
Interoperability Mapping from XML Schemas

to ER Diagrams

Giuseppe Della Penna a,∗ , Antinisca Di Marco a,c ,
Benedetto Intrigila b , Igor Melatti a and Alfonso Pierantonio a

aDipartimento di Informatica, Università di L’Aquila, L’Aquila, Italy

bDipartimento di Matematica, Università di Roma “Tor Vergata”, Rome, Italy

cComputer Science Department, University College London, U.K

Abstract

The eXtensible Markup Language (XML) is a de facto standard on the Internet and
is now being used to exchange a variety of data structures. This leads to the problem
of efficiently store, query and retrieve a great amount of data contained in XML
documents. Unfortunately, XML data needs often to coexist with historical data.
At the present, the best solution for storing XML into pre–existing data structures
is to extract the information from the XML documents and adapt it to the data
structures’ logical model (e.g., the relational model of a DBMS). In this paper, we
introduce a technique called Xere (XML Entity Relationship Exchange) to assist
the integration of XML data with other data sources. To this aim, we present an
algorithm that maps XML Schemas into Entity-Relationship diagrams, discuss its
soundness and completeness and show its implementation in XSLT.

Key words: Data Models, Schema Evolution and Maintenance, Interoperability
and Heterogeneity, Web applications/XML, Entity-Relationship diagrams

1 Introduction

A great deal of information is exchanged every day through the Internet. The
exponential growth of the Web increases the amount of documents that are

∗ Corresponding author. Tel: +390862433130 Fax: +390862433057
Email addresses: dellapenna@di.univaq.it (Giuseppe Della Penna),

dimarco@di.univaq.it (Antinisca Di Marco), intrigil@mat.uniroma2.it
(Benedetto Intrigila), melatti@di.univaq.it (Igor Melatti),
alfonso@di.univaq.it (Alfonso Pierantonio).

Preprint submitted to Elsevier Science 25 July 2005

shared among a global community which is on the verge of including almost
everyone in the next years.

The eXtensible Markup Language (XML) [1], a flexible tagged text format
derived from the Standard Generalized Markup Language (SGML) [2], has
been proposed in 1996 by the W3C Consortium [3] as a tool to standardize
the format of all the documents used on the Internet and meets the challenges
of large–scale electronic publishing.

In the last years, XML has become a de facto standard and, as the next step of
its evolution, it is being adopted also for data description and manipulation.
The hierarchical structure of markup documents is very suitable to represent
a wide variety of data, especially objects. XML fragments are hence used
to contain data structures and make them more portable and open–format.
This trend has been further pushed by the fact that applications can easily
interface with XML–structured data streams or packets using XML parsers
and querying tools (like XPath [4], XSLT [5]) to manipulate their content.
Actually, at the present XML is being used much more as a data–definition
formalism than as a document–definition language. XML protocols such as
SOAP [6] are widely used to transport data on the internet, and a number
of organizations are using XML to exchange platform–independent and open–
format data.

This scenario points out the problem of efficiently store, query and retrieve a
great amount of data exchanged by means of XML documents. To this aim,
native XML DBMS such as Tamino [7] have been developed. Such kind of
DBMS is a good solution when all the data to be managed is in XML format.
However, many companies have their own databases filled with historical in-
formation, and applications that interface with these databases to manipulate
the data. Converting all the historical data to XML and/or adapting the ap-
plications to work with this new standard may be too expensive and complex
and, sometimes, it can make a reliable application instable due to the modifi-
cations that have to be made on the software system. This means that, most
of the times, it is more convenient to make XML documents coexisting with
data in different formats and possibly store them in existing DBMS. This,
however, can lead to problems related to data consistency (the same infor-
mation could be duplicated among different formats) and to the efficiency in
retrieving/updating the data. In particular, since all the leading commercial
DBMS such as Oracle [8], IBM DB2 [9] and Microsoft SQLServer [10] use the
relational model to organize the data, the main issue about storing XML is
often how to fit it into relational structures.

Unfortunately, the tree structure of XML documents is not easy to store in a
relational schema. Moreover, the structure of XML documents is often formal-
ized using the DTD [1] or XML Schema [11] formalisms that contain operators,

2

such as the choice, which are not available in the relational model. To cope
with this problem, we may extend database schemas [12, 13], but these ex-
tensions would not be compatible with legacy systems, and therefore not a
realistic (i.e. commercially useful) solution.

