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environmental changes by trading some of the retained flexibility.
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This work shows how a model-checking verification tool based on Timed Game Automata (TGA)
can be used to verify such plans. In particular, flexible plan verification is cast as a model-checking
problem on those automata. The effectiveness of the proposed approach is shown by presenting a
detailed experimental analysis with a real world domain which is used as a flexible benchmark.

Keywords: Timeline-based Planning, Validation and Verification, Model Checking.

1. Introduction

Timeline-based planning has shown to be very effective for applications in real-world domains – see [24,
16, 27, 13, 5, 11]. Notwithstanding those successes, the dissemination of the technology is rather poor
mostly because a limited amount of work has been dedicated to clarify the theoretical underpinnings and
the formal properties of this approach to planning. These authors are investigating one of the missing
aspects: the interconnection between timeline-based planning and standard techniques for formal valida-
tion and verification (V&V). Objectives of this research are (a) the synthesis of richer environments for
knowledge engineering [7] and (b) the exploration of properties connecting temporal plans to their exe-
cution [8]. This specific work addresses the problem of flexible temporal plans verification and reinforce
the preliminary results published in [8] and [6].

Flexible temporal plans identify an envelope of potential plans which represent feasible solutions to
a given problem. Such plans only impose minimal temporal constraints among the planned activities,
hence they are able to adapt to environmental changes by trading some of their flexibility during execu-
tion. It is worth underscoring how the verification of flexible plans is considered an open issue in the
planning and scheduling literature (see [7, 1] for a discussion). Here, this verification problem is tackled
with an approach based on a Timed Game Automata [20] formalization, exploiting UPPAAL-TIGA [3]
as model checker.

In showing the feasibility of the approach, we tackle the controllability problem as defined in [29, 23].
This problem arises when a generated time flexible plan has to be executed by an executive system that
manages controllable processes in the presence of exogenous events. In such a scenario, the duration
of the execution processes is not completely under the control of the executive: the actions that are
under the scope of the executive should therefore be chosen so that they do not constrain uncontrollable
events. Since [29], the controllability problem is addressed through the temporal network that underlies
the time flexible plan, here we show how our general purpose verification method can be used to solve
this relevant problem in timeline-based planning.

The controllability problem can be addressed in polynomial time under some simplifying assump-
tions [23]. In [22] this apparent low-order polynomial complexity is shown to be misleading because for
many real applications the input size may be very large (pseudo-polynomial complexity); on the other
hand, a general purpose model-checker verification is PSPACE complete. Despite this theoretical com-
plexity result, this paper discusses how the UPPAAL-TIGA algorithm can yield very encouraging perfor-
mance results in practice. Thus, the main contribution of the present work is to show the feasibility of the
approach, by presenting some experimental results that illustrate the plan verification performances, as
the degree of plan flexibility and controllability varies. The experimental analysis is based on a proposed
benchmark case study derived from a real world space application scenario. Such a case study is both
realistic and rich enough to allow the implementation of a wide range of different experiment settings.
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Related Works. A selected number of works share some methodology with our approach and some-
how paved the way for its contribution. In [1], the authors propose a mapping from temporal constraint-
based planning problems into UPPAAL-TIGA game-reachability problems providing a comparison of
the two planning approaches. In that work, the main concern is plan synthesis, while our main focus
is flexible plan verification. In [1], the approach to problem modeling is similar to ours; however, the
temporal flexibility issue remains open. In [17] a mapping is proposed from interval-based temporal
relations models (i.e., Domain Description Language models from RAX-PS [16]) into timed automata
models of UPPAAL [19], again, flexible timeline verification is not addressed. Furthermore, [28] pro-
poses a mapping from Contingent Temporal Constraint Networks (a generalization of STPUs) to Timed
Game Automata which is analogous to the one exploited here. It is worth noting how in [28] the use of a
model checker is suggested only to obtain a more compact representation, as opposed to verifying plan
properties. In [15], the authors tackle temporal plan verification within a PDDL framework; however,
they do not address flexible temporal plans and temporal constraints.

Plan of the Paper. In the following, the basic definitions grounding our work are first presented,
namely, (a) Timeline-based Planning (Section 2) and (b) Timed Game Automata (Section 3). Then
the specific result of the paper is introduced by (c) describing the automated mapping of a plan in time-
line specification into TGAs (Section 4), and (d) introducing the basic verification procedure (Section 5).
Furthermore, the efficacy of the approach is tested by (e) introducing the challenging benchmark from
a space domain (Section 6) and (f) performing a number of diversified experiments (Section 7). Some
conclusions end the paper.

2. Timeline-Based Planning and Execution

Timeline-based planning is an approach to temporal planning, proposed in the 90’s [25, 24], which has
been applied in the solution of several real world problems – e.g., [16, 5, 11]. The approach pursues
a general idea that planning and scheduling consist in the synthesis of desired temporal behaviors for
complex physical systems. In this respect, the set of domain features under control are modeled as a set of
temporal functions whose values have to be planned over a time horizon. Such functions are synthesized
during problem solving by posting planning decisions. The evolution of a single temporal feature over a
time horizon is called the timeline of that feature.

In the rest of this paper, multi-valued state variables will represent time varying features, as defined in
[24, 10]. As in classical control theory, the evolution of controlled features are described by some causal
laws which determine legal temporal evolutions of timelines. For the state variables, such causal laws
are encoded in a domain specification which determines the operational constraints of a given domain.
In this context, the task of a planner is to find a sequence of control decisions that bring the variables into
a final set of desired evolutions always satisfying the domain specification.

We want to represent temporal features as state-variables that have a finite set of possible values over
temporal intervals. The temporal evolutions of such features are sequences of operational states – i.e.,
stepwise constant functions of time. Operational constraints specify which value transitions are allowed,
the duration of each valued interval (i.e., how long a given operational status can be maintained), and
synchronization constraints between different state variables.
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More formally, a state variable is defined by a tuple 〈V, T ,D〉 where: (a) V = {v1, . . . , vn} is a finite
set of values; (b) T : V → 2V is the value transition function; (c) D : V → N× N is the value duration
function, i.e. a function that specifies the allowed duration of values in V (as an interval [lb, ub]). T and
D specify the operational constraints on the values in V .

It is worth introducing here a distinction between state variable types that are used for modeling
domains. We call Planned State Variables those whose activities are under the control of the planning
agent (planned by the agent), and External State Variables those whose values can only be observed over
time.1

Simple example. We introduce here a simple domain to exemplify the introduced concepts. Our
example domain is composed of two relevant features: a robotic platform and a camera carried by
the platform. The robot is a basic mobile platform with two operational states represented by the
values: (a) AT(?object) to model the situation where the platform is close to a potential target, and
(b) Move(?object1,?object2) to model the status when the platform is moving from a target to another
target (?object represents a parameter, whose values belong to a finite set of symbols, used to com-
pactly represent the allowed values for a given state variable). The operational constraints state that the
platform moves among the targets, thus allowing the following transitions between operational states:
AT(?object1)→ Move(?object1,?object2)→ AT(?object2). There is no duration constraint for the sta-
tus AT(?object1) (it can be represented by the interval [1,∞]), while we suppose a duration constraint
[dmin, dmax] for the status Move(?object1,?object2) (it is reasonable that the time needed to move be-
tween two objects is bounded and dependent from the distance between the two objects). The camera can
assume the following values: (c) Idle(), (d) WarmUp() and (e) TakePicture(?object). The camera
operational constraints require that the camera has to be warmed up before taking a picture. Thus, the
following transitions represent a valid temporal evolution for the subsystem: Idle()→ WarmUp()→
TakePicture(?object) → Idle(). Besides that, there exist duration constraints for the operational
states WarmUp() and TakePicture(?object). The warming up status has a fixed duration [dwu, dwu],
constant and known in advance, while the taking picture status has a minimal and maximal duration
[dmin, dmax]: in fact, this is only a predicted duration for the time needed to take a picture and store the
data. Figure 1-left shows the values of the two state variables and their legal transitions.

