
The Knowledge Engineering Review, Vol. 00:0, 1–24.c© 2010, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

Validation and Verification Issues
in a Timeline-Based Planning System

Amedeo Cesta1, Alberto Finzi2, Simone Fratini1, Andrea Orlandini3, Enrico Tronci4

1ISTC-CNR, Via S.Martino della Battaglia 44, I-00185 Rome, Italy
E-mail: name.surname@istc.cnr.it

2DSF “Federico II” University, Via Cinthia, I-80126 Naples,Italy
E-mail: finzi@na.infn.it

3DIA “Roma TRE” University, Via della Vasca Navale 79, I-00146 Rome, Italy
E-mail: orlandin@dia.uniroma3.it

4DI “La Sapienza” University, Via Salaria 198, I-00198 Rome,Italy
E-mail: tronci@di.uniroma1.it

Abstract

To foster effective use of AI planning and scheduling systems in the real world it is of great importance
to both (a) broaden direct access to the technology for the end-users and (b) significantly increase their
trust in such technology. Automated Planning and Scheduling (P&S) systems often bring solutions to
the users which are neither “obvious” nor immediately acceptable for them. This is because these tools
directly reason on causal, temporal and resource constraints; moreover, they employ resolution processes
designed to optimize the solution with respect to non trivial evaluation functions. Knowledge-engineering
environments aim at simplifying direct access to the technology for people other than the original system
designers, while the integration of Validation and Verification (V&V) capabilities in such environments
may potentially enhance the users’ trust in the technology.Somehow V&V techniques may represent
a complementary technology with respect to planning and scheduling, that contribute to develop richer
software environments to synthesize a new generation of robust problem-solving applications.

The integration of V&V and P&S techniques in a knowledge engineering environment is the topic
of this paper. In particular, it analyzes the use of state-of-the-art validation and verification technology
to support knowledge engineering for a timeline-based planning system called MrSPOCK. The paper
presents the application domain for which the automated solver has been developed, introduces the
timeline-based planning ideas and then describes the different possibilities to apply V&V to planning.
Hence it continues by describing the step of adding V&V functionalities around the specialized planner
MrSPOCK. New functionalities have been added to perform both model validation and plan verification.
Lastly, a specific section describes the benefits as well as the performance of such functionalities.

1 Introduction

Designing Artificial Intelligence (AI) planning and scheduling systems able to support human activities
in critical environments, for example in space missions, isan important task that has been achieving
increasing success for the last decade. Nevertheless, difficulties remain in the widespread utilization
of such technologies outside the research laboratories. Let us just consider as an example the space
applications, an area that generally introduces very challenging problems for Planning and Scheduling
(P&S) technologies. Very often, the proposed models and solutions turn out to be complex and even
engineers, designers and scientists have difficulties in validating and verifying them by simple inspection.



2 A . CESTA, A . FINZI , S. FRATINI , A . ORLANDINI , E. TRONCI

For this reason, automated Validation and Verification (V&V) techniques may represent an important
contribution, adding value to these kinds of applications provided they can be gracefully integrated with
P&S technology (e.g., see Menzies and Pecheur (2005)). In fact, a failure on behalf of an automated
decision support system may have a dramatic impact in terms of loss of science activities, money, and
even human life.

It is worth reminding thatvalidationallows us to check whether models, knowledge bases, and control
knowledge accurately represent the knowledge as well as theobjectives of the human experts that provided
them (i.e.,validation has to do withbuilding the right system), while verification tells us whether the
system (and its components) meets the specified requirements (i.e.,building the system right).

Validation of planning models has been studied in several works1 and it is naturally considered as an
important add-on technology for knowledge-engineering environments. For instance, in the context of the
Remote Agent Experiment, both Livingstone and RAX-PS domain models have been validated exploiting
model checking techniques (Pecheur and Simmons, 2001; Khatib et al., 2001); in (Smith et al., 2005)
formal verification is used to check the existence of undesirable plans with respect to the domain model;
Simpson et al. (2007) present an integrated tool for creation and validation of planning domains, while a
plan validation tool for PDDL is provided by Howey and Long (2003). In (Fox et al., 2005; Bensalem et al.,
2005; Giannakopoulou et al., 2005) formal methods are deployed to verify and validate plan execution
and executive systems.

Current AI planning literature shows how timeline-based planning can be an effective competitor to
classical planning in capturing complex domains that require the use of both temporal reasoning and
scheduling features – see (Muscettola, 1994; Jonsson et al., 2000; Frank and Jonsson, 2003; Smith et al.,
2000b). Timelines represent entities whose properties vary in time, and represent one or more physical
(or logical) subsystems relevant to the planning context. The timeline-based approach models the P&S
problem by identifying a set of relevantfeaturesof the planning domain which need to be controlled to
obtain a desired temporal behavior. A planner/scheduler isa decision making software that synthesizes
the controller for the temporal entities, and reasons in terms ofconstraintsto bind the internal evolutions
anddesired properties(goals) of the generated temporal behaviors. Continuing our research line related
to planning and scheduling with timelines, see (Fratini et al., 2008), we have implemented a reusable
software framework (Cesta and Fratini, 2008) for modeling and solving problems using the timeline-based
approach. The resulting framework is the core software infrastructure on top of which, among others, a
specific planner for the long-term planning of the MARS EXPRESSmission of the European Space Agency
(ESA) has been developed. Such special-purpose planner, calledMrSPOCK for “Mars Express Science
Plan Opportunities Coordination Kit”, is now in the phase ofadvanced testing in the ESA operational
environment (Cesta et al., 2009).

This paper describes our effort in exploring different perspectives in the integration of V&V with
timeline-based planning and scheduling techniques. The long term goal of this research is to synthesize
a software environment in which both technologies are integrated, so that the application developers can
take advantage of the co-existence of both previous tools, while encoding knowledge of new applications.
We present here a significant step in this direction consisting of adding V&V functionalities around the
MrSPOCK specialized planner. In particular, we have added functionalities in order to perform both model
validation and verification of the solutions found by MrSPOCK. To this purpose we have considered and
used two state-of-the-art formal verification tools, namely NuSMV and UPPAAL.

The rest of the paper is organized as follows. In Section 2, weintroduce the target work on timeline-
based planning and in particular the MrSPOCK system. In Section 3, we survey the possible use of
validation and verification in planning systems. Section 4 presents V&V applied to MrSPOCK. Some
discussion and conclusions end the paper.

2 The Target Planning System: MrSPOCK

The long-term goal we are pursuing is the integration of validation and verification techniques in a
knowledge-engineering environment for timeline-based problem solving. Little previous work exists

1The interested reader may find a spectrum of approaches in the VVPS workshop series at ICAPS-05 and ICAPS-09.



Validation and Verification Issues in a Timeline-Based Planning System 3

which specifically concerns V&V in connection with this solving approach even if the relevance of V&V
was strongly emphasized by the Remote Agent Experiment (e.g., Pecheur and Simmons (2001); Khatib
et al. (2001)). In the present work, we illustrate a set of coordinated V&V interventions around a specific
timeline-based planner developed for ESA, called MrSPOCK.

2.1 The Problem and the Required Constraints

The MrSPOCK planner is developed to support Long-Term Planning in the MARS EXPRESSmission at
ESA. The mission consists of a spacecraft which has been orbiting around Mars since the end of 2003,
returning a significant amount of data gathered by means of seven on-board payloads. The mission has
been extremely successful in terms of scientific return and has also inspired a number of interesting work
from the mission management point of view. An open problem was to improve the collaborative problem
solving process between the science team and the operation team of the space mission. These two groups
of human planners iteratively refine a plan containing all the mission activities. The mission planning
process starts at the Long-Term Plan (LTP) level, i.e., three months of planning horizon, and gradually
boils down to obtain fully instantiated activities at short-term plan level, i.e., one week of planning horizon.
The short-term plan is then further refined every two days to produce final executable plans. The goal of
MrSPOCK is to develop a pre-planning optimization tool for planning spacecraft-operations. Specifically,
it focuses on the generation of apre-optimized skeleton LTPwhich will then be subject to refinement
on behalf of the cooperative science team and the operation team (see Cesta et al. (2008) for a detailed
description of the addressed problem).

