with a domain-description language called
DDL.3.

The timeline-basedapproach models the planning domain in terms of a set of teshfionctions
which evolve over a given temporal horizon. Examples of dudletions arestate variableghat assume
a discrete set of values respecting some transition lawss$dm et al., 2000) anksourcesas they
are currently used in constraint-based scheduling (Chadgsmith, 1994). These functions change by
posting planninglecisions The domain theory specifies what can be done to change thels¢iens, and
the task of the planner is to find a sequence of decisions thag the entities into a final situation, which
verifies several “desired” conditions (callgdalg. Unlike the classical approach, where the state of the
world is changed by means of actions, in timeline-basednitay) the posted decisions directly force
value transitions in the specification of the relevant terapdomain features. The result of the planning
process is called imeling or set of timelines, as it represents an evolution in timéhefstates of the
physical system(s) modeled in the domain.

In the timeline-based solving approach, the planner dscidevhich states the world should find
itself during given segments of the timeline (the planniregidions). During the solving phase, the
planner operates on this temporally-grounded representatt “what is happening” in time. The timeline
representation, in short, allows the planner to apply grrttecisions based on the consequences that these
decisions have on the complete planning horizon. The pssgre propagation of decisions determines
how the entire timeline is affected. While in action-basezhping the domain theory describes operators
which change the state of the world, in timeline-based ptapithe domain theory represents how
different decisions should be synchronized. This is regtes through the notion aynchronization
Synchronizations describe the constraints that are intbaséhe overall timeline when a specific decision
is taken. For instance, a synchronization may state thatigide to “navigate to a destination” needs to
be synchronized with a decision to “consume a certain qtyaofifuel’. As opposed to action-based
planning, the focus here is on states rather than on the topgreeeded to change those states.

2.3 Modeling and Solving the Problem with Timelines

The building of MrSPOCK has followedtaybrid approach. We have used: (1) the timeline representation
and management features of therTfor the problem representation; (2) the capabilities ofelime
planning from the general-purpose planning and schedsiistgm called ®ps(Open Multi-Component
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Planner and Scheduler — Fratini et al. (2008)), also buitbprof the TRF; (3) a domain-dependent solver
that guarantees the satisfaction of the problem’s comsgr@iot modeled in the domain description and
that performs genetic-driven plans optimization, exjpgithe domain-independent underlying planning
system. More in detail, MrSPOCK uses (1) the modeling festwf the RF to represent timelines and
some temporal constraints of the domain through the dontedory, as discussed below (operations
duration as well as synchronizations among operations, asicciences during pericentres, maintenance
during apocentres and communications during ground sgtidsibility); (2) OmPSs capabilities of
planning and timeline manipulation to complete the pdytiapecified plans produced by a domain-
dependent solver designed on top of theFT(3) a domain-dependent solving procedure to build partial
plans that takes into account the constraints not modeléteidomain theory (like the min. 2 to max. 5
orbits separation constraint needed between two maintenaperations), and to perform also a genetic
optimization of the partial plans produced.

The TRF offers the possibility to model domains with two differeppés of timelines: (1€ ontrollable
State Variableswhich define the search space of the problem and whose tieseliltimately represent
the solution to the problem; (2yncontrollable State Variableghat are used to inject temporal values
which can be only observed. In MrSPOCK we have used a singl&alable state variable to model
the spacecraft’s operative mode, which specifies the temhpacurrence of science and maintenance
operations as well as the spacecraft’s ability to commueicBhe values that can be taken by this state
variable, their durations (represented as a paim, mazx]) and the allowed transitions among them, are
synthesized by the automaton in Figure 1, and representaniir8 specification as showed in Figure 3(a).

>~ In addition, we instantiate two uncontrollable state Jalga to

O ! - h - :

Iy w‘\ represent contingent events such as orbit events and commun
/S;w\//:/ \)\(’;ﬂ& cation opportunity windows. One state variable type conepbn
Q"i"%\& ,,N/“/@f” maintains the temporal occurrences of pericentres andeapes
/ I\\»@% /// (“Peri” and “Apo” values on the timeline in Figure 2, top) dfet
\.@f@ spacecraft's orbit (they are fixed in time according to tHerima-

N \Bsssl) operaine iodes tion found in an orbit events file), while the other state ahles

maintain the visibility of three ground stations (“MAD”EB”
Figure 1 Legal transitions on the  and “NNO” timelines in Figure 2, bottom). These state vagab
state variable describing the opera- 1., q r Ayailable(?rate, ?uidl, ?antennas), Unavailable()as allowed
tional mode of the spacecraft. o ° )

values, where th&rate parameter indicates the bitrate at which
communication can occuPul_dl indicates whether the station is available for upload, doaahor both,
and the?antennaparameter indicates which dish is available for transrorssi

Any valid plan needs synchronizations among the oper-
ative mode timeline (Figure 2, middle) and the uncontrol- ﬂ’" Evonts | ‘AAW‘A |AperiA| \
lable timelines (represented as dotted arrows in Figure 2
and as described in Figure 3(b) imL.3 specs): science
operations must occur during Pericentres (meaning that o;’,’:ﬁ;”j’;’.ﬁde
a Sciencevalue must start and end duringPari value),

maintenance operations must occur in the same time
interval as Apocentres (meaning thabMaint value must

EQUALS PURING

an"{ Maint

Comm |lSc

l_|

Slew

DURING

DURING

Available

Unavailable()

Unavailable() ‘

(151.300,ul_dI,70m)
start and end exactly when tiWgovalue starts and ends) | Ground station
. . . . Availability Available Unavailable()
and communications must occur during ground-station| Timelines