In this type of planning, a planning domain, or domain theory, is defined as a set of state variables
{SV1, . . . ,SVn}. Generally, they are not mutually decoupled; rather, a set of additional relations exist,
called synchronizations, that model the existing temporal and causal constraints among the values taken
by different state variable timelines (i.e., patterns of legal occurrences of the operational states across the
timelines). More formally, a synchronization has the form

〈SV, v〉 −→ 〈{〈SV ′1, v′1〉 . . . , 〈SV ′n, v′n〉},R〉

where: SV is the reference state variable; v is a value on SV which makes the synchronization applicable;
{〈SV ′1, v′1〉 . . . , 〈SV ′n, v′n〉} is a set of target state variables on which some values v′j must hold; and R
is a set of relations which bind temporal occurrence of the reference value v with temporal occurrences

1In previous papers of ours (e.g., [7, 5]) we have used Controllable for Planned and Uncontrollable for External state variables.
We have changed the terminology here to avoid the semantic clash with the controllability of single events which is a relevant
concept in this paper.
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Figure 1: The simple timeline-based planning domain.

of the target values.2 For instance, in Figure 1-left there is a dashed edge labeled with the temporal
constraint DURING between the operational status TakePicture(?object) of the camera equipment
and the operational status AT(?object) of the motion equipment. This synchronization models that in
order to take a picture of a given target object, the robot must be close to the object. In terms of timeline-
based planning, this means that the operational status TakePicture(?object) on the timeline that
describes the behavior of the camera equipment must hold during the operational status AT(?object) of
the timeline that describes the behavior of the motion equipment. In Figure 1, the temporal constraint
DURING holds between the intervals [t2, t3) and [t5, t6) as a precedence constraint between the pairs
t2, t5 and t3, t6.

Timeline based planning. The temporal evolutions of a state variable will be described by means of
a timeline, that is, a sequence of state variable values, a set of ordered transition points between the
values and a set of distance constraints between transition points; the latter are bounded by the planning
process, i.e., they are assigned lower and upper bounds instead of being exactly specified. As in case
of a least-commitment solving approach, we refer to the timeline as time flexible and we refer to the
plan resulting from a set of flexible timelines as a flexible plan. Figure 1-right shows two timelines for
the state variables previously introduced, along with the underlying temporal network that describes the
constraints that hold among the flexible transition points in the timelines. In the temporal network, the
nodes represent transition points and the edges represent distance constraints characterized by an upper
and lower bound.

More formally, given a state variable 〈V, T ,D〉, a time flexible timeline is defined over a temporal
interval H = [tO, tH), called Planning Horizon, by a tuple 〈TTL,OTL,VTL,DTL〉 where: (d) TTL =
{tp1, . . . , tpn} is a finite set of timepoints such that tpi ∈ H; (e) OTL : TTL → N × N is the transition

2A temporal relation R among two values A and B prescribes both qualitative and quantitative temporal constraints (e.g., A
DURING B, or A OVERLAPS [min,max] B) thus using a combination of qualitative Allen’s interval algebra and quantitative
temporal expressions [10]. A temporal relation R stems for a set of temporal precedence constraints between the starting and
ending points of occurrences of intervals where values A and B are assumed.
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point occurrence function, i.e., a function that specifies the allowed lower and upper bounds of the
transition points in TTL (as an interval [lb, ub]);3 (f) VTL : TTL → V is the value taken function, i.e., a
function that specifies the value taken by the timeline up to the following transition points;4 (g) DTL :
TTL → N × N is the transition distance function, i.e., a function that specifies the allowed distance
between two successive transition points (as an interval [lb, ub]).5 A time flexible timeline represents a
set of temporal evolutions of a state variable, all sharing the same sequence of values but with different
temporal occurrences of the transition points. It is worth pointing out that not all the assignments of
values to transition points specified by (f) are legal with respect to the state variable constraints (b) and
not all the temporal assignments of the transition points specified by (e) are legal with respect to the
state variable constraints (c) and the timeline constraints (g). Notice that planning goals are expressed as
desired values over temporal intervals and the task of the planner is to build timelines that describe valid
sequences of values that achieve those goal values – where valid means that the plan completely satisfies
the domain theory.

Plan execution. During plan execution the plan is under the supervision of an executive program that
forces value transitions over timelines. A well known problem with execution is that not all the value
transitions are under the responsibility of the executive; rather, some of the events are under the control of
nature. As a consequence, an executive cannot completely predict the behavior of the controlled physical
system because the duration of certain processes or the timing of exogenous events is out of its control.
In such cases, the values for the state variables that are under the executive scope should be chosen so
that they do not constrain uncontrollable events. This is the controllability problem which was defined
for example in [29] where contingent and executable processes are distinguished. The contingent pro-
cesses are not controllable, and hence are characterized by uncertain durations. Instead, the executable
processes are started and ended by the executive system. In particular, controllability issues underlying
a plan representation have been formalized and investigated for the Simple Temporal Problems with Un-
certainty (STPU) representation in [29] where basic formal notions are given for dynamic controllability
(see also [22]).

In [6] we extended the controllability concepts defined on STPUs to a timeline-based representation.
The main steps of such an extension are summarized in what follows. Given a plan as a set of flexible
timelines PL = {T L1, . . . , T Ln}, we call projection a flexible plan PL′ = {T L′1, . . . , T L′n} derived
from PL by setting the temporal occurrence of each uncontrollable timepoint to a fixed value. In other
words, a projection describes one possible uncontrollable evolution of the flexible plan. Considering N
as the set of controllable flexible timepoints in PL, a schedule T is a mapping T : N → N where T (x)
is called time of timepoint x. A schedule is consistent if all value durations and synchronizations are
satisfied in PL. The history of a timepoint x with respect to a schedule T , denoted by T{≺ x}, specifies
the time of all uncontrollable timepoints that occur prior to x. An execution strategy S is a mapping
S : P → T where P is the set of projections and T is the set of schedules. An execution strategy
S is viable if S(p) (denoted also Sp) is consistent for each projection p. Thus, a flexible plan PL is
dynamically controllable if there exists a viable execution strategy S such that Sp1{≺ x} = Sp2{≺
x} ⇒ Sp1(x) = Sp2(x) for each controllable timepoint x and projections p1 and p2.

3We assume |TTL| ≥ 2, OTL(tp0) = [tO, tO],OTL(tp|TTL|) = [tH , tH ].
4The value VTL(tpi) is supposed to be taken in [tpi, tpi+1), the value VTL(tp|TTL|) is undefined.
5DTL(tp|TTL|) is undefined.
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3. Timed Game Automata

Timed Automata provide a natural way to represent time delays of real-time systems. They allow to
annotate state-transitions with temporal constraints using real-valued clock variables. A clock is a non-
negative, real-valued variable. LetX be a finite set of clocks. We denote withC(X) the set of constraints
Φ generated by the grammar: Φ ::= x ∼ c | x − y ∼ c | Φ ∧ Φ, where c is an integer, i.e. c ∈ Z,
x, y ∈ X , and ∼∈ {<,≤,≥, >}. We denote by B(X) the subset of C(X) that uses only constraints of
the form x ∼ c.

Definition 3.1. A Timed Automaton (TA) [2] is a tuple A = (Q, q0,Act, X, Inv, E), where: Q is a
finite set of locations, q0 ∈ Q is the initial location, Act is a finite set of actions, X is a finite set of
clocks, Inv : Q → B(X) is a function associating to each location q ∈ Q a constraint Inv(q) (the
invariant of q), E ⊆ Q × B(X) × Act × 2X × Q is a finite set of transitions and each transition (q, g,

a, Y , q′) is noted q
g,a,Y→ q′.