Broadly speaking MrSPOCK has to provide an automated procedure for producing agoodskeleton
plan, i.e., a LTP that takes into account the needs of both parties, thus reducing the effort in reaching an
agreement on a medium-term plan – one-month planning horizon. Overall, the generated LTP should be
such that: (a) the number of (expensive) iterations betweenscience and operation team is reduced; (b) a set
of objective functions are optimized, i.e., the total volume of data for down-link operations; the number
of pericentres for science operations; the number and the uniform distributions of uplink windows.

For each orbit followed by the spacecraft, the baseline operations are split identifying three orbit
phases: (1) thepericentre(the orbital segment closest to the target planet); (2) theapocentre(the orbital
segment farthest from the planet); (3) the orbital segmentsbetweenthe pericentre and apocentre. Around
pericentre, the spacecraft is generally pointing to the center of the planet, thus allowing observations of the
planet surface – generically referred to asScience operations. Between pericentre and apocentre passages,
the spacecraft is generally pointing to Earth for transmitting data.Communicationwith Earth should occur
within aground-station availability window. Ground-station visibility can either partially overlap or fully
contain a pericentre passage. Additionally,Maintenanceoperations should occur around the apocentre
passages.

At present, given these requirements, an initial skeleton plan for MARS EXPRESSis generated by the
operation team by allocating over the planning horizon (which generally covers hundreds of orbits) three
different types of decisions:

– selection of theMaintenancewindows (centered around the apocentre events and used primarily for
momentum wheel-offloading);

– selection of theCommunicationwindows among the set of available ground stations visibility
windows;

– selection of the windows forScienceoperations, around pericentre events.

Additionally, there are manyhard and soft constraints to be satisfied. Constraints on uplink windows
require four hours uplink time each 24 hours (hard constraint), and these uplink windows must be as
regular as possible, one every about 20 hours (this is formulated as a soft constraint since uplink windows
require ground station availability, and it is generally impossible to state exactly their positions). Moreover,
it should be given the possibility to split a four-hour uplink window into two two-hour uplink windows.
Apocentre slots for spacecraft maintenance windows must beallocated between min. 2 and max. 5 orbits



4 A . CESTA, A . FINZI , S. FRATINI , A . ORLANDINI , E. TRONCI

(hard constraint), and the maintenance duration is of 90 minutes (to be centered around the apocentre
event).

Communication activities are the source of several hard temporal constraints. For example: (1) the
minimum/maximal durations for the X-band transmitter in the on state; (2) the minimum duration for
the X-band transmitter in theoff state; (3) the periods in which the X-band transmitter has tobe off
(e.g., eclipses, occultations, slewing manoeuvres and non-Earth pointing status). Furthermore, there
are preferences that should be followed for ground-stationselection (calledde-overlappingin mission
terminology). Ground stations have different features like different antenna diameters (there exist 70, 35,
and 34 meters dishes). Usually, antennas allow both uplink and downlink communications, but there are
cases where downlink only is permitted.

2.2 The Timeline-based Approach

MrSPOCK is a timeline-based planner built using the modeling capabilities of a general-purpose software
framework, named TRF (Timeline-based Representation Framework), which provides the basic elements
for modeling the relevant entities for timeline-based problem solving (Cesta and Fratini, 2008). The
TRF is designed as a layered architecture: there is an underlying temporal database (that provides
primitives to represent and manage time points and temporalconstraints), a timeline management and
representation layer above the temporal database (that provides primitives to represent temporal flexible
plans as timelines), and an upper level that provides a unified and shared representation of both the domain
theory information and the network of planning decisions. Aportfolio of domain-independent planning
and scheduling procedures is defined on top of the TRF along with a domain-description language called
DDL .3.

The timeline-basedapproach models the planning domain in terms of a set of temporal functions
which evolve over a given temporal horizon. Examples of suchfunctions arestate variablesthat assume
a discrete set of values respecting some transition laws (Jonsson et al., 2000) andresourcesas they
are currently used in constraint-based scheduling (Cheng and Smith, 1994). These functions change by
posting planningdecisions. The domain theory specifies what can be done to change these evolutions, and
the task of the planner is to find a sequence of decisions that bring the entities into a final situation, which
verifies several “desired” conditions (calledgoals). Unlike the classical approach, where the state of the
world is changed by means of actions, in timeline-based planning, the posted decisions directly force
value transitions in the specification of the relevant temporal domain features. The result of the planning
process is called atimeline, or set of timelines, as it represents an evolution in time ofthe states of the
physical system(s) modeled in the domain.

In the timeline-based solving approach, the planner decides in which states the world should find
itself during given segments of the timeline (the planning decisions). During the solving phase, the
planner operates on this temporally-grounded representation of “what is happening” in time. The timeline
representation, in short, allows the planner to apply further decisions based on the consequences that these
decisions have on the complete planning horizon. The progressive propagation of decisions determines
how the entire timeline is affected. While in action-based planning the domain theory describes operators
which change the state of the world, in timeline-based planning the domain theory represents how
different decisions should be synchronized. This is represented through the notion ofsynchronization.
Synchronizations describe the constraints that are imposed on the overall timeline when a specific decision
is taken. For instance, a synchronization may state that a decision to “navigate to a destination” needs to
be synchronized with a decision to “consume a certain quantity of fuel”. As opposed to action-based
planning, the focus here is on states rather than on the operators needed to change those states.

2.3 Modeling and Solving the Problem with Timelines

The building of MrSPOCK has followed ahybrid approach. We have used: (1) the timeline representation
and management features of the TRF for the problem representation; (2) the capabilities of timeline
planning from the general-purpose planning and schedulingsystem called OMPS(Open Multi-Component



Validation and Verification Issues in a Timeline-Based Planning System 5

Planner and Scheduler – Fratini et al. (2008)), also built ontop of the TRF; (3) a domain-dependent solver
that guarantees the satisfaction of the problem’s constraints not modeled in the domain description and
that performs genetic-driven plans optimization, exploiting the domain-independent underlying planning
system. More in detail, MrSPOCK uses (1) the modeling features of the TRF to represent timelines and
some temporal constraints of the domain through the domain theory, as discussed below (operations
duration as well as synchronizations among operations, such as sciences during pericentres, maintenance
during apocentres and communications during ground stations visibility); (2) OMPS’s capabilities of
planning and timeline manipulation to complete the partially specified plans produced by a domain-
dependent solver designed on top of the TRF; (3) a domain-dependent solving procedure to build partial
plans that takes into account the constraints not modeled inthe domain theory (like the min. 2 to max. 5
orbits separation constraint needed between two maintenance operations), and to perform also a genetic
optimization of the partial plans produced.

The TRF offers the possibility to model domains with two different types of timelines: (1)Controllable
State Variables, which define the search space of the problem and whose timelines ultimately represent
the solution to the problem; (2)Uncontrollable State Variables, that are used to inject temporal values
which can be only observed. In MrSPOCK we have used a single controllable state variable to model
the spacecraft’s operative mode, which specifies the temporal occurrence of science and maintenance
operations as well as the spacecraft’s ability to communicate. The values that can be taken by this state
variable, their durations (represented as a pair[min, max]) and the allowed transitions among them, are
synthesized by the automaton in Figure 1, and represented inDDL .3 specification as showed in Figure 3(a).

Figure 1 Legal transitions on the
state variable describing the opera-
tional mode of the spacecraft.

In addition, we instantiate two uncontrollable state variables to
represent contingent events such as orbit events and communi-
cation opportunity windows. One state variable type component
maintains the temporal occurrences of pericentres and apocentres
(“Peri” and “Apo” values on the timeline in Figure 2, top) of the
spacecraft’s orbit (they are fixed in time according to the informa-
tion found in an orbit events file), while the other state variables
maintain the visibility of three ground stations (“MAD”,”CEB”
and “NNO” timelines in Figure 2, bottom). These state variables
have{Available(?rate,?uldl,?antennas), Unavailable()} as allowed
values, where the?rate parameter indicates the bitrate at which

communication can occur,?ul dl indicates whether the station is available for upload, download or both,
and the?antennasparameter indicates which dish is available for transmission.