NNO CEB MAD

(91.400,d1,34m) ‘
visibility windows (meaning that &ommvalue must start | | |:| | | ‘
and end during a\vailable value). In addition to those .
synchronization constraints, the operative mode timelinek y
must respect the transitions among values specified by the
automaton, as well as the minimal and maximal duratiorFigure 2 Timeline synchronizations.
specified for each value (in the same automaton). It is wamharking that in timeline-based planning,

causal knowledge is modeled both in the value transitioreciipd by the automata and on the
synchronizations constraints among the different autaroba domain.
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COMP_TYPE StateVariable OPERATIVE (Earth() , Comm(RATE,UDL,STATION), Science (), Maintenance (), Slew())
VALUE Earth() [1,+INF] MEETS{ Slew(), Maintenance(), Comm(?rate,?availability, ?stafion)
%Duration 60 minutes at least
VALUE Comm(?rate,?availability, ?station) [3600000,+INF] MEEJBarth(),Slew(),Maintenancef)
%Duration [36,68] minutes
VALUE Science() [2160000,4080000] MEE RS lew()}
%Duration 90 minutes
VALUE Maintenance() [5400000,5400000] MEE{&arth()}
%Duration 30 minutes
VALUE Slew() [1800000,1800000] MEET$Earth(),Comm(?x0,?t0,?ap)

(a) pDL.3 Operative Mode model inDL.3.

COMPONENT OPERATIVEMODE:OPERATIVE {
%A ground station must be visible
VALUE Comm(?rate,?avail, ?statiofPURING [0,+INF][0,+INF] DSSSTATIONS Available (?rate,?avail, ?statign)
%Maintenenance During Apocentres
VALUE Maintenance(){ EQUALS ORBIT.EVENTS Apocentre()
%Science During Pericentres
VALUE Science(){ DURING [0,+INF] [0,+INF] ORBIT_.EVENTS Pericentre{)}

(b) pbL.3 synchronizations for the Operative Mode state variable.

Figure 3 DDL.3 specifications of a State Variable and a Synchronization constraint.

On top of this representation, MrSPOCK'’s solver builds thacgcraft’s operative mode timeline that
allocates science, maintenance, and communication tesivA solution is obtained when a consistent
timeline for the controllable component is defined and all dperational constraints represented by
synchronizations are satisfied. A distinctive aspect of RIDEK is the direction we have taken to
build a problem solver for the timeline representationteas of using a generic search engine (for
example the planning and scheduling integrated searchvefpwe have built a specialized solver that
dialogues directly with the problem representation in tire=.Tn this way, we exploit the RF constraint
engines for propagating several types of constraintsentsiing specialized search engines partly general
(with OMPS) and partly tailored to the problem. In particular, MrSPO®@iegrates a greedy one-pass
constructive search procedure with a generic optimizatiarie that uses a genetic algorithm approach
as discussed in Cesta et al. (2008). The cooperation améiagedt engines to build the solution within
MrSPOCK is key to understanding the need of V&V proceduressdied in the following.

3 V&V lIssues for Knowledge Engineering Planning Systems

V&V techniques play an important role in the knowledge-@®giring process for model-based systems,
and planning systems in particular, as they provide a wayssess the quality of the proposed
requirements, models, and heuristics along with hints abouw to rectify flawed solutions — see (Preece,
2001). As said before, validation allows us to check whetnedels, knowledge bases, and control
knowledge accurately represent the aims and knowledgeeohtiman experts that supplied it, while
verification tells us whether the system (and its compofemisets the specified requirements as a
software artifact. V&V methods are also particularly imamt and challenging when deployed for the
design of Al systems based on planning and execution (afeored to asmodel-based autonomous
systemp Indeed, the quality and the reliability of these systemes \sery hard to assess due to the
architectural complexity, the heterogeneity of semardiocd of the algorithms involved, as well as the
multitude of enabled behaviors — see Smith et al. (1997) fdescription of the knowledge-acquisition
process for models and heuristics of a complex autonomaostersg based on P&S and Menzies and
Pecheur (2005) for a review of V&V problems and methods bigtéor these systems.

In designing P&S based systems, V&V can be applied at diffestages of the knowledge-
engineering lifecycle: domain validation, plan verificatiand validation, planner/solver validation and
verification, plan execution validation and verification.the rest of this section, we introduce a quick
review of several works which are relevant for each of thesees.
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3.1 Domain Validation

In P&S systems, the domain model plays a crucial role bedhessccuracy of the environment model has
a directimpact on plan correctness (e.g., safety, livgraagsperformance. In fact, while we can hope that
a planner generates the correct plans for the given plardontain (environment model), unfortunately
this is usually not straightforward. Because of modelingey; (e.g., inconsistent, incomplete, inaccurate
models) the planning domain may not adequately represergritironment, hence the resulting plans
will be correct with respect to the planning domain, but ofuse in the real world. For these reasons,
validation of planning domains is a critical task that hasrbeonsidered by several authors.

Domain validation aims at showing that no plan violating ¢fieen properties can ever be generated,
given the planning domain. This can be done by using testirtgy aising formal methods, e.g., model
checking. Testing can only show theesencef errors (i.e., if no error is found there is no guarante¢ tha
none exists) whereas model checking can also demonstesdibsencef errors (i.e., if no error is found
we are guaranteed that none exists). Not surprisingly, mdgecking is computationally much more
expensive than just testing since the former will look atedichable states of the domain model. Because
the number of such states is in general exponential in theadosize tate explosiononly moderate size
domains can typically be handled using model checking tigcies. In a testing-based approach a large
number of plans are generated and then checked to verifg#tt of them satisfies the given properties.
Testing-based domain validation restspban verificationand will be discussed in Section 3.2. In a model
checking approach, a model checker is used to generate thplanolates the given properties. If no such
a plan is found then the planning domain is successfullyde#did; otherwise the model checker returns a
plan violating one of the given properties. Sugtdesiretplans can be used to refine the planning domain.
Domain validation starts again on such new refined domaitil, nm more undesired plans are found by
the model checker. In the following, we discuss domain ‘ediah based on model checking.