A valuation of the variables in X is a mapping v from X to the set R≥0 of nonnegative reals. We denote
with RX≥0 the set of valuations on X and with ~0 the valuation that assigns the value 0 to each clock.
Y ⊆ X is a subset of X , i.e., a subset of clocks, we denote with v[Y ] the valuation which assigns the
value 0 to any z ∈ Y and agrees with v(z) for any z ∈ (X−Y ). For any δ ∈ R≥0 we denote with (v+δ)
the valuation such that, for each x ∈ X , (v + δ)(x) = v(x) + δ. Let g ∈ C(X) and v be a valuation. We
say that v satisfies g, notation v |= g if the constraint g evaluated on v is true. A state of a TA A is a pair
(q, v) such that q ∈ Q and v is a valuation (onX). We denote with S the set of states ofA. An admissible
state for A is a state (q, v) such that v |= Inv(q). A discrete transition for A is a 5-tuple (q, v, a, q′, v′)

such that (q, v)
a→ (q′, v′) where (q, v), (q′, v′) ∈ S, a ∈ Act, and there exists a transition q

g,a,Y→ q′ ∈ E
such that v |= g, v′ = v[Y ], v |= Inv(q) and v′ |= Inv(q′). Notice that Y represents the subset of clocks
to be reset (i.e. v′ = v[Y ]) after the transition. A time transition for A is a 4-tuple (q, v, δ, v′) such that

(q, v)
δ→ (q, v′) where (q, v) ∈ S, (q, v′) ∈ S, δ ∈ R≥0, v′ = v + δ, v |= Inv(q), and v′ |= Inv(q). A run

of a TAA is a finite or infinite sequence of alternating time and discrete transitions ofA. We denote with
Runs(A, (q, v)) the set of runs of A starting from state (q, v); we write Runs(A) for Runs(A, (q0,~0)).
If ρ is a finite run we denote with last(ρ) the last state of run ρ. A network of TA (nTA) is a finite set
of TA evolving in parallel with a CCS style semantics as a model for concurrency [21]. Formally, let F
= {Ai | i = 1, . . . n} be a finite set of automata with Ai = (Qi, q

0
i ,Act, X, Invi, Ei) for i = 1, . . . n -

note that the automata in F have all the same set of actions and clocks, but disjoint sets of locations - the
network ofF (notation ||F) is the TA P = (Q, q0,Act, X, Inv, E) defined as follows. The set of locations
Q of P is the Cartesian product of the locations of the automata in F , that is Q = Q1 × . . . × Qn. The
initial state q0 of P is q0 = (q01 , . . . q0n). The invariant Inv for P is Inv(q1, . . . qn) = Inv1(q1) ∧ . . . ∧
Invn(qn). The transition relation E for P is the synchronous parallel of those of the automata in F . That
is, E consists of the set of 5-tuples (q, g, a, Y , q′) satisfying the following conditions: 1. q = (q1, . . . qn),
q′ = (q′1, . . . q′n); 2. There are i ≤ j ∈ {1, . . . n} such that for all h ∈ {1, . . . n}, if h 6= i, j then qh = q′h.
Furthermore, if i = j then action a occurs only in automaton Ai of F . 3. Both automata Ai and Aj can

make a transition with action a. That is, qi
gi,a,Yi→ q′i ∈ Ei, qj

gj ,a,Yj→ q′j ∈ Ej , g = gi ∧ gj , Y = Yi ∪ Yj .

Definition 3.2. A Timed Game Automaton (TGA) [20] is a TA where the set of actions Act is split in
two disjoint sets: Actc the set of controllable actions and Actu the set of uncontrollable actions.
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The notions of network of TAs, run, configuration are easily extended to TGAs. Given a TGAA and three
sets of locations Init, Safe, and Goal, the reachability control problem, or reachability game,RG(A, Init,
Safe, Goal) consists in finding a strategy f such that starting from Init and executing f , A stays in Safe
and reaches Goal. More precisely, a strategy is a partial mapping f from the set of runs of A starting
from Init to the set Actc∪{λ} (λ is a special symbol that denotes “do nothing and just wait”). For a finite
run ρ, the strategy f(ρ) may say (1) no way to win if f(ρ) is undefined, (2) do nothing, just wait in the
last configuration ρ if f(ρ) = λ, or (3) execute the discrete, controllable transition labeled by l in the last
configuration of ρ if f(ρ) = l. A strategy f is state-based or memoryless whenever its result depends
only on the last configuration of the run.

Figure 2: A timed game automaton.

As an example, consider the timed game automaton in Figure 2, taken from [3], consisting of one
clock x and two types of edges: controllable (ci) and uncontrollable (ui). The reachability game consists
in finding a strategy for a controller, i.e., when to take the controllable transitions that will guarantee
that the system, regardless of when and if the opponent chooses to take uncontrollable transitions, will
eventually end up in the Goal location. Obviously, for all the initial states of the form (l1, x) with x ≤ 1
there is such a winning strategy. For instance, a winning strategy would consist in taking c1 immediately
in all the states (l1, x) with x ≤ 1; taking c2 immediately in all the states (l2, x) with x ≥ 2; taking c3
immediately in all the states (l3, x) and delaying it in all the states (l4, x) with x < 1 until the value of x
is 1 at which point the edge c4 is taken.

3.1. UPPAAL-TIGA

UPPAAL-TIGA [3] extends UPPAAL [19] providing a toolbox for the specification, simulation, and
verification of real-time games. It implements on-the-fly algorithms for solving games based on TGA
with respect to reachability and safety properties [4]. If there is no winning strategy, UPPAAL-TIGA
gives a counter strategy for the opponent (environment) to make the controller lose.

To model concurrent systems, timed automata can be extended with parallel composition. In process
algebras, various parallel composition operators have been proposed to model different aspects of con-
currency (e.g., CCS and CSP [21, 14]). These algebraic operators can be adopted in both TAs and TGAs.
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In the UPPAAL-TIGA modeling language [19], the CCS parallel composition operator is used, which
allows the interleaving of actions as well as hand-shake synchronization. Synchronous communication
between the processes is based on hand-shake synchronization using input and output actions.

Given a nTGA NA, a set of goal states (win), and/or a set of bad states (lose), both defined by
UPPAAL state formulas, four types of winning conditions can be issued [3]. For all of them, the solution
of the game is a controllable strategy f such that NA supervised by f ensures that: A♦win (must reach
win); A[not(lose)U win] (must reach win and must avoid lose); A[not(lose)W win] (should reach
win and must avoid lose); A�not(lose) (must avoid lose). 6

4. Building TGA from Timeline-based Planning Specifications

Our goal is to verify flexible timeline-based plans by solving a Reachability Game using UPPAAL-TIGA.
To this end, this section describes how a flexible timeline-based plan, state variables and domain theory
can be modeled using nTGA. The strategy is the following: first, the state variables in the model are
mapped into TGAs; second, the flexible plan is transformed in a similar way; finally, an Observer TGA
is introduced in order to check for value constraint violations as well as synchronization violations.

4.1. Modeling a State Variable as an nTGA

Let PD = {SV1, . . .SVn} be the set of state variables defining our planning domain. We will model
each SV i ∈ PD with a TGA ASVi = (QSVi , q0, ActSVi , XSVi , InvSVi , ESVi). As a consequence, the
set StateVar = {ASV1 , ...,ASVn} will represent our planning domain PD as a nTGA.

The TGA ASVi is defined as follows. The set QSVi of locations is the set Vi of values of SV i. The
initial state q0 is the initial value of the timeline in the plan associated to SV i. The set of clocks XSVi

consists of just one local clock csvi . The set ActSVi of actions corresponds to the values Vi of SV i. If SV i
is a planned state variable then the actions in ActSVi are controllable (i.e., ActSVi = ActcSVi), otherwise
they are uncontrollable (i.e., ActSVi = ActuSVi). Location invariants InvSVi are defined as follows:
InvSVi(v) := csvi ≤ ub, where: v ∈ QSVi = Vi and Di(v) = [lb, ub]. The transitions set ESVi consists

of transitions of the form v
g,v′?,Y→ v′, where: g = csvi ≥ lb, Y ={csvi}, v ∈ QSVi =Vi,Di(v) = [lb, ub],

v′ ∈ Ti(v).
Additionally, we assume that ActStateV ar = ActSV1 ∪ ... ∪ ActSVn and XStateV ar = XSV1 ∪ ... ∪

XSVn (with ActSV1 ∩ ... ∩ActSVn = ∅ and XSV1 ∩ ... ∩XSVn = ∅).