Figure 2 Timeline synchronizations.

Any valid plan needs synchronizations among the oper-
ative mode timeline (Figure 2, middle) and the uncontrol-
lable timelines (represented as dotted arrows in Figure 2
and as described in Figure 3(b) inDDL .3 specs): science
operations must occur during Pericentres (meaning that
a Sciencevalue must start and end during aPeri value),
maintenance operations must occur in the same time
interval as Apocentres (meaning that aMaint value must
start and end exactly when theApovalue starts and ends)
and communications must occur during ground-station
visibility windows (meaning that aCommvalue must start
and end during anAvailablevalue). In addition to those
synchronization constraints, the operative mode timeline
must respect the transitions among values specified by the
automaton, as well as the minimal and maximal duration
specified for each value (in the same automaton). It is worth remarking that in timeline-based planning,
causal knowledge is modeled both in the value transitions specified by the automata and on the
synchronizations constraints among the different automata of a domain.



6 A . CESTA, A . FINZI , S. FRATINI , A . ORLANDINI , E. TRONCI

COMP TYPE StateVariable OPERATIVE (Earth() , Comm(RATE,ULDL,STATION), Science (), Maintenance (), Slew()){
VALUE Earth() [1,+INF] MEETS{ Slew(), Maintenance(), Comm(?rate,?availability,?station)}
%Duration 60 minutes at least
VALUE Comm(?rate,?availability,?station) [3600000,+INF] MEETS{Earth(),Slew(),Maintenance()}
%Duration [36,68] minutes
VALUE Science() [2160000,4080000] MEETS{Slew()}
%Duration 90 minutes
VALUE Maintenance() [5400000,5400000] MEETS{Earth()}
%Duration 30 minutes
VALUE Slew() [1800000,1800000] MEETS{Earth(),Comm(?x0,?t0,?a0)}}

(a) DDL .3 Operative Mode model inDDL .3.

COMPONENT OPERATIVEMODE:OPERATIVE{
%A ground station must be visible
VALUE Comm(?rate,?avail,?station){DURING [0,+INF][0,+INF] DSSSTATIONS Available (?rate,?avail,?station)}
%Maintenenance During Apocentres
VALUE Maintenance(){EQUALS ORBIT EVENTS Apocentre()}
%Science During Pericentres
VALUE Science(){DURING [0,+INF] [0,+INF] ORBIT EVENTS Pericentre()}}

(b) DDL .3 synchronizations for the Operative Mode state variable.

Figure 3 DDL .3 specifications of a State Variable and a Synchronization constraint.

On top of this representation, MrSPOCK’s solver builds the spacecraft’s operative mode timeline that
allocates science, maintenance, and communication activities. A solution is obtained when a consistent
timeline for the controllable component is defined and all the operational constraints represented by
synchronizations are satisfied. A distinctive aspect of MrSPOCK is the direction we have taken to
build a problem solver for the timeline representation: instead of using a generic search engine (for
example the planning and scheduling integrated search of OMPS) we have built a specialized solver that
dialogues directly with the problem representation in the TRF. In this way, we exploit the TRF constraint
engines for propagating several types of constraints, while using specialized search engines partly general
(with OMPS) and partly tailored to the problem. In particular, MrSPOCKintegrates a greedy one-pass
constructive search procedure with a generic optimizationcycle that uses a genetic algorithm approach
as discussed in Cesta et al. (2008). The cooperation among different engines to build the solution within
MrSPOCK is key to understanding the need of V&V procedures described in the following.

3 V&V Issues for Knowledge Engineering Planning Systems

V&V techniques play an important role in the knowledge-engineering process for model-based systems,
and planning systems in particular, as they provide a way to assess the quality of the proposed
requirements, models, and heuristics along with hints about how to rectify flawed solutions – see (Preece,
2001). As said before, validation allows us to check whethermodels, knowledge bases, and control
knowledge accurately represent the aims and knowledge of the human experts that supplied it, while
verification tells us whether the system (and its components) meets the specified requirements as a
software artifact. V&V methods are also particularly important and challenging when deployed for the
design of AI systems based on planning and execution (also referred to asmodel-based autonomous
systems). Indeed, the quality and the reliability of these systems are very hard to assess due to the
architectural complexity, the heterogeneity of semanticsand of the algorithms involved, as well as the
multitude of enabled behaviors – see Smith et al. (1997) for adescription of the knowledge-acquisition
process for models and heuristics of a complex autonomous systems based on P&S and Menzies and
Pecheur (2005) for a review of V&V problems and methods suitable for these systems.

In designing P&S based systems, V&V can be applied at different stages of the knowledge-
engineering lifecycle: domain validation, plan verification and validation, planner/solver validation and
verification, plan execution validation and verification. In the rest of this section, we introduce a quick
review of several works which are relevant for each of these issues.



Validation and Verification Issues in a Timeline-Based Planning System 7

3.1 Domain Validation

In P&S systems, the domain model plays a crucial role becausethe accuracy of the environment model has
a direct impact on plan correctness (e.g., safety, liveness) and performance. In fact, while we can hope that
a planner generates the correct plans for the given planningdomain (environment model), unfortunately
this is usually not straightforward. Because of modeling errors, (e.g., inconsistent, incomplete, inaccurate
models) the planning domain may not adequately represent the environment, hence the resulting plans
will be correct with respect to the planning domain, but of nouse in the real world. For these reasons,
validation of planning domains is a critical task that has been considered by several authors.

Domain validation aims at showing that no plan violating thegiven properties can ever be generated,
given the planning domain. This can be done by using testing or by using formal methods, e.g., model
checking. Testing can only show thepresenceof errors (i.e., if no error is found there is no guarantee that
none exists) whereas model checking can also demonstrate theabsenceof errors (i.e., if no error is found
we are guaranteed that none exists). Not surprisingly, model checking is computationally much more
expensive than just testing since the former will look at allreachable states of the domain model. Because
the number of such states is in general exponential in the domain size (state explosion) only moderate size
domains can typically be handled using model checking techniques. In a testing-based approach a large
number of plans are generated and then checked to verify thateach of them satisfies the given properties.
Testing-based domain validation rests onplan verificationand will be discussed in Section 3.2. In a model
checking approach, a model checker is used to generate a planthat violates the given properties. If no such
a plan is found then the planning domain is successfully validated; otherwise the model checker returns a
plan violating one of the given properties. Suchundesiredplans can be used to refine the planning domain.
Domain validation starts again on such new refined domain, until no more undesired plans are found by
the model checker. In the following, we discuss domain validation based on model checking.

In the context of temporal planning, formal methods appliedto validation of planning models are
pioneered by Penix et al. (1998) using three model checkers (SPIN, SMV, Murphi) to inspect express-
ibility, liveness and safety properties of simple planningdomains for the HSTS planner (Muscettola,
1994). In the same direction, a more expressive temporal model is considered by Khatib et al. (2001) who
propose a mapping from interval-based temporal relations models (i.e., DDL models for HSTS) to timed
automata models (UPPAAL). This mapping was introduced as a preliminary step towards the application
of V&V techniques in timeline-based temporal planning; however, this direction has not been fully
explored. Analogously, Vidal (2000) presents a mapping from Contingent Temporal Constraint Network
to Timed Game Automatamodels. Also in this case, the authors propose the specification framework, but
techniques for domain validation or temporal plan verification are not introduced. Formal methods for
domain validation are proposed by (Smith et al. (2005); Havelund et al. (2008)) using model checking
(with SPIN) to guarantee that all plans enabled by the planning domain meet certain desired properties.
If undesired plans are found these are reported as errors andthe planning domain has to be refined
accordingly. It is worth noting that real-time temporal properties and temporally flexible plans are not
addressed in such research work.