In the context of temporal planning, formal methods apptied/alidation of planning models are
pioneered by Penix et al. (1998) using three model checl&?&N, SMV, Murphi) to inspect express-
ibility, liveness and safety properties of simple plannogmains for the HSTS planner (Muscettola,
1994). In the same direction, a more expressive temporathi®donsidered by Khatib et al. (2001) who
propose a mapping from interval-based temporal relationdats (i.e., DDL models for HSTS) to timed
automata models (UPPAAL). This mapping was introduced aglinginary step towards the application
of V&V technigues in timeline-based temporal planning; leser, this direction has not been fully
explored. Analogously, Vidal (2000) presents a mappingiftontingent Temporal Constraint Network
to Timed Game Automataodels. Also in this case, the authors propose the spe@ificiamework, but
techniques for domain validation or temporal plan verifaratare not introduced. Formal methods for
domain validation are proposed by (Smith et al. (2005); Haxw et al. (2008)) using model checking
(with SPIN) to guarantee that all plans enabled by the ptammdiomain meet certain desired properties.
If undesired plans are found these are reported as errordh@ndlanning domain has to be refined
accordingly. It is worth noting that real-time temporal pecties and temporally flexible plans are not
addressed in such research work.

3.2 Plan Verification

A typical approach to domain validation is the empiricallgation testing-base@pproach). Following
this approach, a number of sample plans are generated anghltyaimspected to check for errors. For
example, this method is employed in (Smith et al. (1999, ap0@here hundreds of plans are selected
to validate the domain model of the Remote Agent. Manual pkification is a long, expensive, and
error prone activity. This has motivated research on auticnt@ols for plan verification. Note that plan
verification can be used for (testing-based) domain vatidats well as to show that the planner’s output
is correct with respect to given properties. This is muchezdhan showing correctness of the planner
itself.

Verification of temporal plans expressed in PDDL with dwmtactions is enabled by the VAL
plan verification tool by Howey and Long (2003) that has besaduduring International Planning
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Competitions since 2002. However, flexible temporal plammsnplex temporal constraints, and other
temporal features are still to be addressed (Fox et al.,)2006

3.3 Plan Synthesis

Generation of correct-by-construction plans from formpédfications have also been studied. For
example, in Abdedaim et al. (2007), the authors investigaig compareConstraint Based Temporal
Planningtechniques andimed Game Automataethods for representing and solving realistic temporal
planning problems. In this direction, they propose a magfriom IxTeT planning problems to UPPAAL-
TIGA game-reachability problems and present a compari§timeawo planning approaches.

Formal methods applied to timeline-based temporal planare considered within the ANML frame-
work, a timeline-based specification framework proposedA$A Ames. For example, in Siminiceanu
et al. (2008) authors present a translator from ANMLite (&t version of ANML) to the SAL model
checker. Given this mapping, the authors illustrate prielary results to assess the efficiency of model
checking in plan synthesis.

It is worth saying that all these papers mainly focus on roplen synthesis, while our aim in the
current work is to address the V&V issues that arise whenmtenin complex domains with hybrid
solvers.

3.4 Planner/Solver Validation and Verification

Formal methods are mostly applied to model, plan, and plaowgion validation and verification, while
other methods are usually deployed for V&V of the planningiea. For example, the verification of the
P&S system for the Remote Agent (Nayak et al., 1999; Smith £1899; Jonsson et al., 2000) is based
on test cases to check for convergence and plan correcMessspecifically, the P&S system is verified
by generating hundreds of plans for a variety of initialeseind goals, and using a plan-checker to verify
that the generated plans meet a validated set of plan coegctequirements.

A similar approach has been followed at JPL for validatirgyB®©1-science agent (Cichy et al., 2005).
One of the key issues in empirical testing is achieving adexjaoverage with a manageable number
of tests. Test selection should be guided by a coverage anetowever classical approaches used for
testing mission-critical systems are not suitable for plag systems (Jonsson et al., 2000) because of
their complex search engines and rich input/output spaditthe IDEA framework, model checking
techniques are used to explore the space of input scenariogléer to generate tests for the reactive
planner (R-Moreno et al., 2007). It is worth noting that irsttvork, model checking is used to generate
a representative set of off-nominal testing scenarioshérsame vein, we are interested in validating the
overall P&S system. However, our focus is slightly differeme are mainly concerned with V&YV formal
methods for timeline-based planning systems with imptioinain constraints and control knowledge.

3.5 Plan Execution Verification and Validation

V&V of plan generation does not guarantee robustness of platution. Indeed, a valid plan can
be brittle at execution time due to environment conditidmat tcannot be modeled in advance (e.g.,
disturbancel V&V techniques can be also used for plan execution vabaat-or example, robust plan
validation during execution is considered in (Fox et alQ20where hybrid timed automata are deployed
to handle plan validation with temporal uncertainty.

As a follow-up of the Remote Agent experiment, the work ofr@iakopoulou et al. (2005) describes a
compositional approach to V&V applied to the NASA K9 Roveeeutive system, by deploying formal
methods throughout the overall design and developmemlylife. The plan execution for the K9 rover
scenario is also considered in (Bensalem et al., 2005)., ldagenerated plan for the rover is transformed
into a timed automata. An observer is synthesized from thediautomata to check whether the sequence
of observations comply with the specifications.