4.2. Modeling a Flexible Plan as an nTGA

Let P = {T L1, . . . , T Ln} be a flexible plan on a planning domain PD. We will model each T Li ∈ P
with a TGA AT Li = (QT Li , q0, ActT Li , XT Li , InvT Li , ET Li). As a consequence, the set Plan =
{AT L1 , ...,AT Ln} represents P as a nTGA.

The TGA AT Li is defined as follows. The set QT Li of locations of AT Li consists of the set of
timepoints TTLi in T Li along with a location lgoal modeling the fact that the plan has been completed.
Thus, QT Li = TTLi ∪ {lgoal}. The initial state q0, of AT Li is the first value interval l0 in T Li. The set

6In CTL (see [12]), A means ’along All paths’ (Inevitably), E means ’along at least (there Exists) one path’, � means ’has to
hold on the entire subsequent path’ (Globally), ♦ means ’eventually has to hold somewhere on the subsequent path’ (Finally).
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of clocks XT Li ofAT Li consists of just one element: the plan clock cp. Let SV be the state variable that
corresponds to the timeline T L under consideration. The set ActT L of actions of AT L consists of the
values of SV . If SV is a planned state variable then the actions in ActT L are controllable (i.e., ActT L =
ActcT L), otherwise, they are uncontrollable (i.e., ActT L = ActuT L). Location invariants InvT L for AT L
are defined as follows. For each l ∈ T L, we consider DTL(l) = [lb, ub] and we define InvT L(l) := cp ≤
ub. For the goal location lgoal the invariant InvT L(lgoal) is satisfied. The set ET L of transitions of AT L
consists of intermediate and final transitions. An intermediate transition has the form l

g,v!,Y→ l′, where:
g = cp ≥ lb, Y = ∅ with l and l′ consecutive time intervals in T L. A final transition has the form

q
∅,∅,∅→ q′, where: q = lpl (pl is the plan length), q′ = lgoal. Transition labels allow us to implement the

hand-shake synchronization [21] between each state variable and its corresponding timeline in the plan.
In fact, a synchronization betweenAT Li and the relatedASVi is implemented by labeling two transitions
with the same value (v! and u? with u = v). In particular, each transition of the timeline automatonAT Li
synchronizes (when this is possible) with the related transition of the state variable automaton ASVi by
means of the same label/action value.

We assume that ActPlan = ActT L1 ∪ ...∪ActT Ln (with ActT L1 ∩ ...∩ActT Ln = ∅), while XPlan

is only composed of the shared plan clock cp.

4.3. Modeling Synchronizations with an Observer TGA

We complete the modeling of synchronizations between state variables and the Plan by introducing an
Observer, that is, a TGA reporting an error when an illegal transition occurs. Such an observer plays a
relevant role in our verification procedure being deputed to error states detection.

The observer TGA AObs = (QObs, q0, ActObs, XObs, InvObs, EObs) is defined as follows. The set
of locations is QObs = {lok, lerr} modeling legal (lok) and illegal (lerr) executions. The initial location
q0 is lok. The set of actions is ActObs = {afail}. The set of clocks is XObs = {cp}. There are no
invariants, that is, InvObs(l) always returns the empty constraint. This models the fact that AObs can
stay in any location indefinitely. The set EObs consists of two kinds of uncontrollable transitions: value
transitions and sync transitions. Let p ∈ T L be a transition point and VTL(p) = vp be the associated

value. A value transition has the form lok
g,afail,∅→ lerr, where: g = T Lsp ∧ ¬SVvp . Let 〈SV, v〉 −→

〈{SV ′1, . . . ,SV ′n}, {v′1, . . . , v′n} ,R〉 be a synchronization. A sync transition has the form lok
g,afail,∅→

lerr, where: g = ¬R(SVv,SV
′
1 v
′
1
, . . . ,SV ′nv′n). Note that for each possible cause of error (illegal value

occurrence or synchronization violation) we define a suitable transition that forces our Observer TGA to
move to the error location which, once reached, cannot be abandoned.

To sum up, the nTGA PL is composed of the set of automata PL = StateV ar ∪ Plan ∪ {AObs}
which models, respectively, the State Variables, the Flexible plan under verification as well as the Domain
Theory description.

Remark 4.1. It is worth noting from the description given in Section 2 that a planning domain PD with
N state variables, each one with (at most) V allowed values and T transitions, has sizeN(V +T ). This is
also the size of the nTGA StateVar describing PD, defined as discussed in Section 4.1. Thus, our nTGA
encoding is linear in the size of the planning domain. The size of a flexible plan P on PD (again, defined
in Section 2), with N timelines and (maximal) plan length L, is NL. Using the encoding described in
Section 4.2, NL is also the size of the nTGA Plan, describing the given flexible plan P . Thus, our
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encoding for a flexible plan is linear in the size of the flexible plan. Furthermore, the domain theory
description has size S, with S the number of synchronizations. The Observer TGA definition given
in Section 4.3 is linear in the same size S. Finally, a plan verification problem is defined considering
the description of a flexible plan along with the related planning domain and domain theory. Such a
description has size N(V + T ) + (NL) + S, which is also the size of our nTGA PL describing the
same plan verification problem. Thus, our nTGA encoding is also linear in the size of the given plan
verification problem.

5. Verifying Time Flexible Plans

Given the flexible plan PL defined as a nTGA defined (Section 4.3), we can define a Reachability Game
that guarantees, if successfully solved, the plan validity with respect to the domain constraints and the
dynamic controllability property.

5.1. Plan Verification in UPPAAL-TIGA

In [8], we give a constructive proof to demonstrate that the nTGA PL is well defined with respect to the
flexible plan P , that is, the set of automata PL captures all and only the possible temporal evolutions
enabled by the flexible plan P . Hence, once we have represented a flexible plan as a nTGA, the plan
verification problem can be reduced to a Reachability Game. To do this, we introduce a Reachability
Game RG(PL, Init, Safe, Goal) where Init represents the set of initial locations, one for each automaton
in PL, while Safe = {lok} and Goal represents the set of goal locations, one for each T Li in PL.

To solve the reachability gameRG(PL, Init, Safe, Goal), we can use a model checker, e.g., UPPAAL-
TIGA, to check the formula Φ = A [ Safe U Goal] in PL. This formula requires that PL remains in Safe
states until Goal states are reached along all the possible paths. In other words, to win the Reachability
Game, the solver has to find a strategy such that, for each possible evolution of contingent transition
points, all the timelines are completed and errors are avoided. Thus, if the solver can verify the above
property, then the flexible temporal plan is valid (see [8] for a formal proof).

5.2. Dynamic Controllability

Finally, it is possible to show (see [8]) that if there exists a winning strategy for the Reachability Game
RG, then the plan is also dynamically controllable. Indeed, recalling the dynamic controllability defini-
tion for timeline-base plans given in Section 2, we have that: (a) each possible evolution of the uncon-
trollable automata corresponds to a timeline projection p, (b) each winning strategy/solution provided by
UPPAAL-TIGA for the RG corresponds to a consistent schedule T , and (c) a set of winning strategies
represents a viable execution strategy S. Thus, any winning strategy produced by UPPAAL-TIGA rep-
resents a viable execution strategy S for the flexible plan P . Furthermore, the use of forward algorithms
[3] guarantees that S is such that Sp1{≺ x} = Sp2{≺ x} ⇒ Sp1(x) = Sp2(x), for each controllable
timepoint x and projections p1 and p2, which implies that the flexible plan is dynamically controllable.