At the present, the best solution for storing XML into pre–existing data struc-
tures should be to extract the information from the XML documents and to
adapt it to the data structures’ logical model (e.g., the relational model of a
DBMS). Typically, this task is performed in a manual way and may require
some reverse engineering. Moreover, this task may be further complicated
by the structure of the XML documents containing data, that often is not
human–readable (i.e., easily understandable to humans). The result is that
the integration between the new information (stored in XML documents) and
the old one is heavy, error prone and time-consuming. Thus, a tool able to
help in this task will be surely helpful.

To assist the integration of XML data with other data sources, especially data-
base systems, we are developing a general technique, called Xere (XML Entity
Relationship Exchange). The main goal of Xere is to design a conceptual
model representing the XML documents data that can be easily understood
and used as a tool for the design, optimization and integration of XML data.
To this aim, in this paper we show an algorithm, called Xere mapping, that
translates an XML Schema into a conceptual model, the Entity–Relationship
(ER) model, that offers a comprehensive and understandable artifact for the
analysis and integration of the XML documents data.

We choose the ER (conceptual) model as the target of our algorithm instead of
a logical model, such as the relational model that is used by many works in this
research field (see Section 7), since we would like to be DB-neutral. Indeed, our
aim is to build a support useful both to DB designers working with any DB
type, as well as to designers that need to integrate XML data in frameworks
that are not based on DBMS. To this aim, the ER model offers a very good
high–level documentation on the data structures, that cannot be expressed
using logical models. Moreover, the generated diagram can be combined with
other ER diagrams to integrate the new structures with preexisting data. This
integration is much more easy to study at the ER level using the associated
graphical view than, e.g., on the flat relational model. Finally, the choice of
the ER diagram as the target model for our algorithm also allows to map the
information given by the XML Schemas in a natural way, i.e., obtaining an
ER diagram that is human–readable and that preserves all the information
originally stored in the XML Schema. This leads to a mapping process that
can be documented and certified as sound and complete.

To automatize the process it is necessary that the XML documents’ structure is
formally defined by a grammar. We decided to adopt XML Schemas [11] rather

3

than DTDs [1] as the starting point of our mapping since DTDs are being
progressively replaced by XML Schemas, especially when XML is used to hold
data structures. For example, the payload of a SOAP message must be defined
using an XML Schema [6]. Moreover, using XML Schemas is convenient since
this formalism offers a better expressiveness to describe complex structures like
generalization, type derivation and substitution, complex type definitions and
a variety of content models (such as sequence, choice, set). XML Schemas are
also strongly typed: actually, most of the XML Schema basic types correspond
to a DB data type (see [11]). Finally, since a XML Schema is itself an XML-
based formalism, it is very easy to process and manipulate it using well–known
XML–based tools.

A preliminary release of the mapping algorithm have been already presented
in [14]. In the present paper we show the complete algorithm and its pro-
totypal implementation obtained using the XSLT technology. We also prove
the soundness of the mapping. Namely, we show that we are able to correctly
retrieve XML documents when they are stored according to the ER diagram
created by Xere mapping algorithm.

The paper is organized as follows. In Section 2 we give some preliminary no-
tions about XML, XML Schemas and the ER model. In Section 3 we describe
the XML Schema–to–ER mapping algorithm, and then we show it at work
on an example in Section 4. The correctness of our approach is discussed in
Section 5, where we give a soundness and completeness proof for the Xere
mapping algorithm. In Section 6 we briefly describe the design and the XSLT
implementation of the mapping process. Finally, Section 7 offers on overview
on the related works and Section 8 gives some final remarks on the presented
work.

2 Background

The key concepts used in Xere are XML, XML Schemas and the Entity–
Relationship (ER) conceptual model. A full description of these three for-
malisms is beyond the aims of this paper, so in the following we assume that
the reader has a good knowledge of them.

However, for sake of completeness, in this Section we recall some basic notions
about XML and the ER model. The information reported here is not complete,
so the reader should refer, e.g., to [1], [11] and [15] for an in-depth overview
of these concepts and formalisms.

4

2.1 The eXtensible Markup Language

The basic syntax of XML is quite simple and should be familiar to anyone
that knows HTML. Well–formed XML documents are composed by elements,
attributes and text, and must obey to some simple rules: for instance, each
document must have an unique root element.