In Fox et al. (2006), the VAL framework, coupled with a plaxeeution architecture, has been applied
to on-board plan verification and repair. In the CIRCA framéw(Goldman et al., 2002), a Controller
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Synthesis Module (CSM) automatically synthesizes hartitiee reactive plans. The CSM is modeled
using timed automata and a model-checking based plan vésitised to support robust reactive planning.
CIRCA's main concern is the synthesis of control sequenaethe-fly. Accordingly, issues and methods
(e.g., reactive plan generation and verification) are difiefrom the ones discussed in the next section.

4 Verification and Validation within MrSPOCK

The long-term goal of the authors is the definition of a gelnfeeanework in which P&S and V&V
technologies are strictly coupled. The main purpose is dwige a knowledge-engineering environment
for both developers and users of a P&S system. Potentiafiteaee twofold: on one hand, developers
can be supported by a tool that allows them to continuousBcktthe correctness of their choices
during all the design phases; on the other hand, users cesasiogly build their trust in the application
once endowed with an independent checker used to verifyghergted solutions before the execution.
Considering the issues introduced in Section 3, this fraonkaims at providing an integrated knowledge-
engineering support that exploits formal methods for batimdin validation, planner/solver V&V, and
plan verification, thus supporting domain modeling, sobl@relopment, and application assessment.
In the current stage of our work, we

focus the attention on the MrSPOCK plan- /
ner which has been developed for a real| & _ :
P&S space application. The goal is to \(ﬂ%

. User

H
2
3

— %

4

N

== — —_— Knom\ége
Engineer

provide an overall validation and verifica- | )
tion framework for MrSPOCK. The whole | " /
approach can be seen as an incrementa
refinement process involving both model
validation and planner V&V in which the
deployment of formal methods is particu-
larly important. In fact, MrSPOCK’s solu-
tions correctness can not be verified by
knowledge engineers, due to the complex-
ity of the domain and the use of a hybrid Figure 4 The knowledge engineering support architecture.
solving process (that involves also an optimization stepaleeady discussed in Section 2.3. Figure 4
shows the overall knowledge-engineering architecturdt lamound MrSPOCK. Two main tasks are
depicted: (a) Model validation; (b) Solver V&V. Model vadition is the process of checking whether
the domain model is well defined. In this case, our framewarnpsrts knowledge engineers in the
process of refining and correcting the domain model w.etstfstem requirements. Planner/Solver V&V
allows users to check whether the solver works as expecteslgb activities are supported by providing
effective methods to verify the solver and the generatedtisols. In particular, an important subtask
of Planner/Solver V&V is plan verification, which systentally analyzes the solutions proposed by
MrSPOCK. Indeed, errors possibly found in the generatedsxtauld help knowledge engineers to revise
the model (back to the model validation step), the heusstic the solver. Furthermore, plan V&V can
also be exploited to analyze MrSPOCK plans with respect ¢oetkecution controllability issue as an
additional verification step.

The rest of this section describes in detail the currentltes8ubsection 4.1 discusses the general
structure of the MrSPOCK V&V processes; Subsection 4.2 shbw MrSPOCK’s models can
be validated; Subsection 4.3 presents planner validagaoinsection 4.4 shortly discusses a possible
extension of these methods to manage flexible temporal pldmover, interesting quantitative results
are shown and discussed in Subsection 4.5.

4.1 Validating MrSPOCK via Model Checking

In the architecture of Figure 4 the V&V tasks are carried aihg model checking technology. Model
checking consists of well known set of techniques used tiiywerquirements and design properties for
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several real-time embedded and safety-critical systerasefally speaking, a model checker (McMillan,
1993; Clarke et al., 1999) takes as input the system deggriphd returns PASS if the system satisfies
the given property, FAIL otherwise. In the latter case, thedasl checker also shows a system run
(counterexamplethat falsifies the given property. The system descriptmmsually represented in a
simple (concurrent) programming language. System prigseare typically encoded in temporal logics
such as CTL (Clarke et al., 1999) or LTL (Holzmann, 2004).sltworth reminding that (a) CTL
(Computation Tree Logjcis a branching-time logic. Its model of time is tree-likbete are different
paths in the future, each one representing a possible ésedtace; (b) LTL Linear Temporal Logiris

a modal temporal logic with a linear model of time. The maiakppem of model checking techniques is
represented by thetate explosiotvecause the number of reachable states of a system may beeetijpb

in the size of the description of the system itself. Hencestinecess of model checking rests on the fact
that efficient techniques be devised to counteract the sxgilesion problem. The efficacy of the different
approaches to model checking depends on the particulacapph domain. For this reason, many model
checkers are available, each targeting a particular clasystems. In our current work, we use two
prominent software tools, namely NuSMV and UPPAAL, bothresenting the state of the art in model
checking technology, that offer remarkable features forftamework:

NuSMV (Cimatti et al., 2002) is a model checker for concurreynthronouss well asasynchronous
Finite State Systen{ESS) employing temporal logics (CTL and LTL) to define sfieations. The
NuSMV modeling language allows definition of concurrent HB&n expressive, compact, and
modular way. SMV model definition uses variables with finitpets, grouped into a hierarchy of
module declarations. Each module declares its local asaltheir initial values and how they
change from one state to the next one. NuSMV is one of the mbigble model checkers available
in literature and its modeling language presents a highedegf expressiveness. Nevertheless, its
modeling language does not provide specific constructsrfa tepresentation.