Remark 5.1. Note that solving a model checking problem on timed automata is a rather complex task
(e.g., see [18, 30]). As a result, the computational effectiveness of our linear time translation cannot stem
from a theoretical result about TGA model checking. However, as well known to the formal verification
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community, many verification problem instances are actually tractable in practice. Along the same line
of thinking, our experimental results in Section 7 shows that TGA verification problems, stemming from
complex flexible plan verification problems, can be solved within a reasonable amount of time.

6. Case Study: the Remote Space Agent Domain

In this section, we present a specific case study that we use in our experimental analysis to generate
benchmark sets and demonstrate the performances of our verifier. The domain is inspired by the MARS

EXPRESS Long Term Planning Problem as described in [9, 5]. In particular, we have started from real
instances of the original problem and created variants to define a generic testbed case called the “Remote
Space Agent Domain”.

6.1. Domain Requirements

In order to define a planning problem we consider a remote agent (e.g., a spacecraft and its control
software) that operates around a target planet (e.g., Mars). The remote agent implements an internal
behavior that allows it to either point to the planet and use its instruments to produce data (generically
referred to as Science) or point towards a communication station (either a Relay Satellite or directly
Earth) and communicate previously produced data.

The remote space agent is controlled by both a planner and an executive system to accomplish the
required tasks (scientific observations, communication, and maintenance activities). These tasks have to
be temporally synchronized with both the physics of the spacecraft and the exogenous events that occur
independently from the agent control.

For each orbit followed by the remote space agent around the target planet, the operations are divided
according to three orbital phases: (1) the pericentre (the orbital segment closest to the target planet);
(2) the apocentre (the orbital segment farthest from the planet); (3) the orbital segments between the
pericentre and apocentre. Around pericentre, the agent should point towards the planet, thus allowing
observations of the planet surface generically referred to as Science operations. Between pericentre and
apocentre, the agent should point to Earth for transmitting data. In order to modify the pointing direction
(from Earth to the target planet and viceversa), the remote space agent must execute a slew manoeuvre.
Communication with Earth should occur within a ground-station availability time window. Ground-
station visibility can either partially overlap with or fully contain a pericentre passage. Maintenance
operations should occur around the vicinity of apocentre.

The remote agent is also endowed with a set of scientific instruments or payloads (e.g., stereo cam-
eras, altimeters, spectrometers, etc.) whose activities are to be planned during the pericentre phase taking
into account physical constraints. In particular, here we are assuming that instruments can be activated
one at a time through the following fixed operation sequence: warm-up, process, turn-off. Additionally,
there are a number of hard and soft constraints that should be satisfied. Constraints on uplink windows
frequency and duration require four hours uplink time for each 24 hours (hard constraint), and these
uplink windows must be as regular as possible, i.e., one about every 20 hours (this is formulated as a
soft constraint since uplink windows require ground station availability, and it is generally impossible to
state exactly their positions). Moreover, it should also be possible to divide a four-hour uplink window in
two two-hour uplink windows. Apocentre slots for spacecraft maintenance windows must be allocated
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between 2 and 5 orbits apart (hard constraint), and the maintenance duration must be of 90 minutes (to
be centered around the apocentre event).

6.2. Timeline-based Specification

To obtain a timeline-based specification of the domain we use the two types of state variables: Planned
State Variables that represent the timelines controlled by the planning agent, and External State Variables
that represent imposed values which can only be observed.
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Figure 3: Value transitions for the planned state variables describing the Spacecraft Operative Mode (left) and
any of the Instruments (right) correct behavior (Temporal durations are stated in minutes).

Planned State Variables. Planned state variables represent time varying features related to science and
maintenance operations as well as the agent’s communication activities. In particular, the state variable
Spacecraft Operative Mode specifies the observation, communication, and maintenance opportunities for
the agent. In Figure 3-left, we detail the values that can be taken by this state variable, their durations,
and the allowed value transitions in accordance with the mission requirements and the spacecraft physics.
Here, both scientific observations (Science) and communications (Comm) require a Slew operation to
turn the remote agent towards, respectively, the target planet and the earth; the mainenance (Mainten)
operations are allowed while the remote agent is pointing towards the earth, hence after Earth or after
Comm.

Additional planned state variables, called Instrument-1..., Instrument-n, are introduced to represent
the scientific payloads. In the case study, we assume that each instrument can either be idle or executing
one of the tasks (warm-up, process, turn-off). Therefore, for each variable Instrument-i we introduce
four values: Warmup, Process, Turnoff, and Idle. Figure 3-right illustrates the allowed transitions: the
instrument Warmup is enabled from Idle and followed by Process which meets a Turnoff that is followed
by Idle.

External State Variables. We use two state variables to model exogenous constraints for the planning
problem. They represent contingent events, such as orbit events, or communication opportunity win-
dows. The Orbit Events state variable (Figure 4, top) maintains the temporal occurrences of pericentres
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and apocentres represented by the values: Peri and Apo (with fixed durations). The Ground Station
Availability state variables (Figure 4, bottom) are a family of variables that model the visibility of several
ground stations. The allowed values for these state variables are either Available or Unavailable.

Synchronizations constraints. We use Figure 4 to exemplify the use of synchronizations in our bench-
mark domain. Any valid temporal plan requires synchronizations between the planned timelines (see
Figure 4, middle) and the external timelines (represented as dotted arrows in Figure 4). Such synchro-
nizations specify how (a) science operations must occur during pericentres, i.e., the Science value must
start and end within a Peri value; (b) maintenance operations must occur in coincidence with the apoc-
entres time intervals, i.e., the Maint value is required to start and end exactly when the Apo value starts
and ends; (c) communications must occur during ground station visibility windows, i.e., the Comm value
must start and end during an Available value on any of the ground stations. As for the scientific instru-
ments, we introduce the following constraints: (d) if Instrument-i is not Idle then the other instruments
need to be Idle; (e) the Warmup value occurs before Process which is before Turnoff; (f) the latter activi-
ties are allowed only when Science is active along the Operative Mode timeline.

Figure 4: An example of complete plan for the Remote Space Agent domain. The synchronizations among
timelines are highlighted.

In addition to those synchronization constraints, the Operative Mode timeline must respect transition
constraints among values and durations for each value specified in the domain (see again Figure 3-left).

Relaxed constraints. It is worth reminding that in addressing real applications other constraints that
cannot be naturally represented as temporal synchronizations among specific activities might have to be
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considered besides ordinary synchronization constraints. Nevertheless, these constraints, that we call re-
laxed constraints, define a kind of desiderata on the global behavior of the generated plan. These require-
ments are not explicitly represented in the planning model as structural constraints, but they are rather
treated as meta-level requirements to be enforced by the planner heuristics and optimization methods.
In our case study, we consider the following relaxed constraints: (g) Maint must be allocated between 2
and 5 orbits apart with duration of about 90 minutes (to be centered around the apocentre event); (h) the
amount of science activities must be maximized, i.e., a Science event should occur during each pericentre
phase.

6.3. Temporal Planning

Given the set of requirements described above, a planning activity for the remote agent domain must
produce the following decisions on the timelines: selection of the Maintenance windows; selection of
the Communication windows among the set of available ground stations visibility windows; selection of
the windows for Science operations, around pericentre events; selection of the operation activities for the
scientific instruments.

In this domain, we exploit a least-commitment temporal planner that produces a flexible temporal
plan along the given planning horizon, generally covering hundreds of orbits. In particular, in our frame-
work the generated plan is obtained by means of a hybrid approach that combines two solving methods:
a general purpose timeline planning & scheduling system generates a partial solution that is then refined
by a domain dependent solver to provide the final plan (the approach is similar to the hybrid solver
described in [5]). The partial plan generated by the first solver has to satisfy all the synchronization
constraints explicitly represented in the planning domain. The second solver exploits some heuristics
and optimization methods to complete the partial plan, and attempts to enforce the remaining relaxed
constraints.

