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Abstract

We present a case study on the integration in a real in-
dustrial design flow of Automatic Integration Test Gen-
eration methods.

We achieved our goal by devising a testing plan spec-
ification language to easily define sets of test cases. The
key idea was to base our language on formal standard-
based system specification languages already used by
the testing engineers in the company. We then have de-
veloped the software to integrate our approach in the
design flow. From our testing plan specifications we
can then generate all the test cases. We believe this
approach can be reused also in different contexts.

Our framework meets the initial requirements, i.e.
no additional skills to the integration testing engineers
are required, and only open source software is used.
Moreover, during our preliminary experiments we were
able to catch errors which went previously undetected.

1 Introduction

We present a case study on the integration in a real in-
dustrial design flow of Automatic Integration Test Gen-
eration methods.

Our goal is to automatically generate integration
tests for a class of telecommunication embedded sys-
tems, namely network hardware devices with their con-
trolling software. The goal of the integration testing

phase [Mar03, Som01] is to make sure that the hard-
ware and the software properly work together.

In the following, we will refer to the whole system,
composed by the hardware and the controlling soft-
ware, as Network Element (NE for short). NE is a
“real world” system, actually designed at TechnoLab, a
company operating in the telecommunication field.

To carry out the integration testing phase two steps
are needed: 1. define a set of interesting tests cases 2.
send the test cases to the NE.

The integration testing phase, as implemented in the
company design flow, is performed manually and with-
out a formal definition of the set of test cases to be send
to the NE. This causes delay in the deployment of the
NE, and thus increases the time-to-market. Moreover,
interesting test cases might be skipped, forcing to ex-
pensive late corrections on the NE.

In order to solve the above mentioned problems auto-
matic integration test generation has been investigated.
As it turns out, the introduction in the company design
flow of an automatic approach must meet the following
constraints:

e The actual design flow should not be altered too
much;

e No heavy training should be needed for the test
engineers to use the automatic approach;

e Open source software must be used.

To achieve our goal, we take advantage of the soft-
ware development process adopted in TechnoLab. In
fact, the NE is developed according to the standard-
ized Telecommunication Management Network (TMN
[TMNO6, Bla94, Sid98]) framework.

In particular, for each NE submodule S the company
design flow makes available a formal description of S
based on standard formal languages (namely GDMO
and ASN.1, see Section 2). Moreover testing engineers
are familiar with such formal languages.

Exploiting the available information (GDMO, ASN.1
definitions of NE submodules) and testing engineers
expertise on GDMO and ASN.1 languages we were able
to devise the following approach.

First, define a testing plan specification language
which is as close as possible to the GDMO, ASN.1 lan-
guages already known to the company test engineers.
This avoids retraining.

Second, exploits GDMO, ASN.1 specifications for
NE submodules to generate tests cases. We can do
this by developing a suitable software that from the
test plan definition and GDMO, ASN.1 definitions of
NE generates all test cases. In this way we use open
source software (our software) and avoid changing the
actual design flow.

Note that a similar result could also be obtained by
using tools based on the Testing and Test Control No-
tation (TTCN-3 [TTC06, GHR+03, Wil01]) standard.
However, in our context, this approach has at least two
drawbacks.



First, the deployment of any TTCN-based test sys-
tem require a considerable initial effort in term of hu-
man resources in order to learn how to use and deploy
such systems. This is incompatible with our require-
ment asking for (almost) no retraining.

Second, many vendors provide complete (compiler,
parser and run time environment) TTCN-3 test sys-
tems, however, to the best of our knowledge, no open
source complete distributions exists. This is incom-
patible with our requirement asking for open source
software.

Summing up, following our approach we have ob-
tained a light weighted tool which has a limited cost,
and is quite easy to integrate with the existing de-
sign flow. Moreover our approach, may be used also
by other companies, which adopt the TMN framework
(see Section 2).

We implemented a prototype of our framework, and
tested it on a submodule of an important NE at Tech-
noLab. We were able to discover errors which went
previously undetected.