3.2 Plan Verification

A typical approach to domain validation is the empirical evaluation (testing-basedapproach). Following
this approach, a number of sample plans are generated and manually inspected to check for errors. For
example, this method is employed in (Smith et al. (1999, 2000a)) where hundreds of plans are selected
to validate the domain model of the Remote Agent. Manual planverification is a long, expensive, and
error prone activity. This has motivated research on automatic tools for plan verification. Note that plan
verification can be used for (testing-based) domain validation as well as to show that the planner’s output
is correct with respect to given properties. This is much easier than showing correctness of the planner
itself.

Verification of temporal plans expressed in PDDL with durative actions is enabled by the VAL
plan verification tool by Howey and Long (2003) that has been used during International Planning



8 A . CESTA, A . FINZI , S. FRATINI , A . ORLANDINI , E. TRONCI

Competitions since 2002. However, flexible temporal plans,complex temporal constraints, and other
temporal features are still to be addressed (Fox et al., 2006).

3.3 Plan Synthesis

Generation of correct-by-construction plans from formal specifications have also been studied. For
example, in Abdedaim et al. (2007), the authors investigateand compareConstraint Based Temporal
Planningtechniques andTimed Game Automatamethods for representing and solving realistic temporal
planning problems. In this direction, they propose a mapping from IxTeT planning problems to UPPAAL-
TIGA game-reachability problems and present a comparison of the two planning approaches.

Formal methods applied to timeline-based temporal planning are considered within the ANML frame-
work, a timeline-based specification framework proposed atNASA Ames. For example, in Siminiceanu
et al. (2008) authors present a translator from ANMLite (abstract version of ANML) to the SAL model
checker. Given this mapping, the authors illustrate preliminary results to assess the efficiency of model
checking in plan synthesis.

It is worth saying that all these papers mainly focus on robust plan synthesis, while our aim in the
current work is to address the V&V issues that arise when planning in complex domains with hybrid
solvers.

3.4 Planner/Solver Validation and Verification

Formal methods are mostly applied to model, plan, and plan execution validation and verification, while
other methods are usually deployed for V&V of the planning engine. For example, the verification of the
P&S system for the Remote Agent (Nayak et al., 1999; Smith et al., 1999; Jonsson et al., 2000) is based
on test cases to check for convergence and plan correctness.More specifically, the P&S system is verified
by generating hundreds of plans for a variety of initial states and goals, and using a plan-checker to verify
that the generated plans meet a validated set of plan correctness requirements.

A similar approach has been followed at JPL for validating the EO1-science agent (Cichy et al., 2005).
One of the key issues in empirical testing is achieving adequate coverage with a manageable number
of tests. Test selection should be guided by a coverage metric. However classical approaches used for
testing mission-critical systems are not suitable for planning systems (Jonsson et al., 2000) because of
their complex search engines and rich input/output space. Within the IDEA framework, model checking
techniques are used to explore the space of input scenarios in order to generate tests for the reactive
planner (R-Moreno et al., 2007). It is worth noting that in this work, model checking is used to generate
a representative set of off-nominal testing scenarios. In the same vein, we are interested in validating the
overall P&S system. However, our focus is slightly different: we are mainly concerned with V&V formal
methods for timeline-based planning systems with implicitdomain constraints and control knowledge.

3.5 Plan Execution Verification and Validation

V&V of plan generation does not guarantee robustness of planexecution. Indeed, a valid plan can
be brittle at execution time due to environment conditions that cannot be modeled in advance (e.g.,
disturbances). V&V techniques can be also used for plan execution validation. For example, robust plan
validation during execution is considered in (Fox et al., 2005) where hybrid timed automata are deployed
to handle plan validation with temporal uncertainty.

As a follow-up of the Remote Agent experiment, the work of Giannakopoulou et al. (2005) describes a
compositional approach to V&V applied to the NASA K9 Rover executive system, by deploying formal
methods throughout the overall design and development lifecycle. The plan execution for the K9 rover
scenario is also considered in (Bensalem et al., 2005). Here, a generated plan for the rover is transformed
into a timed automata. An observer is synthesized from the timed automata to check whether the sequence
of observations comply with the specifications.

In Fox et al. (2006), the VAL framework, coupled with a plan-execution architecture, has been applied
to on-board plan verification and repair. In the CIRCA framework (Goldman et al., 2002), a Controller



Validation and Verification Issues in a Timeline-Based Planning System 9

Synthesis Module (CSM) automatically synthesizes hard real-time reactive plans. The CSM is modeled
using timed automata and a model-checking based plan verifier is used to support robust reactive planning.
CIRCA’s main concern is the synthesis of control sequences on-the-fly. Accordingly, issues and methods
(e.g., reactive plan generation and verification) are different from the ones discussed in the next section.

4 Verification and Validation within MrSPOCK

The long-term goal of the authors is the definition of a general framework in which P&S and V&V
technologies are strictly coupled. The main purpose is to provide a knowledge-engineering environment
for both developers and users of a P&S system. Potential benefits are twofold: on one hand, developers
can be supported by a tool that allows them to continuously check the correctness of their choices
during all the design phases; on the other hand, users can increasingly build their trust in the application
once endowed with an independent checker used to verify the generated solutions before the execution.
Considering the issues introduced in Section 3, this framework aims at providing an integrated knowledge-
engineering support that exploits formal methods for both domain validation, planner/solver V&V, and
plan verification, thus supporting domain modeling, solverdevelopment, and application assessment.

Figure 4 The knowledge engineering support architecture.

In the current stage of our work, we
focus the attention on the MrSPOCK plan-
ner which has been developed for a real
P&S space application. The goal is to
provide an overall validation and verifica-
tion framework for MrSPOCK. The whole
approach can be seen as an incremental
refinement process involving both model
validation and planner V&V in which the
deployment of formal methods is particu-
larly important. In fact, MrSPOCK’s solu-
tions correctness can not be verified by
knowledge engineers, due to the complex-
ity of the domain and the use of a hybrid
solving process (that involves also an optimization step) as already discussed in Section 2.3. Figure 4
shows the overall knowledge-engineering architecture built around MrSPOCK. Two main tasks are
depicted: (a) Model validation; (b) Solver V&V. Model validation is the process of checking whether
the domain model is well defined. In this case, our framework supports knowledge engineers in the
process of refining and correcting the domain model w.r.t. the system requirements. Planner/Solver V&V
allows users to check whether the solver works as expected. Design activities are supported by providing
effective methods to verify the solver and the generated solutions. In particular, an important subtask
of Planner/Solver V&V is plan verification, which systematically analyzes the solutions proposed by
MrSPOCK. Indeed, errors possibly found in the generated plans could help knowledge engineers to revise
the model (back to the model validation step), the heuristics, or the solver. Furthermore, plan V&V can
also be exploited to analyze MrSPOCK plans with respect to the execution controllability issue as an
additional verification step.

The rest of this section describes in detail the current results: Subsection 4.1 discusses the general
structure of the MrSPOCK V&V processes; Subsection 4.2 shows how MrSPOCK’s models can
be validated; Subsection 4.3 presents planner validation;Subsection 4.4 shortly discusses a possible
extension of these methods to manage flexible temporal plans. Moreover, interesting quantitative results
are shown and discussed in Subsection 4.5.