UPPAAL (Larsen et al., 1997) is a toolbox for specification, simalatand verification of real-time
systems. The verifier handles expressive safety and bouivdedss properties. A UPPAAL model
consists of a set of timed automata, a set of clocks, glob#bhas, and synchronizing channels.
Each node of the automaton may be associated with invariargsforce transitions out of the
node. An arc may be associated with guards, for controllihgmthis transition can be activated.
For each transition, local clocks may get reset and glob@bes may get re-assigned. Channels
can be used to synchronize transitions on different autanfeg in NUSMV, the properties to be
verified are defined using CTL. UPPAAL owns a temporal serparitiat can be easily exploited
during both modeling and verification.

Validation Architecture. The general
validation architecture is designed as
depicted in Figure 5. An automatimodel
translatorembedded within the MrSPOCK

mmtlon Architecture

framework is responsible for translating
both models and solutions, and produces
the specifications to be checked.

Recalling the validation processes intro-
duced in Figure 4, model validation requires

Input Model
Model Checker
I I FAIL
Model
Translator,

MrSPOCK
Framework

Trace
— [
the translator to encode MrSPOCK speci- \ /

fication as an input model for the model Figure 5 Validation architecture exploiting model checking.

checker along with the user queries (specified in CTL). Onatier hand, plan verification needs an
input model that encodes both the MrSPOCK model and theisolptan, along with the plan property
to be verified. Whenever the specification fails, the modetkbeprovides an execution trace that can be
exploited to understand if something is wrong or lacking.
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Our V&YV architecture is thus based on a well-suited mappiognfthe MrSPOCK domain and the
generated plans to the input models needed by the model etsedk the following section, we will
describe in detail how the model translator automaticatigverts MrSPOCK structures into the input
model for the model checkers. Although the handling of pataens can be easily accommodated in our
translation, the description of this aspect is omitted fier¢he sake of simplicity.

4.2 Model Validation

The translation from a MrSPOCK model to a model checker formadel requires the introduction
of a well-defined set of state variables and clocks. Statabas range on domain states and model
timelines whereas clocks are used to represent time pigred-or each state variable (and hence for
each timeline) we havestate variable automatowhose states correspond to possible values of the state
variable, while the transitions represent the value chanigeaddition, we introduce another automaton,
the observer automatqrthat checks the consistency of the temporal constrairitsetbamong different
timelines. In the MrSPOCK domain, temporal constraintshia $tate variable definitions are specified
by means ofconsistency feature€onsistency features can be both value durations contstr@n the
form of [min, maz], €.9.,/90, 90] for Maintenance activity), and sequencing constrainte/ben values
expressed by Allen’s temporal relations (e.g., SciemeetsSlew), while synchronizations constraints,
i.e., constraints among different timelines, are expregsterms of general temporal relations on values.
In our specification, the latter are expressed and monitoyeeobserver automaton

Figure 6 presents a mapping algorithm from the domain datsani of MrSPOCK to the input
specification for the model checkers. This mapping worksodews. First, for each state variable we
introduce a clock (rows 02-03). The clock is here needed poesent time and temporal constraints
on the transitions. In addition, to model time progressior, introduce a clock automaton (row 04);
whenever a transition occurs, the automaton resets thk ¢tdoe to zero. Then, for each state variable,
an automatom _SV; is generated (rows 07-23) according to the set of possilileesaf the state variable
and the related consistency features. Finally, we conslidesynchronization constraints among different
timelines. These relations present the following form:hié tstate variable SV1 evaluates to V1 then
state variable SV2 is to be equal to V2. As already mentioflegse constraints are specified by an
additional monitoring automaton, thebserver automatarMore precisely, we generate an automaton
endowed with two states (rows 25-32): the first state reptsssnstraints satisfaction; the second one
represents constraints violations. The transitions afellsvs: initially, no violations occur; whenever a
domain constraint violation is detected we have a tramsitiche failing state.

Two examples of consistency features related to the spaitsaperative mode are: Science activity
duration must be ind6, 68], and Maintenancdask must meeEarth or Commactivity. In Figure 7, we
show an excerpt of the derived NuSMV input model. The autanfat Orbit Events and Ground Station
Availability are generated in a similar way. Note that, fack module, the initial state is given as a
parameter, while transitions are omitted when associaidd win = 1 and/ormaxz = IN F' durations
constraints. Here, the synchronizations between the @pensiode timelines and the uncontrollable
timelines compose the domain theory of MrSPOCK. More spedifi, we have: science operations
occurrences during pericentre orbits, maintenance dpasatluring apocentre orbits, and ground station
availability during communications. Figure 8 shows them&étin in UPPAAL of the monitoring module.

Once the translated model is available as the input for theeincheckers, MrSPOCK model can be
validated with respect to the properties and the requirésn&or instance, we can verify that whenever
a Science activity is performed, results must be transchitteEarth. This can be encoded through the
following CTL formula: AG (OPERATIVEMODE.value = Science}» AF (OPERATIVE.MODE.value
= Comm).
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01 // Clocks definition

02 For each Conponent Ci

03 VAR Clock_C = 0;

04  AUTOVATON A O ock_G = CREATE_CLOCK_AUTOVATON() ;
05

06 // State Variables encoding

07 For each State Variable SVi

08 AUTOVATON A_SVi = CREATE_EMPTY_AUTOVATON() ;

09

10 For each Allowed Val ue Av

11 ADD_STATE(A_SVi , Av) ;

12

13 /'l Consistency Features

14 For each Consi stency Feature neets(Avl, Av2)

15 TRANSI TION T = ADD TRANSI TION(A_SVi, Avl, Av2);

16

17 For each DURATI ON Consi stency Feature Duration(Av, mn, mex);
18 ADD_| NVARI ANTS( Av, G ock_SVi <= max);

19 ADD_GUARD_ON_EVERY_OUTGOI NG TRANSI TI ON(cl ock_SVi >= nin);
20

21 /1 Wenever a Transition occurs, clock nmust reset

22 For each Transition in AG T

23 UPDATE( T, cl ock_SVi = 0);}

24

25 AUTOVATON M = CREATE_EMPTY_AUTOVATON() ;

26

27 ADD_STATE(M DT_OK) ;
28 ADD_STATE(M DT_KO);

30 For each Domain Theory Constraints SV1 -> SV2
31 TRANSI TION T = ADD_TRANSI TI ON(M DT_CK, DT_KO) ;
32 ADD_GUARD( T, SV1 AND NOT SV2);

Figure 6 An algorithm for mapping Timeline-based domain model into model chisakedel.