The XML Schema (XSD) formalism uses the concept of type as its basic mech-
anism to define the structure of XML documents. XSD distinguishes among
simple and complex types : the formers are basic non-structured types and
include the most common data types used in DBMS and programming lan-
guages. Simple types are used to declare attribute and leaf elements (i.e.,
elements not containing other elements) of the XML documents. Complex
types are used to describe the structure of elements, i.e. their content model.
A content model specifies which elements can be nested inside other elements,
and in which order. Content models are created by freely composing elements
through three basic models: sequence, choice, and set. A cardinality constraint
can be assigned both to the elements and to the content models. The spe-
cial mixed complex type allows the corresponding elements to contain both
freeform text and a content model. Finally, XML Schema allows to define
non-hierarchical relations between elements using identity constraints. In par-
ticular, the key construct is used to declare that a specific element is uniquely
identified through a set of its attributes and/or sub–elements. Then, the keyref
construct can be used to define a relation between two elements, requiring the
matching of a set of attributes and/or sub–elements of an element with those
in the key of the other element.

Fig. 1 shows an example of XML Schema, defining the XML language for a
simple purchase order. This schema can be read as follows:

A purchaseOrder has a date attribute and is composed by exactly one shipTo
element, an optional billTo element, an items and a shippingDetails element,
and an optional comment. Both shipTo and billTo contain a name and an
Address, that can be possibly substituted by the more specific USAddress.
Items contain a list of item elements, each one specifying a product, its code,
the required quantity, etc. Finally, shippingDetails contain comments or han-
dling instructions for particular items, referenced using the corresponding
item key.

2.2 Entity–Relationship Diagrams

Entity Relationship Diagrams (ERD), [15], are a simple but powerful concep-
tual model. Conceptual models are used to describe the fundamental concepts

5

<schema>

<element name=”Address ”>

<complexType><sequence>

<element name=” s t r e e t ” t ype=” s t r i n g ”/>

<element name=” c i t y ” t ype=” s t r i n g ”/>

</sequence></complexType>

</element>

<element name=”USAddress” subst i tut ionGroup=”Address ”>

<complexType><sequence>

<element name=” s t r e e t ” t ype=” s t r i n g ”/>

<element name=” c i t y ” t ype=” s t r i n g ”/>

<element name=” s t a t e ” t ype=” x s : s t r i n g ”/>

<element name=” z ip ” t ype=” po s i t i v e I n t e g e r ”/>

</sequence></complexType>

</element>

<simpleType name=”SKU”>
<restr ict ion base=” s t r i n g ”><pattern v a l u e=”\d{3}−[A−Z]{2} ”/></restriction>

</simpleType>

<element name=”comment” t ype=” s t r i n g ”/>

<element name=”purchaseOrder ” t ype=”PurchaseOrderType”/>

<complexType name=”PurchaseOrderType”>

<sequence>

<element name=”shipTo”>
<complexType><sequence>

<element name=”name” t ype=” s t r i n g ”/>

<element r e f=”Address ”/>

</sequence></complexType>

</element>

<element name=” b i l lTo ” minOccurs=”0”>
<complexType><sequence>

<element name=”name” t ype=” s t r i n g ”/>

<element r e f=”Address ”/>

</sequence></complexType>

</element>

<element r e f=”comment” minOccurs=”0”/>

<element name=” items ” t ype=”Items”/>

<element name=” sh ipp ingDe ta i l s ”>
<complexType><sequence>

<element name=” item” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>

<choice>

<element name=” hand l i ng In s t ru c t i on s ” t ype=” s t r i n g ”/>

<element r e f=”comment”/>

</choice>

<attribute name=”partNum” t ype=”SKU” use=” requ i r ed ”/>

</complexType>

<keyref name=” Item Desc Keyref ” r e f e r=”Item Key”>
<selector xpa th=” . ”/><f i e ld xpa th=”@partNum”/>

</keyref>

</element>

</sequence></complexType>

</element>

</sequence>

<attribute name=”date ” t ype=”date ”/>

</complexType>

<complexType name=”Items”>
<sequence>

<element name=” item” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>

<sequence>

<element name=”productName” t ype=” s t r i n g ”/>

<element name=”quant i ty ” t ype=” in t e g e r ”/>

<element name=” Pr ice ” t ype=”decimal ”/>

<element name=”shipDate ” t ype=”date ” minOccurs=”0”/>

</sequence>

<attribute name=”partNum” t ype=”SKU” use=” requ i r ed ”/>

</complexType>

<key name=”Item Key”>
<selector xpa th=” . ”/><f i e ld xpa th=”@partNum”/>

</key>

</element>

</sequence></complexType>

</schema>

Fig. 1. A sample XML Schema

of a specific domain, their structure, and the relationships among them. ERD
have a very intuitive and widely–known graphical representation, that we will
use in this paper to visualize the diagrams generated by our algorithm. The
basic ERD elements and their graphical representation are shown in Fig. 2.
These are:

6

Relation

(c1,c2)

(c3,c4) Entity2

Entity1

Weak Entity

Key

Cardinality

Constraint

Entity3 Entity4

Generalization

attribute1

Entity

Key

attribute2

attribute3

attribute4

Fig. 2. Entity–Relationship diagrams elements.

• Entities represent (collections of) atomic concepts or objects in the consid-
ered domain. They are graphically depicted through rectangles that contain
the entity name.

• Relationships are used to express an association between one or more
entities. They are depicted as diamonds connected through lines to the
involved entities and containing the association name.

• Cardinalities specify the number of relationship instances that an entity
can participate in. They are written as (min,max) integer pairs close to the
line that connects each entity with each relation. The max cardinality can
be unbounded, in this case it is usually written as “n”.

• Attributes represent the data elements of a particular entity or give infor-
mation about a specific relationship. They are represented by ellipses that
can be attached to any entity or relationship symbol. The attribute name is
inside or close to the related ellipse. Attributes can also have a cardinality.

If one or more attributes constitute the primary key for an entity, i.e.
a set of data that uniquely identifies each entity instance, these attributes
are linked by a line ending with a black circle as shown in Fig. 2. In many
common cases, an entity key definition may also involve one or more of
its relationships: in this case, the entity is called weak. This means that
the entity instances can be unambiguously distinguished only if they are
considered within the context given by the associated entities.

• Generalizations are used to build generalization (or specialization, if read
bottom-up) hierarchies between entities. As depicted in Fig. 2, generaliza-
tions are built top–down, with the most general entity on the top. Gen-
eralizations can be total (i.e. all the parent instances can be classified as
one of its children) or partial (i.e. there are parent instances that does not
correspond to a child’s instance).

7

3 The Xere XML Schema–to-ER mapping algorithm

In this section we describe the Xere mapping algorithm. XML Schemas define
patterns of structured content, i.e. data and relations among them. The map-
ping exploits the information specified in a XML Schema to define a sound
and complete ER diagram, i.e. a data model describing all and only the struc-
tural information introduced by the XML Schema. Before proceeding with the
technical discussion, let us give some basic considerations about our approach.

3.1 The Xere Mapping Methodology

The Xere mapping aims at providing interoperability between XML Schemas
and ER diagrams. The mapping preserves all information provided by an
arbitrary XML Schema without including additional information which is not
expressly given.

The problem of representing all the information specified by a XML Schema
poses several questions. In contrast to ER diagrams, Schemas are a very rich
formalism which is able to define recursive types, type hierarchies, usage con-
straints, etc. Thus, Schemas are located on a much lower abstraction level than
ER models, which are usually intended as an intermediate design document.
Indeed, not all the constructs used in the Schemas have a precise counterpart
in the ER model, which is much simpler. The choice content model, for in-
stance, is used in the XML Schema definitions to denote a disjunction between
two or more sub–models. Since there is no corresponding construct in the ER
model, the generalization is used to gain the same result. Thus, the simulation
of the choice is obtained by means of auxiliary entities used to represent the
root of the generalization hierarchy and the specializations.

However, there are some XML Schema constraints (e.g., attribute types) that
cannot be mapped on the ER model. To handle these special cases, we intro-
duce model annotations, i.e. simple textual notes attached to the model that
contain human-readable descriptions of such constraints. These annotations
are intended to document the ER model so that no information is lost from
the original XML Schema. Note that using informal annotations is a common
practice in ER design, so we are not introducing any extension to the ER
formalism.

8

3.2 The Mapping Algorithm

The mapping algorithm is defined as a set of transformation rules which in-
ductively takes advantage of the syntactical structure of a XML Schema to
define the corresponding ER model.

Currently, Xere supports all the core XML Schema features. Only three aspects
have been omitted:

• any, anyAttribute. These elements allow to leave underspecified given as-
pects of the XML Schema and provide it with a limited form of genericity.
Roughly speaking, these two elements can be used as placeholders for any
element or attribute, respectively. This form of genericity does not have a
correspondence in the theory and practice of databases; therefore, it has
been not included in the current form of the mapping.