4.1 Validating MrSPOCK via Model Checking

In the architecture of Figure 4 the V&V tasks are carried out using model checking technology. Model
checking consists of well known set of techniques used to verify requirements and design properties for



10 A . CESTA, A . FINZI , S. FRATINI , A . ORLANDINI , E. TRONCI

several real-time embedded and safety-critical systems. Generally speaking, a model checker (McMillan,
1993; Clarke et al., 1999) takes as input the system description and returns PASS if the system satisfies
the given property, FAIL otherwise. In the latter case, the model checker also shows a system run
(counterexample) that falsifies the given property. The system description is usually represented in a
simple (concurrent) programming language. System properties are typically encoded in temporal logics
such as CTL (Clarke et al., 1999) or LTL (Holzmann, 2004). It is worth reminding that (a) CTL
(Computation Tree Logic) is a branching-time logic. Its model of time is tree-like: there are different
paths in the future, each one representing a possible execution trace; (b) LTL (Linear Temporal Logic) is
a modal temporal logic with a linear model of time. The main problem of model checking techniques is
represented by thestate explosionbecause the number of reachable states of a system may be exponential
in the size of the description of the system itself. Hence thesuccess of model checking rests on the fact
that efficient techniques be devised to counteract the stateexplosion problem. The efficacy of the different
approaches to model checking depends on the particular application domain. For this reason, many model
checkers are available, each targeting a particular class of systems. In our current work, we use two
prominent software tools, namely NuSMV and UPPAAL, both representing the state of the art in model
checking technology, that offer remarkable features for our framework:

NuSMV (Cimatti et al., 2002) is a model checker for concurrent (synchronousas well asasynchronous)
Finite State Systems(FSS) employing temporal logics (CTL and LTL) to define specifications. The
NuSMV modeling language allows definition of concurrent FSSin an expressive, compact, and
modular way. SMV model definition uses variables with finite types, grouped into a hierarchy of
module declarations. Each module declares its local variables, their initial values and how they
change from one state to the next one. NuSMV is one of the most reliable model checkers available
in literature and its modeling language presents a high degree of expressiveness. Nevertheless, its
modeling language does not provide specific constructs for time representation.

UPPAAL (Larsen et al., 1997) is a toolbox for specification, simulation, and verification of real-time
systems. The verifier handles expressive safety and boundedliveness properties. A UPPAAL model
consists of a set of timed automata, a set of clocks, global variables, and synchronizing channels.
Each node of the automaton may be associated with invariantsto enforce transitions out of the
node. An arc may be associated with guards, for controlling when this transition can be activated.
For each transition, local clocks may get reset and global variables may get re-assigned. Channels
can be used to synchronize transitions on different automata. As in NuSMV, the properties to be
verified are defined using CTL. UPPAAL owns a temporal semantics that can be easily exploited
during both modeling and verification.

Figure 5 Validation architecture exploiting model checking.

Validation Architecture. The general
validation architecture is designed as
depicted in Figure 5. An automaticmodel
translatorembedded within the MrSPOCK
framework is responsible for translating
both models and solutions, and produces
the specifications to be checked.

Recalling the validation processes intro-
duced in Figure 4, model validation requires
the translator to encode MrSPOCK speci-
fication as an input model for the model
checker along with the user queries (specified in CTL). On theother hand, plan verification needs an
input model that encodes both the MrSPOCK model and the solution/plan, along with the plan property
to be verified. Whenever the specification fails, the model checker provides an execution trace that can be
exploited to understand if something is wrong or lacking.



Validation and Verification Issues in a Timeline-Based Planning System 11

Our V&V architecture is thus based on a well-suited mapping from the MrSPOCK domain and the
generated plans to the input models needed by the model checkers. In the following section, we will
describe in detail how the model translator automatically converts MrSPOCK structures into the input
model for the model checkers. Although the handling of parameters can be easily accommodated in our
translation, the description of this aspect is omitted herefor the sake of simplicity.

4.2 Model Validation

The translation from a MrSPOCK model to a model checker formal model requires the introduction
of a well-defined set of state variables and clocks. State variables range on domain states and model
timelines whereas clocks are used to represent time progression. For each state variable (and hence for
each timeline) we have astate variable automatonwhose states correspond to possible values of the state
variable, while the transitions represent the value changes. In addition, we introduce another automaton,
theobserver automaton, that checks the consistency of the temporal constraints defined among different
timelines. In the MrSPOCK domain, temporal constraints in the state variable definitions are specified
by means ofconsistency features. Consistency features can be both value durations constraints (in the
form of [min, max], e.g.,[90, 90] for Maintenance activity), and sequencing constraints between values
expressed by Allen’s temporal relations (e.g., SciencemeetsSlew), while synchronizations constraints,
i.e., constraints among different timelines, are expressed in terms of general temporal relations on values.
In our specification, the latter are expressed and monitoredby theobserver automaton.

Figure 6 presents a mapping algorithm from the domain description of MrSPOCK to the input
specification for the model checkers. This mapping works as follows. First, for each state variable we
introduce a clock (rows 02-03). The clock is here needed to represent time and temporal constraints
on the transitions. In addition, to model time progression,we introduce a clock automaton (row 04);
whenever a transition occurs, the automaton resets the clock value to zero. Then, for each state variable,
an automatonA SVi is generated (rows 07-23) according to the set of possible values of the state variable
and the related consistency features. Finally, we considerthe synchronization constraints among different
timelines. These relations present the following form: if the state variable SV1 evaluates to V1 then
state variable SV2 is to be equal to V2. As already mentioned,these constraints are specified by an
additional monitoring automaton, theobserver automaton. More precisely, we generate an automaton
endowed with two states (rows 25-32): the first state represents constraints satisfaction; the second one
represents constraints violations. The transitions are asfollows: initially, no violations occur; whenever a
domain constraint violation is detected we have a transition to the failing state.

Two examples of consistency features related to the spacecraft’s operative mode are: Science activity
duration must be in [36, 68], andMaintenancetask must meetEarth or Commactivity. In Figure 7, we
show an excerpt of the derived NuSMV input model. The automata for Orbit Events and Ground Station
Availability are generated in a similar way. Note that, for each module, the initial state is given as a
parameter, while transitions are omitted when associated with min = 1 and/ormax = INF durations
constraints. Here, the synchronizations between the Operative Mode timelines and the uncontrollable
timelines compose the domain theory of MrSPOCK. More specifically, we have: science operations
occurrences during pericentre orbits, maintenance operations during apocentre orbits, and ground station
availability during communications. Figure 8 shows the definition in UPPAAL of the monitoring module.

Once the translated model is available as the input for the model checkers, MrSPOCK model can be
validated with respect to the properties and the requirements. For instance, we can verify that whenever
a Science activity is performed, results must be transmitted to Earth. This can be encoded through the
following CTL formula: AG (OPERATIVEMODE.value = Science)→ AF (OPERATIVE MODE.value
= Comm).



12 A . CESTA, A . FINZI , S. FRATINI , A . ORLANDINI , E. TRONCI

01 // Clocks definition
02 For each Component Ci
03 VAR Clock_Ci = 0;
04 AUTOMATON A_Clock_Ci = CREATE_CLOCK_AUTOMATON();
05
06 // State Variables encoding
07 For each State Variable SVi
08 AUTOMATON A_SVi = CREATE_EMPTY_AUTOMATON();
09
10 For each Allowed Value Av
11 ADD_STATE(A_SVi,Av);
12
13 // Consistency Features
14 For each Consistency Feature meets(Av1,Av2)
15 TRANSITION T = ADD_TRANSITION(A_SVi,Av1,Av2);
16
17 For each DURATION Consistency Feature Duration(Av,min,max);
18 ADD_INVARIANTS(Av,Clock_SVi <= max);
19 ADD_GUARD_ON_EVERY_OUTGOING_TRANSITION(clock_SVi >= min);
20
21 // Whenever a Transition occurs, clock must reset
22 For each Transition in A_Ci T
23 UPDATE(T,clock_SVi = 0);}
24
25 AUTOMATON M = CREATE_EMPTY_AUTOMATON();
26
27 ADD_STATE(M,DT_OK);
28 ADD_STATE(M,DT_KO);
29
30 For each Domain Theory Constraints SV1 -> SV2
31 TRANSITION T = ADD_TRANSITION(M,DT_OK,DT_KO);
32 ADD_GUARD(T,SV1 AND NOT SV2);

Figure 6 An algorithm for mapping Timeline-based domain model into model checkers model.