Once a solution is obtained, we are interested in verifying two aspects of the solution:

1. Robustness and Controllability. Our planning system generates temporally flexible plans by
means of a least-commitment temporal planning approach that does not discriminate between con-
trollable and uncontrollable activities; hence, the generated plan cannot directly ensure dynamic
controllability (see Section 2). On the other hand, a temporally flexible plan provides robustness
and adaptability with respect to uncontrollable events because it can be adapted on-line by the
executive system. Therefore, an important issue is to check whether plan robustness provided by
time flexibility can also entail dynamic controllability.

2. Relaxed vs. Synchronization Constraints. As explained above, in our domain specification
we distinguish between synchronization constraints and relaxed constraints. While the first ones
are explicitly represented in the model as structural constraints, the second ones are treated as
implicit requirements to be addressed by heuristics and optimization methods. This means that
these relaxed constraints cannot be guaranteed by the planning process, hence plan verification is
required to check whether they are satisfied.
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6.4. Domain Specification in UPPAAL-TIGA

Given the Remote Space Agent Domain we now show how it can be automatically represented in the
specification language of UPPAAL-TIGA following the encoding introduced in Section 4.

process REMOTE_AGT() { state
Earth, Earth_Comm,
Science {clockREMOTE_AGT <= 4080},
Maintenance {clockREMOTE_AGT <= 5400},
Slew {clockREMOTE_AGT <= 1800};

init Earth; trans
Earth -> Slew { guard clockREMOTE_AGT >= 1; sync pulse_Slew?; },
Earth -> Maintenance { guard clockREMOTE_AGT >= 1; sync pulse_Maintenance?;

assign clockREMOTE_AGT := 0;},
Earth -> Earth_Comm { guard clockREMOTE_AGT >= 1; sync pulse_Earth_Comm?;

assign clockREMOTE_AGT := 0;},
Earth_Comm -> Earth { guard clockREMOTE_AGT >= 3600; sync pulse_Earth?;

assign clockREMOTE_AGT := 0;},
Earth_Comm -> Maintenance { guard clockREMOTE_AGT >= 3600; sync pulse_Maintenance?;

assign clockREMOTE_AGT := 0;},
Earth_Comm -> Slew { guard clockREMOTE_AGT >= 3600; sync pulse_Slew?;

assign clockREMOTE_AGT := 0;},
Science -> Slew { guard clockREMOTE_AGT >= 2160; sync pulse_Slew?;

assign clockREMOTE_AGT := 0;},
Maintenance -> Earth { guard clockREMOTE_AGT >= 5400; sync pulse_Earth?;

assign clockREMOTE_AGT := 0;},
Maintenance -> Earth_Comm { guard clockREMOTE_AGT >= 5400; sync pulse_Earth_Comm?;

assign clockREMOTE_AGT := 0;},
Slew -> Earth { guard clockREMOTE_AGT >= 1800; sync pulse_Earth?;

assign clockREMOTE_AGT := 0;},
Slew -> Earth_Comm { guard clockREMOTE_AGT >= 1800; sync pulse_Earth_Comm?;

assign clockREMOTE_AGT := 0;},
Slew -> Science { guard clockREMOTE_AGT >= 1800; sync pulse_Science?;

assign clockREMOTE_AGT := 0;};
}

Figure 5: Module definition for the Spacecraft Operative Module.

For each state variable, we introduce a state variable timed automaton whose locations correspond
to the values of the state variable, while transitions represent changes of values. For example, in Fig-
ure 5 we have the encoding for the Spacecraft Operative Mode state variable (here called process
REMOTE AGT()) where the states are: Earth, Earth Comm, Science, Maintenance, and Slew.
Temporal constraints are specified by value duration constraints (in terms of [min, max]) and sequenc-
ing constraints between values (expressed by temporal relations). The duration constraints (e.g., Science
activity duration in [36, 68], see Figure 3) are encoded as clock invariants and guards on the outgoing
transitions. For example, for Science we have Science clockREMOTE AGT <= 4080 and guard
clockREMOTE AGT >= 2160 (values stated in seconds). Sequencing constraints, e.g., Science pre-
cedes Slew, are encoded as outgoing transitions, e.g., Science -> Slew in Figure 5.

The input model for the verifier includes also the encoding of the flexible plan. A temporal plan
describes the sequence of values the state variables should assume within the planning horizon. To
represent flexible plans, we introduce a general plan clock and an automaton for each planned timeline.
For example, in Figure 7 we find a graphical representation of two TIGA automata representing two
planned timelines: a) represents the planned activities for the Spacecraft Operative Module; b) represents
the evolution of the ground station availability state variable. Each timeline automaton has a number of
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states that equates the length of the plan: one state for each activation/decision available in the plan, plus
a final special state goal, which represents the plan completion.

process monitor() { state OK, ERR; init OK; trans
OK -u-> ERR { guard (stepREMOTE_AGT == 0)

and not (REMOTE_AGTEarth); },
OK -u-> ERR { guard (stepREMOTE_AGT == 1)

and not (REMOTE_AGTSlew); },
...
OK -u-> ERR { guard ((REMOTE_AGTEarth_Comm)

and not (STATIONSAvailable)); },
OK -u-> ERR { guard ((REMOTE_AGTMaintenance)

and not (ORBIT_EVENTSApocentre)); },
OK -u-> ERR { guard ((REMOTE_AGTScience)

and not (ORBIT_EVENTSPericentre)); },
...
OK -u-> ERR { guard ((INSTRUMENTWarmup)

and not (REMOTE_AGTScience)); },
OK -u-> ERR { guard ((INSTRUMENTProcess)

and not (REMOTE_AGTScience)); },
OK -u-> ERR { guard ((INSTRUMENTTurnoff)

and not (REMOTE_AGTScience)); },
...

ERR -u-> ERR { };
}

Figure 6: Partial monitor module definition. Note that Monitor is uncontrollable.

The plan steps are represented by transitions. For example in Figure 7 dotted and continuous transi-
tions represent uncontrollable and controllable transitions respectively; the transitions along the automa-
ton a) represent the activations of Slew (pulse Slew!) and Science (pulse Science!). For each
transition, we introduce a guard that implements the minimum duration for the activity (e.g., for Slew
we have clockPlan >= 12439) and an invariant that represents the maximal allowed duration (e.g.,
for Slew we have clockPlan <= 14259). Here, the synchronization channels are exploited to link
the transitions of the planned timelines to the transitions of the state variables automata. For instance, in
Figure 7, the first controllable transition labeled pulse Slew! shall synchronize with the transition
labeled pulse Slew? for the related REMOTE AGT automaton (see Figure 5). For instance, the
second transition in Figure 7a synchronizes with the related transition defined in Figure 5 between Slew
and Science locations.

Finally, we define a fully uncontrollable observer automaton (See Fig. 6). Such a monitor checks the
consistency of temporal constraints, that is, it checks value sequencing and synchronizations constraints.

Thus, given the above specified input specification, we can ask UPPAAL-TIGA to verify the follow-
ing formula:

control: A [not monitor.ERR U plan.Goal]

This formula means that, for each possible evolution of external timelines, the goal must be reached
while avoiding monitor errors. If this is verified, UPPAAL-TIGA returns a control execution strategy,
such that, when correctly executed, guarantees to fulfill the planning goal. That is, verifying the above
property implies validating the flexible temporal plan. Furthermore, since the input model encompasses
all the temporal constraints of the domain, the UPPAAL-TIGA verification algorithm guarantees that all
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Figure 7: TIGA models for the timelines: a) planned (controllable) activities for the Spacecraft Operative Module
state variable; b) evolution (uncontrollable) of the ground station availability state variable.

the time points in the strategy only depend on the past events. This property is needed to ensure the
dynamic controllability of the flexible temporal plan (see also [8]).