• notation. This is used to specify type information about external entities,
typically binary objects. For instance, it could be used to declare which
application should handle a particular data format. This kind of detail goes
beyond the conceptual model purposes, so it has not been considered.

The overall structure of the Xere algorithm is described in Fig. 3 and 4. The
algorithm maps every global XML Schema element to an ER entity. Element
attributes become entity attributes and the content model of complex typed
elements is mapped using ER relations, generalizations and cardinality con-
straints. In the following we detail the description of each step of the algorithm
shown in Fig. 3 and 4. Note that, for the sake of brevity, we omit from the
algorithm description the mapping of two groups of secondary elements:

• the annotation, appinfo, and documentation elements, used to report different
kinds of notes on the XML Schema, therefore directly translated to ER
annotations,

• the import, include, and redefine elements, used to combine Schemas in var-
ious ways, are expanded to obtain a self-contained XML Schema before
applying the mapping algorithm.

Mapping XML Schema Elements

Function MapElement in Fig. 3 shows the overall element mapping algorithm.
In general, each XML Schema element becomes an ER entity. The entity
names are based on the corresponding element names, and local names, i.e.
names prefixed with the parent element name, are used to preserve the scope
of visibility of local elements (for example, an element “C” declared inside a
global element “A” would result in the creation of an entity labeled “A C”).

9

procedure Xere (Document D)
begin

foreach g l oba l element E in D do

begin

MapElement (E)
end

MapSubstGroups () ;
MapKeyrefs () ;
RefineDiagram () ;

end

procedure MapElement (Element E)
begin

F = CreateEnt i ty (E) ;
i f (E has s imple type t) then

AddAnnotation (F , t s imple type d e s c r i p t i o n) ;
else MapContentModel (E,F) ;
MapAttr ibutes (E,F) ;

end

procedure MapAttr ibutes (Element E, Ent i t y F)
begin

foreach a t t r i b u t e e lement D in E do begin

i f D i s not f i x e d then begin

A = Crea t eAt t r i bu t e (F ,D) ;
AddAnnotation (A,D type d e s c r i p t i o n) ;
i f D has a d e f au l t then AddAnnotation (A,D de f au l t va lue) ;
i f D i s op t i ona l then set c a r d i n a l i t y of A to (0 : 1) ;

end

else begin

c r e a t e constant value annotat ion
end

end

end

procedure RefineDiagram ()
begin

remove u s e l e s s a u x i l i a r y e n t i t i e s
merge content−only e n t i t i e s with t h e i r parent (s)

end

Fig. 3. Xere main steps

Element attributes are then mapped to entity attributes through the Map-
Attributes function described below. Entities corresponding to elements with
simple type also have a special “content” attribute used to store the textual
content of the corresponding element.

For each XML Schema element (i.e., entity in the ER) we should provide a
primary key that is chosen using the following rules:

10

procedure MapContentModel (Element E, Ent i t y F)
begin

MapContentPartic le (root content model of E, F)
end

procedure MapContentPartic le (Pa r t i c l e C, Ent i t y F)
begin

i f C i s a sequence then begin

i f C. c a r d i n a l i t y < > (1:1) then begin

F1 = Crea t eAux i l i a ryEn t i t y ()
CreateRe la t ion from F to F1 with c a r d i n a l i t y (x : y)
F=F1

end

foreach ch i l d D of C do begin

MapContentPartic le (D,F)
end

end

else i f C i s a cho ice then begin

F1 = Crea t eAux i l i a ryEn t i t y ()
CreateRe la t ion from F to F1 with c a r d i n a l i t y (C)
foreach ch i l d D of C do begin

F2 = Crea t eAux i l i a ryEn t i t y ()
C r e a t eSp e c i a l i z a t i o n from F1 to F2
MapContentPartic le (D, F2)

end

end

else i f C i s an element then begin

F1 = MapElement (C)
CreateRe la t ion from F to F1 with c a r d i n a l i t y (C)

end

end

Fig. 4. Xere content models mapping algorithm

(1) if the XML Schema explicitly defines a key (using the key construct), that
key is used as the primary key for the corresponding ER entity. If the
key construct contains values or attributes from other (child) elements,
we classify the ER entity as weak. In this case a relation is created, if not
present, from the weak entity to the entity corresponding to the referenced
child element, and it is included in the weak entity primary key.