2 The GDMO and ASN.1 Stan-
dards

Generally speaking, GDMO and ASN.1 are sub-
standards of the TMN framework [TMN06, Bla94,
Sid98]. TMN is used for achieving interconnectiv-
ity and communication across heterogeneous operat-
ing systems and telecommunication networks. The
TMN framework relies on various Open Systems In-
terconnection (OSI [OSI06]) standards: the Common
Management Information Protocol (CMIP [ICMO06])
that defines management services exchanged between
peer entities, the Guidelines for the Definition of Man-
aged Objects (GDMO [ITU06, Heb95, Udu99]) that
provides templates for classifying and describing man-
aged resources, the Abstract Syntax Notation number
One (ASN.1 [ASN06, Udu99, Dub00]) that provides
the syntax rules for data types and, finally, the open
systems reference model (the seven-layer OSI reference
model).

The communication between the NE and the exter-
nal environment is organized in triggers. Essentially
a trigger is an assignment of variables to an NE sub-
module. Variables are also called attributes in the NE
parlance.

For the above reasons a test case is just a trigger, i.e.
a set of assignments to variables of an NE component
(submodule).

Each trigger is generated by the Telecommunica-
tionManagement NetworkManager (TMNMfor short)
which is a software module external to the NE and
running on a management server.

The NE receives a trigger ¢ via a software module
internal to the NE, the Telecommunication Manage-
ment Network Agent (TMNA for short). TMNA duty
is that of routing the assignments in ¢ to the interested

submodule of NE.

We can obtain the triggers structure from GDMO
and ASN.1 descriptions for the NE.

In fact, GDMO is used to describe the internal struc-
ture of the NE, by specifying the NE submodules and
the attributes which characterize each submodule.

Since the triggers which stimulate the NE set val-
ues for (or get values from) these attributes, we have
that the attributes structure, which is described using
ASN.1, gives also the triggers structure. Thus, from a
GDMO and ASN.1 description, we can obtain a formal
description of the triggers structure.

Our approach will take advantage of the GDMO and
ASN.1 specifications which have been already written
by the engineers. As a matter of fact, we will not
directly use these specifications, but the header files
which are generated by GDMO and ASN.1 parsers
starting from them.

Finally, note that we also could have performed
the integration testing in a different way, by us-
ing existing languages that support constrained ran-
dom testbenches within an object-oriented program-
ming methodology (e.g., OpenVera|Ope06], Sys-
temC[Sys06a], and SystemVerilog[Sys06b]). This so-
lution has not been considered since it would have re-
quired additional skills to the integration testing en-
gineers, and would have not exploited the technolo-
gies which are already used for the integration testing
phase.

3 The Manual Integration Test-
ing Phase

In this section we sketch the relevant parts of the in-
tegration testing procedure as it was performed before
our automatic approach was completed.

First, a test plan is informally stated, to define a set
of interesting triggers to be sent to the NE.

Second, each of the triggers defined in the previ-
ous step is manually submitted to the NE, by using
a graphical interface provided by a proprietary simula-
tor tool, the IST-Simulator (which essentially simulates
the TMNM, Section 2).

In order to send the proper triggers to a generic NE,
the IST-Simulator takes advantage of a description of
the NE itself, which is given by means of GDMO and
ASN.1 standards (Section 2).

This whole integration testing phase is summarized
in Figure 1 where also the C header files generated from
the GDMO and ASN.1 files are shown.

The above approach has two main drawbacks.

First, the set of interesting triggers to send to the
NE is not clearly defined.

Second, to generate all the triggers is a manual, long,
tedious and error prone task.
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Figure 1: The integration test environment previously
adopted

4 Automatic Generation of Inte-
gration Tests

In this section we present our automatic integration
testing approach. Our goal is to address the drawbacks
of the manual approach listed in Section 3.

To this end we proceed as follows.

First, we define a language to easily specify testing
plans, i.e. the set of interesting triggers to be send to
the NE. In this way the set of test cases is unambigu-
ously defined. Our testing plan specification language
uses a syntax that is very close to the one the com-
pany test engineers already know, namely GDMO and
ASN.1 formats. This makes it easy for them to use our
test plan specification language.

Second, from the above definition of testing plan and
from GDMO, ASN.1 descriptions of NE we automat-
ically generate the triggers to be sent to the NE. To
this end, among other things, we modified the IST-
Simulator so that triggers can be sent without going
trough the graphical interface.