MODULE OPERATIVE_MODE(initValue)
VAR

value : {Earth, Earth_Comm, Science, Maintenance, Slew};
ASSIGN

init(value) := initValue;
next(value) := case

(value = Earth) : {Slew, Maintenance, Earth_Comm, Earth};
(value = Comm) & (clockOPERATIVE_MODE < 60) : Comm;
(value = Comm) & (clockOPERATIVE_MODE >= 60) : {Earth, Maintenance, Slew};
(value = Science) & (clockOPERATIVE_MODE < 36) : Science;
(value = Science) & (clockOPERATIVE_MODE >= 36) & (clockOPERATIVE_MODE <= 68) : Slew;
(value = Science) & (clockOPERATIVE_MODE > 68) : Slew;
(value = Maintenance) & (clockOPERATIVE_MODE < 90) : Maintenance;
(value = Maintenance) & (clockOPERATIVE_MODE >= 90) : {Earth, Comm};
(value = Slew) & (clockOPERATIVE_MODE < 30) : Slew;
(value = Slew) & (clockOPERATIVE_MODE >= 30) : {Earth, Comm, Science};
1 : value;

esac;

Figure 7 NuSMV Module definition for the OPERATIVEMODE State Variable.
process monitor() {

state DT_OK,DT_KO;
init DT_OK;
trans

DT_OK -> DT_KO {guard (OPERATIVE_MODE_Comm) and not (DSS_STATIONS_Available); sync pulse?;},
DT_OK -> DT_KO {guard (OPERATIVE_MODE_Maintenance) and not (ORBIT_EVENTS_Apocentre); sync pulse?;},
DT_OK -> DT_KO {guard (OPERATIVE_MODE_Science) and not (ORBIT_EVENTS_Pericentre); sync pulse?;},
DT_KO -> DT_KO {sync pulse?;};

}

Figure 8 UPPAAL Monitor Module definition. Monitor synchronizes transitions with statevariable automata
transitions through pulse channel.

This formula states that if a science activity is executed ina certain state, then in all the possibile
system executions originating from that state a communication task will eventually occur (coherently
with the above requirement)2.

Whenever the formula described above does not hold, a model checker produces an execution trace
proving that the system reached anerror state. The reported trace can be used to identify the domain
inconsistency and to diagnose the conditions it originatedfrom.

2In CTL (see Clarke et al. (1999)), A means ’along All paths’ (Inevitably), E means ’along at least (there Exists) one
path’, G means ’has to hold on the entire subsequent path’ (Globally), F means ’eventually has to hold somewhere on
the subsequent path’ (Finally).



Validation and Verification Issues in a Timeline-Based Planning System 13

4.3 Planner Validation

Planner validation is based on a plan verification tool that checks the solution generated by MrSPOCK
with respect to the specified properties. Plan verification requires an input model that encodes both the
MrSPOCK domain specification (described in the previous section) and the generated plan. In this case,
the model checker can verify whether the generated plan is actually a good controller for the controlled
systems. That is, the model checker verifies whether changesto plan executions and state variables can be
synchronized or not.

First, we have to represent temporal plans in the model checker input specification. The plans generated
by MrSPOCK provide a set of decisions/activations over the state variables. For each state variable, a
generated plan provides a set of activations at fixed time points (planned timeline); therefore, a plan
describes the sequence of values the state variables have toassume in a given time frame.

In Figure 9, we present an extension of the translating algorithm described in the previous section that
allows us to encode the domain and the generated plan into a suitable input model for the model checkers.
To represent the generated plan, we introduce an additionalautomaton (rows 06-16) for each state variable,
representing the controller associated with the state variable. This automaton has a number of states that
is equal to the length of the plan; for each activation/decision available in the plan we introduce a state.
Transitions between states represent plan steps, from the initial value to the last one. For each transition,
we also introduce a guard that enables the transition at the time instant decided by the temporal plan.

As for the model validation case, we maintain the specification illustrated in the previous section – for
each state variable we use the automaton described in the algorithm depicted in Figure 6 – with the only
expection that in this case we also need to synchronize (row 27) the value changes occurring in the state
variable automaton associated with the (controlled system), as well as the value changes occurring in the
plan automaton (controller).

Finally, theobserver automatonis also extended. Indeed, in this case we have to check not only domain
constraints, but also the synchronization between the planned values (values defined in the generated plan)
and the executed values (values assumed by the state variable). Therefore, in theobserver automatonwe
introduce a new transition that triggers whenever a state variable value and the value decided by the
planned cannot be aligned (rows 42-45).

Figure 10 illustrates a simplified NuSMV module for the extended monitor – here, we consider only a
subset of the transitions associated with the Spacecraft Operative Mode state variable.

Once the input model is completed and forwarded to the model checkers, we can formulate and
verify the plan properties. In particular, using theobserver automaton, the plan validity property can
be formulated as follows:for each timeline, OK status for the monitor is always requested. This can be
encoded by the following CTL formula: AG (Monitor.status = OVERALL OK).

Whenever the above formula does not hold, the model checker reports an execution trace that allows
the user to understand which inconsistencies are present between the planned timelines and the evolutions
of the state variables. Thus, the reported trace can be used to identify plan errors and to diagnose the
conditions they originated from.

Note that, when necessary, theobserver automatoncan become more complex to better support planner
and model validation. For example, theobserver automatoncan be extended by introducing multiple error
states, namely, we may introduce one error state for each relevant class of possible inconsistencies. In this
way, the provided error type notion can be exploited in a subsequent refinement/correction of the domain,
of the heuristics, or of the solver.

4.4 Flexible Temporal Plan Verification

An interesting issue concerns the verification of flexible temporal plans. That is, plans where value
changes can occur within time intervals rather than at fixed time instants. A flexible plan can be easily
represented using the input model already described for plan verification. In this case, we simply have to
consider temporal variables over a certain interval of values. That is, if a flexible time point of the plan can
assume values in[Tmin, Tmax], then the associated temporal variable ranges over{Tmin...Tmax}. In this



14 A . CESTA, A . FINZI , S. FRATINI , A . ORLANDINI , E. TRONCI

01 // Clocks definition
02 For each State Variable SVi
03 VAR Clock_SVi = 0;
04 AUTOMATON A_Clock_SVi = CREATE_CLOCK_AUTOMATON();
05
06 // State Variables encoding
07 For each State Variable SVi
08 // PLAN AUTOMATON
09 AUTOMATON PLAN_SVi = CREATE_EMPTY_AUTOMATON();
10 11 For each Value Change in SVi Plan VCi
12 ADD_STATE(PLAN_SVi,STEP_SVi_VCi);
13 14 For each Value Change in SVi plan VCi at time Tj
15 TRANSITION T = ADD_TRANSITION(PLAN_SVi,STEP_J,STEP_J+1);
16 ADD_GUARD(T,clock_SVi = Tj);
17
18 // STATE VARIABLE AUTOMATON
19 AUTOMATON A_SVi = CREATE_EMPTY_AUTOMATON();
20 21 For each Allowed Value Av
22 ADD_STATE(A_SVi,Av);
23 24 // Consistency Features
25 For each MEETS Consistency Feature meets(Av1,Av2)
26 TRANSITION T = ADD_TRANSITION(A_SVi,Av1,Av2);
27 ADD_SYNC(T,PLAN_SVi);
28
29 For each DURATION Consistency Feature Duration(Av,min,max);
30 ADD_INVARIANTS(Av,Clock_SVi <= max);
31 ADD_GUARD_ON_EVERY_OUTGOING_TRANSITION(clock_SVi >= min);
32
33 // Whenever a Transition occurs, clock must reset
34 For each Transition in A_Ci T
35 UPDATE(T,clock_SVi = 0);
36
37 AUTOMATON M = CREATE_EMPTY_AUTOMATON();
38 39 ADD_STATE(M,OVERALL_OK);
40 ADD_STATE(M,OVERALL_KO);
41
42 For each State Variable SVi
43 For each step J in PLAN_SVi with Value Vj
44 TRANSITION T = ADD_TRANSITION(M,OVERALL_OK,OVERALL_KO);
45 ADD_GUARD(T, (PLAN_SVi_STEP = J) and NOT (A_SVi_VALUE = Vj));
46 47 For each Domain Theory Constraints V1 -> V2
48 TRANSITION T = ADD_TRANSITION(M,OVERALL_OK,OVERALL_KO);
49 ADD_GUARD(T,V1 AND NOT V2);

Figure 9 The extended algorithm for mapping Timeline-based domain and plan model into model checkers model.