MODULE OPERATI VE_MODE( i ni t Val ue)

VAR

value : {Earth, Earth_Conm Science, Mintenance, Slew;
ASSI GN

init(value) :=initValue;

next (val ue) := case

(value = Earth) : {Slew, Miintenance, Earth_Comm Earth};

(value = Comm) & (cl ockOPERATI VE_MODE < 60) : Conm
(value = Conm) & (cl ockOPERATI VE_MODE >= 60) : {Earth, Mintenance, Slew};
(value = Science) & (clockOPERATIVE_MODE < 36) : Science;
(value = Science) & (cl ockOPERATI VE_MODE >= 36) & (cl ockOPERATI VE_MCDE <= 68) : Slew,
(value = Science) & (cl ockOPERATI VE_MODE > 68) : Slew,
(val ue = Muaintenance) & (cl ockOPERATI VE_MODE < 90) : Mui nt enance;
(val ue = Mai ntenance) & (cl ockOPERATI VE_MOXDE >= 90) : {Earth, Commi;
(value = Slew) & (cl ockOPERATI VE_MODE < 30) : Slew
(value = Slew) & (cl ockOPERATI VE_MODE >= 30) : {Earth, Conm Science};
1 : val ue;
esac;

Figure 7 NuSMV Module definition for the OPERATIVEMODE State Variable.
process monitor() {
state DT_OK, DT_KG
init DI_CK;
trans
DI_OK -> DT_KO {guard (OPERATI VE_MODE_Comm) and not (DSS_STATI ONS_Avail abl e); sync pul se?;},
DT_OK -> DT_KO {guard ( OPERATI VE_MODE_Mai nt enance) and not (ORBI T_EVENTS_Apocentre); sync pul se?;},
DI_OK -> DT_KO {guard (OPERATI VE_MODE_Sci ence) and not (ORBI T_EVENTS Pericentre); sync pul se?;},
DT_KO -> DT_KO {sync pul se?;};
}

Figure 8 UPPAAL Monitor Module definition. Monitor synchronizes transitions with stasgiable automata
transitions through pulse channel.

This formula states that if a science activity is executea icertain state, then in all the possibile
system executions originating from that state a commuioicaask will eventually occur (coherently
with the above requirement)

Whenever the formula described above does not hold, a modekehproduces an execution trace
proving that the system reached amor state. The reported trace can be used to identify the domain
inconsistency and to diagnose the conditions it originftech.

2In CTL (see Clarke et al. (1999)), A means ’along All paths’ (InevigtE means 'along at least (there Exists) one
path’, G means ’'has to hold on the entire subsequent path’ (Globallygahsieventually has to hold somewhere on
the subsequent path’ (Finally).
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4.3 Planner Validation

Planner validation is based on a plan verification tool thegtcks the solution generated by MrSPOCK
with respect to the specified properties. Plan verificatEguires an input model that encodes both the
MrSPOCK domain specification (described in the previousi@ercand the generated plan. In this case,
the model checker can verify whether the generated plantisyca good controller for the controlled
systems. That is, the model checker verifies whether chaogean executions and state variables can be
synchronized or not.

First, we have to represent temporal plans in the model @récgut specification. The plans generated
by MrSPOCK provide a set of decisions/activations over tla¢esvariables. For each state variable, a
generated plan provides a set of activations at fixed timatpdplanned timeline); therefore, a plan
describes the sequence of values the state variables hassume in a given time frame.

In Figure 9, we present an extension of the translating algordescribed in the previous section that
allows us to encode the domain and the generated plan initablstinput model for the model checkers.
To represent the generated plan, we introduce an additomataton (rows 06-16) for each state variable,
representing the controller associated with the statabbai This automaton has a number of states that
is equal to the length of the plan; for each activation/denigvailable in the plan we introduce a state.
Transitions between states represent plan steps, fronnitiad value to the last one. For each transition,
we also introduce a guard that enables the transition airtfeeibstant decided by the temporal plan.

As for the model validation case, we maintain the specificatiustrated in the previous section — for
each state variable we use the automaton described in thithig depicted in Figure 6 — with the only
expection that in this case we also need to synchronize (@wh2 value changes occurring in the state
variable automaton associated with the (controlled sygtaswell as the value changes occurring in the
plan automaton (controller).

Finally, theobserver automatois also extended. Indeed, in this case we have to check npotlomain
constraints, but also the synchronization between thenpldmalues (values defined in the generated plan)
and the executed values (values assumed by the state eqrigbérefore, in thebserver automatowe
introduce a new transition that triggers whenever a statebla value and the value decided by the
planned cannot be aligned (rows 42-45).

Figure 10 illustrates a simplified NuSMV module for the exted monitor — here, we consider only a
subset of the transitions associated with the Spacecraftafipe Mode state variable.

Once the input model is completed and forwarded to the moldetlers, we can formulate and
verify the plan properties. In particular, using tbbserver automatgrthe plan validity property can
be formulated as followsor each timeline, OK status for the monitor is always reqeesThis can be
encoded by the following CTL formula: AG (Monitor.status ¥ BRALL _OK).