Figure 2 shows our automatic integration testing
framework. In the following we give details about our
approach.

4.1 Sequence Choice Trees and At-
tributes

A Sequence Choice Tree (SCT for short) is a labelled
tree T = (V, E, A\, ), where:

e V is a finite set of nodes;
e F C(V x V) is the set of edges;

e ) is a labeling function (A-label) s.t. each non-leaf
node v of T has a label A(v) € {s, ¢}, is undefined
(T) on leaf nodes;
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Figure 2: The proposed integration test environment

e «is a labeling function (a-label) s.t. for each node
v, a(v) is an identifier.

A node v s.t. A(v) = s is called a sequence node. A
node v s.t.A\(v) = ¢ is called a choice node. Figure 3
shows an SCT for a submodule of a sample NE, which
we call MSI-FP (see Section 4.1.1).

The a-labels of the leaf nodes of an SCT T' (notation
Basic(T)) are called basic attributes (of T'). Thus,
Basic(T) = {a(v)|v is a leaf node in T'}. For example,
from the SCT T in Figure 3 we have that the basic
attributes of MSI-FP are: Basic(T) = {sN, inst}.

The a-label of a node which is not a leaf of the SCT
T is called a complex attribute (of T). An attribute is
a basic or complex attribute.

To each basic attribute a is associated a finite type
denoted with Type(a). For example Type(sN) = [1..5],
Type(inst) = [1..2], mean that the types given to the
basic attributes sN, inst are, respectively, the finite
integer subranges {1,2,3,4,5},{1,2}.
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Figure 3: The SCT for the test plan of the MSI-FP

4.1.1 An Example of SCT

We will use a running example to clarify our approach.

As a running example we will use a NE called MSI-
FP (Multi-Service Integrator — Flat Pack). We assume
we want to test two MSI-FP submodules, namely the
SETS and the CCM submodules.



We focus here on 2 attributes:
T4SelectedReference, which is a SETS basic
attribute, and ConnectionChoice, which is a CCM
complex attribute. The internal structure of these
attributes is shown in Fig. 3, where nodes labeled by
s are sequence nodes, nodes labeled by c are choice
nodes.

Indeed, T4SelectedReference is a basic attribute,
and its type consists in just 3 possible values. On the
other hand, ConnectionChoice is a complex attribute,
and its top structure is a choice between two possi-
ble subattributes (crossConnBI and crossConnUni),
which are built upon sequences of other subattributes.

The basic attributes for ConnectionChoice (i.e. the
leaves of the sub-SCT rooted in this attribute) are
named sN and inst, which are both integer subranges.

4.2 Triggers

A trigger schema for the complex attribute a is a sub-
tree t of the SCT T s.t. v € T is the root of ¢, a(v) = a
and all nodes in ¢ that are not leafs are sequence nodes.
We call attribute a the top attribute of ¢.

Figure 4 shows a trigger schema for attribute cross-
ConnUni of the NE MSI-FP described in Section 4.1.1.

crossConnUni

Fro To
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Figure 4: Trigger schema for attribute crossConnUni

A trigger instance (or just a trigger) for the com-
plex attribute a is a trigger schema ¢ for a in which each
leaf node v of ¢ is labelled with a value in Type(v). We
denote with t(v) such value.

Figures 5, 6 show two trigger instances for MSI-FP.

crossConnUni

Figure 5: Trigger instance 1 for MSI-FP

Remark 4.1 Note that given a trigger schema t with
leafs v1, ..., v we have |Type(a(v1))]. .. |Type(a(vy))]
possible trigger instances for t.

4.3 Test Cases

The goal of our approach is to automatically generate,
for all NE submodules all interesting trigger instances.

We are now ready to present how we define sets of
test cases (testing plan). The idea is to allow the testing
engineers to specify sets of triggers by providing their
top attribute names and an optional limitation on the

crossConnBi

FromTol FromTo2

inst  sN inst

Figure 6: Trigger instance 2 for MSI-FP

ranges of the basic attributes contained in them. All
the triggers respecting the so-specified constraints will
be generated and sent to the modified IST—-Simulator.
The details follow.