7. Empirical Results

The main goal of this work is not to assess the worst case complexity of our approach, but rather to show
its practical feasibility by evaluating the effectiveness of our method when deployed on challenging real
world problems. In fact, model checking is PSPACE complete in the size of the system state space
[26] while the number of system states is exponential in the size of the program that defines the system
(our input). As a result, even a polynomial verification algorithm (the best we can hope for, by [26])
will take an exponential amount of memory. Indeed, model checking success rests on the availability
of verification algorithms that can successfully exploit the specific structure of the verification problem
at hand in order to counteract (i.e., delay) state explosion. Accordingly, for us the issue is not if we
will run out-of-memory (we know that this will always happen), but rather when we will run out-of-
memory. In fact, this will give us an insight about the feasibility of the proposed approach in our context.
More specifically, it will show the size of the systems we can hope to handle for the class of verification
problems we are considering. For this reason we will usually carry out verification experiments with
systems of increasing size (along some system parameter) until we run out-of-memory (or hit some
given memory or time threshold). Thus, in order to evaluate feasibility of our approach, in this section
we present and discuss experimental results about verification of the flexible plans generated for our case
study. In particular, we analyze the plan verification performances with respect to temporal flexibility
and execution controllability.

7.1. Evaluation Strategy

In order to empirically demonstrate the feasibility of our verification method, here we deploy it in dif-
ferent configurations of the benchmark domain. In this way we propose various executive contexts
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for checking both dynamic controllability and relaxed constraints satisfaction. We analyze the perfor-
mances of our tool in scenarios obtained by varying: the number of state variables/timelines considered;
plan length; temporal flexibility. Moreover, we consider incrementally complex execution contexts ob-
tained by reducing the controllable activities while increasing the uncontrollable ones. In particular, we
consider the following settings:

– State variables. The remote agent can be endowed with different scientific instruments. Here, we
consider configurations with zero, one, two, three or more scientific instruments. This affects the
number of state variables, activities, and synchronization constraints.

– Flexibility. For each scientific instrument activity (i.e., warm-up, process, turnoff), we set a mini-
mal duration (i.e., about 2 minutes), but we allow temporal flexibility on the activity termination,
namely, the end of each activity has a tolerance ranging from 5 to 10 seconds. E.g., if we set 5
seconds of flexibility, we introduce an uncertainty on the activity terminations, for instance, the
warmup activity can take from 120 to 125 seconds. This temporal interval represents the degree of
temporal flexibility that we introduce in the system.

– Horizon. We consider flexible plans with a horizon length ranging from 3 to 10 mission days.

– Controllability. We consider four different executive contexts: (1) all the instruments activities
are controllable; (2) for each instrument the warmup termination is not controllable; (3) for each
instrument, warmup and process terminations are not controllable; (4) for each instrument warmup,
process, and turnoff are not controllable.

Note that the higher the degree of flexibility/uncontrollability, the larger is the space of allowed behaviors
to be checked, thus, the more demandability plan verification process.

Within these experimental settings, we analyze the performance of our tool considering the issues of:
model generation; dynamic controllability checking; domain requirements checking.

– Model generation. A preliminary analysis concerns the model generation process and the di-
mension of the generated UPPAAL-TIGA specification. This analysis is necessary because the
complexity of UPPAAL-TIGA model generation affects the scalability of the overall verification
method.

– Dynamic controllability checking. We analyze the plan verification performances while checking
the dynamic controllability. In particular, we collect the time performances (CPU time) of plan
verification in different scenarios (changing the degree of plan flexibility) and executive contexts
(changing the plan controllability).

– Relaxed constraints checking. We check for plan correctness with respect to the relaxed domain
constraints (see Section 6) that we consider of interest.

We run our experiments on a Linux workstation endowed with a 64-bit AMD Athlon CPU (3.5GHz)
and 2GB RAM. In the following we illustrate the collected empirical results (timings are reported in
seconds).
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7.2. Model Generation

The first step of our verification process consist of the UPPAAL-TIGA model generation. For this pur-
pose, we have developed a tool that automatically builds the UPPAAL-TIGA model given the description
of the planning domain and the flexible temporal plan to be checked. Here, we want to assess the size of
the generated model and the generation time with respect to the dimension of the planning domain and of
the plan (state variables and plan length). In our experimental setting, we consider domain models with
an incremental number of state variables (from 3 to 6) and plans with an incremental number of mission
days (from 3 to 10). For each possible configuration, we consider the size of the generated model and
the time elapsed for the generation. For all these configurations, we observe that the generation process
is very fast, taking less than 250ms, while the dimension of the generated model gradually grows with
respect to the dimension of the flexible plan (in terms of number of timelines and plan length).

3 timelines 4 timelines 5 timelines 6 timelines
days kb nr. states kb nr. states kb nr. states kb nr. states

3 16 41 19 51 23 61 59 136
4 32 85 38 110 42 135 62 90
5 54 131 58 179 63 227 86 242
6 73 168 77 240 82 312 100 297
7 94 204 98 300 101 396 129 497
8 107 238 112 351 117 464 148 600
9 119 271 125 397 130 523 169 727
10 139 301 142 439 147 577 191 855

Figure 8: Size of the generated model (kb and number of states) with respect to the plan length and number of
timelines.

In conclusion, the process of model generation is shown to be fast as the generated model grows linearly
with the dimension of the plan. As a consequence the encoding phase is not a critical step. This provides
an empirical support for Remark 4.1.

7.3. Flexible Plan Verification against Fully Controllable Execution

In this section, we analyze the impact of temporal flexibility on the verification process in the easiest con-
dition for controllability. Indeed, in this initial experimental setting, we consider fully controllable plans
assuming all the scientific tasks to be controllable. In this context, we check for dynamic controllability
and assess the plan verification performances as the plan flexibility is gradually increased.

Figures 9(a), 10(a) and 11(a) illustrate the results obtained in the case of one, two and three instru-
ments, respectively. In the three tables, we consider the verifier performances under different plan length
and flexibility conditions. Here, 0s flex means that all the temporal variables in the plan are completely
instantiated, while 5s (or 10s) flex means that the non-instantiated temporal variables in the plan spans
an interval of 5s (or 10s) seconds.

The results show that an increment of temporal flexibility has a limited impact on the performances
of the verification tool. This is particularly evident in the case of a single instrument, where the per-
formances of the verification process seems not to be affected by the degree of temporal flexibility
(Figure 9(a)). On the other hand, as the number of scientific instruments increases (Figure 10(a) and
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Full Controllability
days 0s flex 5s flex 10s flex

3 0,198 0,202 0,254
4 0,254 0,301 0,320
5 0,300 0,344 0,328
6 0,192 0,208 0,184
7 0,248 0,240 0,248
8 0,292 0,300 0,284
9 0,348 0,332 0,364

10 0,392 0,364 0,401
(a)

1 Uncontrollable Task
days 0s flex 5s flex 10s flex

3 0,189 0,165 0,193
4 0,227 0,234 0,238
5 0,276 0,296 0,264
6 0,172 0,160 0,168
7 0,212 0,220 0,208
8 0,268 0,248 0,252
9 0,308 0,336 0,336

10 0,356 0,364 0,379
(b)

2 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 0,189 0,192 0,188
4 0,246 0,237 0,245
5 0,296 0,324 0,288
6 0,156 0,164 0,164
7 0,212 0,216 0,212
8 0,260 0,263 0,264
9 0,316 0,288 0,336

10 0,345 0,321 0,335
(c)

3 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 0,198 0,221 0,212
4 0,267 0,283 0,267
5 0,304 0,288 0,288
6 0,188 0,172 0,176
7 0,212 0,208 0,220
8 0,252 0,236 0,248
9 0,312 0,300 0,332

10 0,367 0,353 0,379
(d)

Figure 9: Verification with one instrument varying flexibility and controllability.