MODULE Monitor(planOPERATIVE_MODE,...,OPERATIVE_MODE,...)
VAR
status : {OVERALL_OK,OVERALL_KO};

ASSIGN
init(status) := OVERALL_OK;
next(status) := case
(status = OVERALL_KO) : OVERALL_KO;
(planOPERATIVE_MODE.step = 0) & !(OPERATIVE_MODE.value = Earth) : OVERALL_KO;
(planOPERATIVE_MODE.step = 1) & !(OPERATIVE_MODE.value = Comm) : OVERALL_KO;

...
-- DT --
(OPERATIVE_MODE.value = Comm) & !(GS_AVAILABILITY.value = Available) : OVERALL_KO;
(OPERATIVE_MODE.value = Maintenance) & !(ORBIT_EVENTS.value = Apocentre) : OVERALL_KO;
(OPERATIVE_MODE.value = Science) & !(ORBIT_EVENTS.value = Pericentre) : OVERALL_KO;
1 : status;

esac;

Figure 10 NuSMV Module extended definition for Monitor.

way, a model checker can explore and verify all the possible temporal evolutions of the flexible plan. By
properly modeling the synchronizations among these variables, the domain state variables, and the plan
behaviors, we can deploy the validation architecture presented above in several ways.

As a first step, we can check whether a flexible plan is dispatchable or not. In fact, we can ask the model
checker to verify if there exists a possible temporal evolution of the plan guaranteeing that no constraint is
violated. This can be encoded by the following CTL specification: EG (Monitor.status = OVERALLOK).
In addition, we can check several domain-dependent properties. This allows us to inspect properties of
flexible plans before their execution. Typical properties are about accomplishment of tasks. For instance,
we can check whether a flexible Science task can always be safely completed regardless of its start
time. This can be encoded by the following formula: AG (OPERATIVE MODE.status = Science→ A
(Monitor.status = OVERALLOK U OPERATIVE MODE.status = Slew)).



Validation and Verification Issues in a Timeline-Based Planning System 15

4.5 Lessons Learned

Model checkers are extremely useful tools but the benefits ofmodel checking come at a cost that can be
very high. Menzies and Pecheur (2005) identify the following three cost assessment phases: (a)Writing
cost is the initial cost of developing the systems model and the properties model, in a format accepted
by the model checker; (b)Running costis the cost of actually running the model checker, as many times
as needed; (c)Re-writing costis the cost of iteratively modifying the model until model checking can
complete successfully and provide acceptable results. Theexploitation of the knowledge-engineering
framework around MrSPOCK not only decreases the costs of using model checking tools but also provides
useful support during the development process.

Basically our framework minimizeswriting cost. In fact, the description of the system to be verified
(domain model) is often translated by hand from its originaldesign into the input syntax of the target
verification tool. Usually, this translation is a time-consuming and error prone human activity, typically
taking weeks or months of human work.

Figure 11 Domain Encoding Times to UPPAAL and
NuSMV input models.

The model-translation processes used
within the MrSPOCK framework automates
such translation, producing model checker
input models in a matter of minutes. We
have run our translator on several different
domains in order to test the general behavior
of the framework. We collected quite good
performances3 depicted in Fig. 11. Our
experimental results show that, even handling
domains with thousands of state variables, a few seconds aresufficient for our framework to produce
domain models in both NuSMV and UPPAAL input languages.

As a consequence of endowing our framework with automated V&V processes, another important
advantage is granted. In fact, formal methods experts interventions can be avoided allowing field engineers
to perform validation and verification tasks as part of the usual development process within the framework.

Figure 12 UPPAAL and NuSMV verification performances.

Concerning therunning cost, we report
some tests performed to assess plan validation
performances in MrSPOCK. In particular, we
validated plans generated by MrSPOCK rang-
ing from 1 to 10 days of activity, handling
from 45 to 335 tasks over all the timelines.
The results, summarized in Fig. 12, show
that UPPAAL performs better than NuSMV
(running BMC) on our examples. NuSMV
proceeds by building a global state graph (or
Kripke structure) in advance as a prerequisite for the system properties verification, while UPPAAL works
on-the-fly, as it is able to construct the global state graph dynamically. Moreover, UPPAAL exploits
its internal temporal representation while NuSMV handles simple variables in order to model temporal
clocks.

Finally, therewriting costis not directly affected by framework functionalities, butthe V&V processes
presented above allow us to effectively support knowledge engineers in their work. Thus, both developers
and users should be able to exploit the framework features tobetter analyze and understand the
applications. For instance, the plan V&V tool allowed us to detect and solve a serious inconsistency
in the MrSPOCK domain. In fact, the verification system actually discovered a previously unknown error:
MrSPOCK could generate solutions not consistent with apocentre-maintenance occurrences constraint,
which is an implicit requirement (i.e., not represented in the temporal model) for the hybrid solver. The
execution trace allowed us to diagnose the inconsistency. Analyzing the problem, we found a subtle bug

3All experimental results presented in this section were collected running tests on a Linux workstation endowed with
a 64-bit AMD Athlon CPU (3.5GHz) and 2GB RAM.



16 A . CESTA, A . FINZI , S. FRATINI , A . ORLANDINI , E. TRONCI

in the optimization process that caused the violation of themaintenance orbits distance constraint in the
produced plans. We have been able to spot the problem during the plan verification task phase, and we
were able to fix it by changing some optimization parameters.

5 Conclusion

V&V techniques play an essential role in knowledge engineering for model-based systems as they provide
a way to assess the quality of the proposed requirements, models, and heuristics along with hints about
how to amend flawed solutions. In this work, we have describedour current approach to verify and validate
both models and solvers for complex timeline-based planning systems. In particular, we have considered
V&V issues focusing around the MrSPOCK system, a timeline-based planner developed for the European
Space Agency, which has generated quite a number of researchissues (Cesta et al., 2008, 2009).

The paper shows how V&V can be of practical impact in a P&S project. It is worth noting that
the solving system of MrSPOCK is based on a hybrid approach: not all the domain constraints can be
explicitly represented in the plan domain, therefore the soundness of the generated plan with respect
to the domain model does not necessarily ensure the soundness of the produced solution with respect
to the real world. As opposed to other approaches in literature, in this context an independent solution
verifier is needed not only for model validation and plan verification, but also to test the consistency of
the generated plans with respect to the implicit requirements (e.g., those to be enforced by heuristics or
optimization processes). Additionally, from the end-userperspective V&V tools offer an independent
testing environment which may enhance end-users trust on the complex and (sometimes) counterintuitive
solutions generated by MrSPOCK.

The paper describes a general V&V architecture for a state-of-the-art timeline-based planner. We
show how such architecture is used to validate MrSPOCK domain models and to verify its plans. Beside
presenting the feasibility of the effort, we provide the description of the modeling and verification methods
in details. The experimental results show how the approach is quite effective. In particular, our translators
from MrSPOCK domain models to NuSMV or UPPAAL, allow us to generate model checker inputs in
a matter of minutes whereas a manual approach may require weeks of error-prone human work. This
allows system designers to save on thewriting cost(Sect. 4.5).Runningthe verification shows that model
checking time and memory usage for moderate size domains arequite acceptable. A tighter integration
with the planner may improve this important aspect in the future. As forrewriting costs, we note that our
V&V architecture spotted a subtle bug in the plan optimization process. Without such a framework the
bug could have gone undetected for quite a while and replicated by code reusing.

Acknowledgments. Cesta, Fratini, Orlandini and Tronci are partially supported by the EU project
ULISSE (Call “SPA.2007.2.1.01 Space Science”. Contract FP7.218815). Cesta and Fratini are also
partially supported by European Space Agency (ESA) within the Advanced Planning and Scheduling
Initiative (APSI). Thanks to Riccardo Rasconi for help in proof-reading the paper.

References

Y. Abdedaim, E. Asarin, M. Gallien, F. Ingrand, C. Lesire, and M. Sighireanu. Planning Robust Temporal Plans: A
Comparison Between CBTP and TGA Approaches. InICAPS-07. Proceedings of the Seventeenth International
Conference on Automated Planning and Scheduling, pages 2–10, 2007.