Whenever the above formula does not hold, the model checgerteean execution trace that allows
the user to understand which inconsistencies are presevtde the planned timelines and the evolutions
of the state variables. Thus, the reported trace can be osiel@ntify plan errors and to diagnose the
conditions they originated from.

Note that, when necessary, thieserver automatocan become more complex to better support planner
and model validation. For example, thieserver automatocan be extended by introducing multiple error
states, namely, we may introduce one error state for eagbam class of possible inconsistencies. In this
way, the provided error type notion can be exploited in asgbent refinement/correction of the domain,
of the heuristics, or of the solver.

4.4 Flexible Temporal Plan Verification

An interesting issue concerns the verification of flexiblmperal plans. That is, plans where value
changes can occur within time intervals rather than at fixeeé instants. A flexible plan can be easily
represented using the input model already described forygéfication. In this case, we simply have to
consider temporal variables over a certain interval of@alT hat is, if a flexible time point of the plan can
assume values ifT,in, Trmaz), then the associated temporal variable ranges gk, ... Tynax }- In this
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01 // docks definition

02 For each State Variable SVi

03 VAR Cl ock_SVi = 0;

04  AUTOVATON A Cl ock_SVi = CREATE CLOCK_AUTOVATON() ;

06 // State Variables encoding

07 For each State Variable SVi

08 // PLAN AUTOVATON

09 AUTOVATON PLAN SVi = CREATE_EMPTY_AUTOMATON() ;
10 11 For each Val ue Change in SVi Plan VG

12 ADD_STATE( PLAN_SVi, STEP_SVi _VG ) ;

13 14 For each Value Change in SVi plan VG at tine Tj

15 TRANSI TION T = ADD_TRANSI TI ON( PLAN_SVi , STEP_J, STEP_J+1) ;
16 ADD GUARD( T, clock_SVi = Tj);

17

18 /| STATE VARI ABLE AUTOVATON

19  AUTOMATON A SVi = CREATE_EMPTY_AUTOVATON() ;

20 21 For each Al l owed Val ue Av

22 ADD_STATE(A SVi, Av) ;

23 24 /1 Consistency Features

25 For each MEETS Consi stency Feature nmeets(Avl, Av2)

26 TRANSI TION T = ADD_TRANSI TI ON(A_SVi, Avl, Av2);

27 ADD_SYNC( T, PLAN_SVi ) ;

28

29 For each DURATI ON Consi stency Feature Duration(Av, m n, max);
30 ADD_| NVARI ANTS( Av, C ock_SVi <= max);

31 ADD_GUARD_ON_EVERY_OUTGO NG_TRANSI TI ON( ¢l ock_SVi >= min);
32

33 /1 Whenever a Transition occurs, clock nmust reset
34 For each Transition in ACG T
35 UPDATE( T, cl ock_SVi = 0);

37 AUTOVATON M = CREATE_EMPTY_AUTOVATON() ;
38 39 ADD STATE(M OVERALL_OK);
40 ADD_STATE(M OVERALL_KO) ;

42 For each State Variable SVi

43 For each step J in PLAN_SVi with Val ue Vj

44 TRANSI TION T = ADD TRANSI TI ON( M OVERALL_OK, OVERALL_KO) ;

45 ADD_GUARD(T, (PLAN_SVi _STEP = J) and NOT (A SVi_VALUE = Vj));
46 47 For each Dommin Theory Constraints V1 -> V2

48  TRANSITION T = ADD TRANSI TI ON( M OVERALL_OK, OVERALL_KO) ;

49  ADD GUARD(T, V1 AND NOT V2);

Figure 9 The extended algorithm for mapping Timeline-based domain and planlinéalenodel checkers model.

MODULE Moni t or ( pl anOPERATI VE_MODE, . . ., OPERATI VE_MCDE, . . .)
VAR

status : {OVERALL_OK, OVERALL_KG};
ASSI GN

i nit(status) OVERALL_CXK;

next (st at us) case

(status = OVERALL_KO : OVERALL_KO

( pl anOPERATI VE_MODE. step = 0) & ! ( OPERATI VE_MODE. val ue
(pl anOPERATI VE_MODE. step = 1) & ! (OPERATI VE_MODE. val ue

Earth) : OVERALL_KQO,
Comm) : OVERALL_KQ

-- DT --
( OPERATI VE_MODE. val ue
( OPERATI VE_MODE. val ue
( OPERATI VE_MODE. val ue
1 : status;

esac;

Figure 10 NuSMV Module extended definition for Monitor.

Comm) & ! (GS_AVAI LABI LI TY.val ue = Avail abl e) : OVERALL_KGO
Mai nt enance) & ! (ORBI T_EVENTS. val ue = Apocentre) : OVERALL_KO,
Science) & !(ORBI T_EVENTS. value = Pericentre) : OVERALL_KG

way, a model checker can explore and verify all the posséigbral evolutions of the flexible plan. By
properly modeling the synchronizations among these vimsalthe domain state variables, and the plan
behaviors, we can deploy the validation architecture prieskabove in several ways.

As a first step, we can check whether a flexible plan is disjpdéietor not. In fact, we can ask the model
checker to verify if there exists a possible temporal evoiubf the plan guaranteeing that no constraint is
violated. This can be encoded by the following CTL specifwatEG (Monitor.status = OVERALLOK).