An attribute path in the SCT T is a path aq, ..
of attributes in T s.t. there is a path v1,...v; in T s.t.
for each i = 1,...k we have a; = a(v;).

A spec-line is a constraint of form:

<A>[(<BA> = <ISR>)(, (<BA> = <ISR>))x]

where:

-5 Ak

e <A>is an attribute name (the head of the specline),

e <BA> is a a basic attribute b or an attribute path
in the SCT T from the head of the spec-line to a
basic attribute b,

e <ISR> is an integer subrange or an enumerative
type, which has to be a subset of the type of b, i.e.

of T'ype(b).

As usual, strings in square brackets [] are optional,
while strings in starred parentheses ()* can be repeated
for zero or more times.

Example 4.1 The following is a spec-line with head a
basic attribute for the SCT in Figure 3:
T4SelectedReference
The following is a spec-line with head a complex at-

tribute for the SCT in Figure 3:
ConnectionChoice

(crossConnBI.FromTol.from.sN = [1..5]),

(crossConnBI.FromTo2.from.inst = [1..4])

Let v be a leaf node of an SCT T and let vy, ...v, be
the path from the root of T' to v (i.e. v, = v). We say
that v is compatible with the attribute path ajas ... .ax
iff for each i = 1,...k we have: a(vp—k4i) = a;.

Intuitively, a trigger instance ¢ satisfies a spec-line iff
the value assigned by the trigger instance to the basic
type satisfies the constraints in the spec-line. More
formally, a trigger instance ¢ satisfies the spec-line
a(fy = Ry)...(0r = Ry) iff ¢ is a trigger instance of
the sub-SCT rooted at a and one of the following con-
ditions holds:



e for each leaf v in ¢ there exists i = 1,...k s.t. v is
compatible with 0; and t(v) € R;

e there isno i € {1,...k} s.t. v is compatible with
0;.

Example 4.2 The trigger instance in Figure 5 satis-

fies the spec-line

ConnectionChoice
(crossConnBI.FromTol.from.sN = [1..5]),
(sN = [1..3]),
(crossConnBI.FromTo2.from.inst = [1..4]),
(inst = [1..2])

Note that, in general, we cannot use just the basic
attribute b instead of the path to b in a spec-line. This
is because there may be more than one leaf node la-
beled with the basic attribute b.

A sequence tq, . ..t of trigger instances is compatible
with a testing plan specification <Aj(r1),..., Ag(ry)>
iff for each i = 1,...k,t; is compatible with A;(r;).

Given a testing plan specification Lspec =<A1(r1),
...y Ag(rg)>, where each A; is an attribute name and r;
is the relative list of optional restrictions, our goal is to
generate all sequences of trigger instances compatible
with Lgpec.

Of course one may as well generate all trigger in-
stances without posing any constraint. However, from
remark 4.1, we known that the number of such in-
stances (test cases) can be prohibitively large.

Note that the constraints in the spec-lines comes
from test engineers, since they typically know quite
well what are the meaningful subset of values for each
basic attribute.

The simple language used to define Lgpe. allows test
engineers to easily focus on the interesting test cases.

In fact its syntax is quite familiar to them being quite
close to GDMO, ASN.1 formats.

Finally, some basic attributes have an exceedingly
large type imposed by conformance to the standards.
Using spec-lines we can test our NE only on the values
for these attributes that are meaningful for the case at
hand.

4.3.1 An Example of test plan specification

A test plan specification example is shown in Fig. 7.
This example states that all the possible trig-
ger combinations for T4SelectedReference and for
ConnectionChoice respecting the given restrictions
have to be generated and sent. More in detail,
T4SelectedReference has no restrictions, thus all the
3 test cases have to be considered, while for Connec-
tionChoice we have that, e.g., the sN basic attribute
may take values in [1..3] everywhere it is found, but if
it is the one in the leftmost path of the SCT subtree of
ConnectionChoice shown in Figure 3 then it can take
values in [1..5]. Note that the overall number of these
test casesis 3XHX2XIX2X3IXAXIX2X3IX2XIX2 =
466560. This is indeed an affordable number of test

cases. On the other hand, without the restrictions im-
posed by the specification in Figure 7, the number of
test cases would have been exceedingly large.