Full Controllability
days 0s flex 5s flex 10s flex

3 0,899 2,010 2,673
4 1,123 3,101 3,200
5 1,664 3,508 3,312
6 2,756 3,780 3,396
7 3,704 4,368 4,528
8 4,492 5,080 5,088
9 5,300 5,896 6,724

10 5,934 6,234 7,243
(a)

1 Uncontrollable Task
days 0s flex 5s flex 10s flex

3 1,784 2,998 3,021
4 2,132 3,156 3,103
5 2,784 3,280 3,248
6 2,892 3,252 3,312
7 3,664 4,384 4,500
8 4,232 5,096 5,212
9 5,492 6,492 6,716

10 6,357 7,093 7,732
(b)

2 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 2,022 3,105 3,227
4 2,214 3,326 3,339
5 2,444 3,452 3,548
6 2,652 3,212 3,328
7 3,612 4,412 4,464
8 4,200 4,879 5,208
9 5,300 5,876 6,812

10 6,604 7,012 8,002
(c)

3 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 2,243 3,143 3,004
4 2,527 3,340 3,122
5 2,880 3,528 3,052
6 2,628 3,404 3,704
7 3,604 4,252 4,284
8 4,212 4,668 4,98
9 5,176 6,088 6,384
10 6,392 7,478 8,244

(d)

Figure 10: Verification with two instruments changing both flexibility and controllability.
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Figure 11(a)), we can observe a smooth growth of the verification time with respect to the allowed
temporal flexibility. Of course, this is mainly due to the fact that in this case the verification process has
to check all the synchronization constraints among the instruments, which are not considered in the case
of a single instrument. However, even though the increment of temporal flexibility widens the spectrum
of possible behaviors to be checked, in the presence of fully controllable activities a single execution
trace is sufficient to show plan controllability; hence the verification task is reduced to checking for
correct plan termination.

Full Controllability
days 0s flex 5s flex 10s flex

3 30,68 73,93 75,03
4 84,63 201,34 198,85
5 158,85 424,52 422,72
6 238,12 583,27 587,84
7 258,36 644,19 625,91
8 270,28 661,79 635,90
9 353,33 874,16 817,43

10 404,72 1000,64 925,16
(a)

1 Uncontrollable Task
days 0s flex 5s flex 10s flex

3 30,95 72,55 71,33
4 82,53 211,78 190,19
5 156,21 445,31 418,74
6 238,29 567,50 578,89
7 264,42 622,41 606,65
8 275,22 646,70 617,43
9 359,51 850,19 827,87

10 412,34 970,90 946,16
(b)

2 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 30,37 70,67 70,79
4 81,83 212,14 199,23
5 154,08 416,47 416,82
6 234,26 558,08 574,96
7 254,76 620,09 603,00
8 266,23 643,57 613,80
9 348,08 843,17 821,55
10 398,89 964,02 938,25

(c)

3 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 30,69 69,87 70,04
4 80,89 210,77 188,25
5 154,77 414,96 415,84
6 235,95 556,23 573,54
7 255,52 617,76 600,95
8 266,66 640,05 610,50
9 349,24 839,59 819,66
10 400,24 959,96 936,75

(d)

Figure 11: Verification with three instruments varying both flexibility and controllability.

7.4. Flexible Plan Verification against Partially Controllable Execution

We consider now the verifier performances while checking the dynamic controllability in the presence
of uncontrollable activities. In the case of a single scientific instrument, the obtained results (see Figures
9b-c-d) are comparable with the ones collected in the fully controllable case. Even when we consider a
setting where all the tasks are uncontrollable, our verification tool can easily accomplish plan verification
for all the flexibility and plan length configurations (see Figure 9(d)). In the case of 2 instruments (hence,
5 timelines), the raise of temporal flexibility gradually increases the time required by the verification tool
to verify the plans (see Figures 10b-c-d). A similar increment can be observed when we increase the
number of uncontrollable activities. If we keep the number of uncontrollable activities constant, the per-
formance trend appears to be similar to the one of the fully controllable case. An analogous trend can
be observed in Figure 11(b-c-d) when we consider 3 instruments (6 timelines). If we consider the worst
case, i.e., all the activities uncontrollable and maximal temporal flexibility with 2 instruments, the per-
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formances of the UPPAAL-TIGA verification tool are still satisfactory: given flexible plans with horizon
length up to 10 mission days and 5 timelines, plan verification can be successfully accomplished within
a few seconds (see Figure 10(d)). On the other hand, when we consider 3 instruments, the performances
are significantly reduced (see Figure 11(d)). Moreover, with 4 additional instruments (i.e., 7 timelines)
the problem becomes very hard. In particular, we found that UPPAAL-TIGA is not able to verify settings
with four and five scientific instruments throwing out-of-memory exceptions. Solutions can be obtained
for less than three mission days, but at the cost of several hours of computation time. Therefore, the
number of scientific instruments appears to be a critical dimension in our benchmark.

The increase of computational time due to each additional instruments is illustrated in both Figure 12
and Figure 13 where we can observe a clear discontinuity in time processing for each new timeline. In
our case, such discontinuity is emphasized by the high tasks density associated with each timeline. This
can be observed in Figure 14 where we show, for each scenario, the number of temporal flexible tasks
that have to be checked (most of which are to be checked in all the possible temporal permutations) in
order to validate the associated flexible plans.

Figure 12: Computation time with respect to horizon length and number of timelines.

On the other hand, when we consider the computational time with respect to the increase in flexibility
and controllability (Figure 13), we can see that the performance is pretty stable with a little change due
to the increase of flexibility in the plans. The following results not only demonstrate the feasibility of our
verification method in a real world scenario, but also provide us with an upper bound for the performance
of our tool in this benchmark domain.

7.5. Flexible Plan Verification against Relaxed Domain Constraints

We also performed some experiments to verify not only the dynamic controllability, but also other
domain-dependent constraints, namely, the two relaxed constraints introduced in Section 6.2:
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Figure 13: Computation time with respect to controllability and flexibility.

TL3 TL4 TL5 TL6 TL7
3 51 69 87 105 123
4 67 98 130 161 193
5 100 149 199 248 298
6 121 175 229 283 337
7 150 222 294 366 438
8 175 256 337 418 499
9 200 295 390 485 580

10 225 333 441 548 656

Figure 14: Number of tasks depending on the timelines and the horizon.

– every 2 and 5 orbits a maintenance activity should be performed;

– during each pericentre, a science activity should be performed.

In this experimental setting we assume that the system is equipped with 2 scientific instruments (5 time-
lines). In Figure 15, we report the experimental results obtained by increasing the degree of uncontrolla-
bility on the considered flexible plans.

When we change the plan flexibility, the verifier exhibits performances that are analogous to those
reported in the previous cases. That is, the additional properties to be checked carry a low additional
overhead to the verification process.
As a final remark, the experimental results presented here demonstrate the feasibility and the effective-
ness of our method. Notwithstanding the limited number of timelines processed, our case study scenarios
are pretty complex. Indeed, they are obtained from a real world application scenario whose complex-
ity is augmented with additional (and fictitious) timelines. In this context, we found that the number
of instruments has significant impact on the verifier performances, which is emphasized by the density
of the timelines (Figure 14). On the other hand, the parallel increase of temporal flexibility and plan
uncontrollability does not entail the presumably expected computational overhead.



A. Cesta et al. / Flexible Plan Verification: Feasibility Results 135

Figure 15: Plan verification against dynamic controllability and relaxed constraints: two instruments.

8. Conclusions

This work addresses the problem of flexible temporal plan verification deploying model-checking on
timed game automata. As well known, because of state explosion [26] a model checking problem on
timed automata is generally very complex (e.g., see [18, 30]). Fortunately, not all instances of verification
problems fall in the worst case category. Indeed, UPPAAL-TIGA yields very encouraging performance
results on some interesting classes of verification problems [4].

The paper presents and discusses some experimental results stemming from interesting flexible plan
verification problems. It introduceds a benchmark domain obtained from a real-world space application
whose complexity has been augmented by means of additional features. In this context, we have assessed
the performances of the approach along different coordinates: number of timelines, plan length, number
of uncontrollable activities, temporal flexibility. The collected results show that interesting real-world
instances of dynamic controllability checking and domain dependent verification problems can be effec-
tively solved using UPPAAL-TIGA. Our empirical analysis is proposed as a first benchmark for flexible
temporal plan verification.
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