S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis. Testing Conformance of Real-Time Applications: Case of
Planetary Rover Controller. InVVPS-05. Proceedings of the ICAPS Workshop on Validation & Verification of
Planning and Scheduling Systems, pages 23–32, 2005.

A. Cesta and S. Fratini. The Timeline Representation Framework as a Planning and Scheduling Software
Development Environment. InPlanSIG-08. Proceedings of the 27th Workshop of the UK Planning and Scheduling
Special Interest Group, Edinburgh, UK, December 11-12, 2008.

A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi. Looking for MrSPOCK:Issues in Deploying a Space Application.
In SPARK-08. ICAPS Workshop on Scheduling and Planning Applications, Sydney, Australia, 2008.



Validation and Verification Issues in a Timeline-Based Planning System 17

A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi. Developing an End-to-End Planning Application from a Timeline
Representation Framework. InIAAI-09. Proceedings of the 21st Innovative Application of Artificial Intelligence
Conference, Pasadena, CA, USA, 2009.

C.-C. Cheng and S. F. Smith. Generating Feasible Schedules under Complex Metric Constraints. InAAAI-94.
Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 1086–1091. AAAI Press/MIT
Press, 1994.

B. Cichy, S. Chien, S. Schaffer, D. Tran, G. Rabideau, and R. Sherwood. Validating the autonomous eo-1 science
agent. InVVPS-05. Proceedings of the ICAPS Workshop on Validation & Verification of Planning and Scheduling
Systems, pages 75–85, 2005.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV
2: An Opensource Tool for Symbolic Model Checking. InCAV-02. 14th International Conference on Computer-
Aided Verification, 2002.

E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, 1999.

M. Fox, R. Howey, and D. Long. Exploration of the Robustness of Plans. In VVPS-05. Proceedings of the ICAPS
Workshop on Validation & Verification of Planning and Scheduling Systems, pages 67–74, 2005.

M. Fox, D. Long, L. Baldwin, G. Wilson, M. Woods, D. Jameux, and R. Aylett. On-board Timeline Validation and
Repair: A Feasibility Study. InIWPSS-06. Proceedings of 5th International Workshop on Planning and Scheduling
for Space, 2006.

J. Frank and A. Jonsson. Constraint Based Attribute and Interval Planning. Journal of Constraints, 8(4):339–364,
2003.

S. Fratini, F. Pecora, and A. Cesta. Unifying Planning and Scheduling asTimelines in a Component-Based
Perspective.Archives of Control Sciences, 18(2):231–271, 2008.

D. Giannakopoulou, C. S. Pasareanu, M. Lowry, and R. Washington.Lifecycle Verification of the NASA Ames K9
Rover Executive. InVVPS-05. Proceedings of the ICAPS Workshop on Validation & Verification of Planning and
Scheduling Systems, pages 75–85, 2005.

R. P. Goldman, D. J. Musliner, , and M. J. Pelican. Exploiting implicit representations in timed automaton verification
for controller synthesis. InHSCC-02. Proceedings of the Fifth Int. Workshop on Hybrid Systems: Computation and
Control, 2002.

K. Havelund, A. Groce, G. Holzmann, R. Joshi, and M. Smith. AutomatedTesting of Planning Models. In
Proceedings of the Fifth International Workshop on Model Checking andArtificial Intelligence, pages 5–17, 2008.

G. J. Holzmann.The SPIN Model Checker: Primer and Reference Manual. Addison Wesley, 2004.

R. Howey and D. Long. VAL’s Progress: The Automatic Validation Tool for PDDL2.1 used in the International
Planning Competition. InProceedings of the ICAPS Workshop on The Competition: Impact, Organization,
Evaluation, Benchmarks, pages 28–37, Trento, Italy, June 2003.

A. Jonsson, P. Morris, N. Muscettola, K. Rajan, and B. Smith. Planning inInterplanetary Space: Theory and Practice.
In AIPS-00. Proceedings of the Fifth Int. Conf. on Artificial Intelligence Planning and Scheduling, pages 177–186,
2000.

L. Khatib, N. Muscettola, and K. Havelund. Mapping Temporal Planning Constraints into Timed Automata. In
TIME-01. The Eigth Int. Symposium on Temporal Representation and Reasoning, pages 21–27, 2001.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell.International Journal on Software Tools for Technology
Transfer, 1(1-2):134–152, 1997.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Massachusetts, 1993. ISBN 0792393805.

T. Menzies and C. Pecheur. Verification and Validation and Artificial Intelligence.Advances in Computers, 65:5–45,
2005.

N. Muscettola. HSTS: Integrating Planning and Scheduling. In Zweben, M. and Fox, M.S., editor,Intelligent
Scheduling. Morgan Kauffmann, 1994.

P. P. Nayak, D. E. Bernard, G. Dorais, E. B. Gamble, B. Kanefsky,J. Kurien, W. Millar, N. Muscettola, K. Rajan,
N. Rouquette, B. D. Smith, and W. Taylor. Validating the DS1 Remote Agent Experiment. IniSAIRAS-99.
Proceeedings Fifth Int. Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999.



18 A . CESTA, A . FINZI , S. FRATINI , A . ORLANDINI , E. TRONCI

C. Pecheur and R. G. Simmons. From Livingstone to SMV. InFAABS-00. Proceedings of the First International
Workshop on Formal Approaches to Agent-Based Systems - Revised Papers, pages 103–113, London, UK, 2001.
Springer-Verlag. ISBN 3-540-42716-3.

J. Penix, C. Pecheur, and K. Havelund. Using Model Checking to Validate AI Planner Domain Models. InProceedings
of the 23rd Annual Software Engineering Workshop, 1998.

A. Preece. Evaluating Verification and Validation Methods in Knowledge Engineering. In R. Roy, editor,Micro-Level
Knowledge Management, pages 123–145. Morgan-Kaufman, 2001.

M. D. R-Moreno, G. Brat, N. Muscettola, and D. Rijsman. Validation of a Multi-Agent Architecture for Planning and
Execution. InDX-07. Proceedings of 18th International Workshop on Principles of Diagnosis, pages 368–371,
2007.

R. I. Siminiceanu, R. W. Butler, and C. A. Munoz. Experimental Evaluation of a Planning Language Suitable
for Formal Verification. InProceedings of the Fifth International Workshop on Model Checking andArtificial
Intelligence, pages 18–34, 2008.

R. M. Simpson, D. E. Kitchin, and T. L. McCluskey. Planning Domain Definition using GIPO.Knowl. Eng. Rev., 22
(2):117–134, 2007.

B. Smith, K. Rajan, and N. Muscettola. Knowledge Acquisition for the Onboard Planner of an Autonomous
Spacecraft. InEKAW-97. 10th European Workshop on Knowledge Acquisition, Modelingand Management, volume
1319 ofLecture Notes in Computer Science, pages 253–268, 1997.

B. Smith, W. Millar, J. Dunphy, Y.-W. Tung, P. Nayak, E. Gamble, and M. Clark. Validation and Verification of the
Remote Agent for Spacecraft Autonomy. InProceedings of IEEE Aerospace Conference, 1999.

B. Smith, M. Feather, and N. Muscettola. Challenges and Methods in Testingthe Remote Agent Planner. InAIPS-00.
Proceedings of the Fifth Int. Conf. on Artificial Intelligence Planning and Scheduling, pages 254–263, 2000a.

D. Smith, J. Frank, and A. Jonsson. Bridging the Gap Between Planning and Scheduling.Knowledge Engineering
Review, 15(1):47–83, 2000b.

M. H. Smith, G. J. Holzmann, G. C. Cucullu, and B. D. Smith. Model Checking Autonomous Planners: Even the
Best Laid Plans Must be Verified. InProceedings of IEEE Aerospace Conference, pages 1 – 11. IEEE Computer
Society, 2005.

T. Vidal. A Unified Dynamic Approach for Dealing with Temporal Uncertainty and Conditional Planning. InAIPS-00.
Proceedings of the Fifth Int. Conf. on Artificial Intelligence Planning and Scheduling, pages 395–402, 2000.