T4SelectedReference
ConnectionChoice
(crossConnBI.FromTol.from.sN =
[1.5]) ,
(sN = [1..3]),
(crossConnBI.FromTo2.from.inst =
[1.4]),
(inst =

1.2)

Figure 7: A test plan specification example

4.4 Generation of Test Cases

Given a testing plan specification Lgpec =< A1(r1),
...y Ag(ry)>, the triggers generator uses the informa-
tion in the asntbl.h header file (see Figures 1, 2) to
build £ SCTs Sy, ..., Sk representing the structure of
the triggers with top attributes Ai,..., Ax. Finally,
a unique SCT S is built having a sequence root node
with k successors, which are set to Sy,...,S;. This
latter construction stems from the fact that indeed the
k triggers have to be sent in the given order.

We then use a procedure GenTriggers (Figure 8)
that takes the SCT S and generates the sequences of k
triggers that the TMNM has to send to the NE.

Let v be a leaf node of T'. Then the number of choices
inwvis |Type(b)| and we need [log |T'ype(b)|] bits to rep-
resent them. Let v be a choice node of T with k succes-
sors.Then the number of choices at node v is k and we
need [logk] bits to represent them. We denote with
numchoicebit(v) the number of bits needed to repre-
sent the number of choices of (the non-sequence) node
.

The idea is to browse S with the guidance of a
counter cnt, which is done by the auxiliary function
BrowseByCnt of Figure 8. Namely, the binary repre-
sentation of cnt is used in order to univocally make
a choice when needed, i.e.: 1. when a choice node is
reached, thus one of its successor nodes has to be se-
lected; 2. when a leaf node is reached, thus a value in
its basic attribute domain has to be picked.

In fact, choice and leaf nodes in S comes labeled with
an incremental integer code. This code allows us to
single out, in the binary representation of cnt, groups
of bits whose value is used to make choices. Thus, if
g is the value for the group of bits of node n, then
procedure BrowseByCnt will choose the g-th successor
node of n (if n is a choice node) or the g-th value in
basic attribute domain of n (if n is a leaf node).

Given this, it is sufficient to loop on all possible val-
ues of cnt (which is done in function GenTriggers in
Figure 8) to have all the possible trigger sequences,
without repetitions.




GenTriggers(SCT S)

m = number of non-sequence nodes
of S;

CN = set of non-sequence nodes of
S5

tot_bits = ) .. numchoicebit(v)

foreach cnt in [0..2%°%-Pits — 1] {
if (cnt is a valid value) {
trggrSet = 0;
BrowseByCnt (trggrSet, cnt,
foreach trigger in trggrSet
send trigger;

}r3

S);

BrowseByCnt(list ret, int cnt,
SCT 8) {
if (S is a sequence) {
foreach node in succ(S)
BrowseByCnt(ret, cnt, node);
} else if (S is a choice) {
tmp_cnt = ReadRelValue(cnt,
node = tmp_cnt-th element of
succ(8) ;
BrowseByCnt(ret, cnt, node);
} else { /* S 4s a leaf */
tmp_cnt = ReadRelValue(cnt, S);
BA = restricted interval related
to S;
choice=tmp_cnt-th element of BA;
append(choice, ret);

)

S);

ReadRelVal(int cnt, SCT S) {
return the value of the group of
bits in cnt related to S;

}

Figure 8: Procedure GenTriggers

Note that we have to discard some values of cnt. In
fact, if the number of successor of some choice node (or
the number of values of some leaf node) is not a power
of 2, then the related group of bits in cnt may have a
invalid value.

5 Evaluation and Conclusions

We presented a case study on the integration in a real
industrial design flow of an Automatic Integration Test
Generation method.

Our approach uses a GDMO-like language to define
testing plans. This avoids retraining for testing engi-
neers. Moreover we developed software to easily inte-
grate our approach in a TMN based design flow. Thus
our approach can also be used by other companies that
use the TMN framework.

Using our tool we were able to detect errors which

previously went undetected.
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