In addition, we can check several domain-dependent priepeithis allows us to inspect properties of
flexible plans before their execution. Typical properties @bout accomplishment of tasks. For instance,
we can check whether a flexible Science task can always bty safmpleted regardless of its start
time. This can be encoded by the following formula: AG (OPERA _MODE.status = Science» A
(Monitor.status = OVERALLOK U OPERATIVE.MODE.status = Slew)).
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4.5 Lessons Learned

Model checkers are extremely useful tools but the benefitsaafel checking come at a cost that can be
very high. Menzies and Pecheur (2005) identify the follayvihree cost assessment phasesW&jing
costis the initial cost of developing the systems model and tlop@rties model, in a format accepted
by the model checker; (Brunning costs the cost of actually running the model checker, as mangdim
as needed; (clRe-writing costis the cost of iteratively modifying the model until modeletiking can
complete successfully and provide acceptable results.ekpitation of the knowledge-engineering
framework around MrSPOCK not only decreases the costs fjusodel checking tools but also provides
useful support during the development process.

Basically our framework minimizeriting cost In fact, the description of the system to be verified
(domain model) is often translated by hand from its origidkesign into the input syntax of the target
verification tool. Usually, this translation is a time-canging and error prone human activity, typically
taking weeks or months of human work.

The model-translation processes used P —ew "
within the MrSPOCK framework automates * /
such translation, producing model checker 25 /

input models in a matter of minutes. We 15 W\

have run our translator on several different 0
domains in order to test the general behavior R || ||
of the framework. We collected quite good el
performances depicted in Fig. 11. Our Figure 11 Domain Encoding Times to UPPAAL and
experimental results show that, even handlingNUSMV input models.
domains with thousands of state variables, a few secondsudfieient for our framework to produce
domain models in both NuSMV and UPPAAL input languages.

As a consequence of endowing our framework with automated/\p®ocesses, another important
advantage is granted. In fact, formal methods expertsi@tgions can be avoided allowing field engineers
to perform validation and verification tasks as part of thealidevelopment process within the framework.

Concerning therunning cost we report

secs

some tests performed to assess plan validation e .
performances in MrSPOCK. In particular, we
validated plans generated by MrSPOCK rang- LI

ing from 1 to 10 days of activity, handling
from 45 to 335 tasks over all the timelines.
The results, summarized in Fig. 12, show
that UPPAAL performs better than NuSMV °
(running BMC) on our examples. NuSMV
proceeds by building a global state graph (or Figure 12 UPPAAL and NuSMV verification performances.
Kripke structure) in advance as a prerequisite for the sygt®perties verification, while UPPAAL works
on-the-fly, as it is able to construct the global state graphachically. Moreover, UPPAAL exploits
its internal temporal representation while NuSMV handiespte variables in order to model temporal
clocks.

Finally, therewriting costis not directly affected by framework functionalities, boé V&V processes
presented above allow us to effectively support knowledggreers in their work. Thus, both developers
and users should be able to exploit the framework featurebetter analyze and understand the
applications. For instance, the plan V&V tool allowed us &iett and solve a serious inconsistency
in the MrSPOCK domain. In fact, the verification system altyudiscovered a previously unknown error:
MrSPOCK could generate solutions not consistent with apimeanaintenance occurrences constraint,
which is an implicit requirement (i.e., not representednia temporal model) for the hybrid solver. The
execution trace allowed us to diagnose the inconsistentgly&ing the problem, we found a subtle bug

400

3 All experimental results presented in this section were collected runnitsgaies Linux workstation endowed with
a 64-bit AMD Athlon CPU (3.5GHz) and 2GB RAM.
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in the optimization process that caused the violation ofntlantenance orbits distance constraint in the
produced plans. We have been able to spot the problem duménglan verification task phase, and we
were able to fix it by changing some optimization parameters.

5 Conclusion

V&YV techniques play an essential role in knowledge engiimgeior model-based systems as they provide
a way to assess the quality of the proposed requirementslmahd heuristics along with hints about
how to amend flawed solutions. In this work, we have descritteadurrent approach to verify and validate
both models and solvers for complex timeline-based plansystems. In particular, we have considered
V&YV issues focusing around the MrSPOCK system, a timelinedal planner developed for the European
Space Agency, which has generated quite a number of ressaugs (Cesta et al., 2008, 2009).

The paper shows how V&V can be of practical impact in a P&S qujlt is worth noting that
the solving system of MrSPOCK is based on a hybrid approashalhthe domain constraints can be
explicitly represented in the plan domain, therefore thenslmess of the generated plan with respect
to the domain model does not necessarily ensure the sowdhéise produced solution with respect
to thereal world. As opposed to other approaches in literature, in this strte independent solution
verifier is needed not only for model validation and plan figaition, but also to test the consistency of
the generated plans with respect to the implicit requirdméng., those to be enforced by heuristics or
optimization processes). Additionally, from the end-ugerspective V&V tools offer an independent
testing environment which may enhance end-users trusteodimplex and (sometimes) counterintuitive
solutions generated by MrSPOCK.

The paper describes a general V&V architecture for a sththesart timeline-based planner. We
show how such architecture is used to validate MrSPOCK domaidels and to verify its plans. Beside
presenting the feasibility of the effort, we provide thea@stion of the modeling and verification methods
in details. The experimental results show how the appraadhite effective. In particular, our translators
from MrSPOCK domain models to NuSMV or UPPAAL, allow us to geste model checker inputs in
a matter of minutes whereas a manual approach may requiresveéesrror-prone human work. This
allows system designers to save onwréing cost(Sect. 4.5)Runningthe verification shows that model
checking time and memory usage for moderate size domainguiteeacceptable. A tighter integration
with the planner may improve this important aspect in thareit As forrewriting costs we note that our
V&V architecture spotted a subtle bug in the plan optimi@atprocess. Without such a framework the
bug could have gone undetected for quite a while and replicay code reusing.
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