As an example, in Fig. 8 the key of element A includes its child A B.
The corresponding entity will therefore be weak, and its key will include
the relation to the child entity A B as shown in Fig. 8.

(2) if the element has an attribute of type ID, that attribute becomes the
primary key of the corresponding entity.

Remark 1 Schemas allow the definition of different keys for the same entity,
at different scope levels. However, the ER theory says that each entity can

11

A

RA-B RA-A_C

(b1,b2) (1,1)

(1,n) (1,n)

position

B A_C

<element name="A">

<complexType>

<sequence>

<element ref="B" minOccurs="b1" maxOccurs="b2"/>

<element name="C"/>

</sequence>

<attribute name="id" type="ID"/>

<attribute name="class" type="string"/>

</complexType>

</element>

id class

Schema Definition

ER Diagram

Xere

Fig. 5. Mapping of a simple XSD sequence model. The figure also shows the mapping
of attributes, entity keys and local elements.

have only one key. Therefore, MapKeyrefs cannot handle multiple keys and the
algorithm maps only key and keyref statements having a child like <selector

xpath=”.”> (i.e., that give the key and the foreign key references, respectively,
for the element they are nested in), whereas it outputs an error message if any
other selector element is encountered.

Note that if an element is declared with the nillable attribute set to true, then
an appropriate annotation is added to the ER diagram to remark that in the
corresponding ER entity all the attributes can be set to null.

The element mapping ends with the most important step, that is the mapping
of the element type. If the element has a simple type, the algorithm adds a
content attribute to the corresponding ER entity and reports the associated
type information in an annotation that is added to the ER model and re-
ferred to such attribute. Otherwise, the element content model is mapped to
appropriate ER structures through the MapContentModel function.

Mapping of Element Attributes

The MapAttributes function maps each attribute of an element to an attribute
of the corresponding entity, using appropriate model annotations to preserve
the associated type information. Moreover, the algorithm maps the use, default
and fixed properties of the attribute definition in the following way:

12

• if use is required and no fixed values are specified, then the attribute is
simply mapped in an entity attribute.

• if use is optional, and no fixed values are specified, then the entity attribute
is assigned to a (0, 1) cardinality.

• if use is prohibited the attribute definition is ignored.
• if a fixed value is specified, then the attribute is actually a constant and

should not be included in the entity definition. Therefore, the attribute is
not created and an appropriate annotation is added to the model to keep
track of the constant value.

• if a default or fixed value is specified, we add an appropriate annotation to
the model about this constraint. Moreover, if a fixed value is declared, then
the attribute is actually a constant and therefore it is not included in the
corresponding entity definition.

Note that we always assume that global attribute references and attribute
groups referenced through the attributeGroup element are inline expanded in
the element definition. This means that all the attributes are actually defined
inside the corresponding element.

Mapping of Content Models

Function MapContentModel maps complexType content models by calling
function MapContentParticle that recursively processes the nested content
particles, that is the atomic components of a content model (elements and/or
other content models). As a general rule, if a content particle has a cardinality
constraint, then MapContentParticle reports it on the relation that connects
the corresponding entity to its parent entity (that is passed as a parameter to
the function). Moreover, if the particle has a multiplicity (maxOccurs greater
than one), the instance ordering is preserved in the ER diagram by adding a
position attribute to the generated relation.

Each content model particle has its mapping logic. In general, the content
models themselves have no corresponding entity in the generated diagram,
since they are not objects to be represented, but only structuring elements.
However, if a content model has an associated cardinality constraint, then an
entity is created for it to allow placing the cardinality as described above. In
particular,

• in sequence and all models, all the children particles are recursively mapped
and connected through appropriate relations to the parent entity (see Fig.
5 for an example).

Note that the same mapping technique is used for both sequence and all
since these models are identical except for the ordering semantics (i.e., all
children can appear in any order in the instance XML documents) that has

13

<element name="A">

<complexType>

<choice minOccurs="b1" maxOccurs="b2">

<element ref="B" minOccurs="b3" maxOccurs="b4"/>

<element ref="C"/>

</choice>

</complexType>

</element>

Schema Definition

ER Diagram

Xere

A

R2

R3

(b3,b4)
(1,1)

(1,n)

(1,n)
position

B

C

R1

(b1,b2)

A_Choice

(1,1)

_B _C

position

Fig. 6. Mapping of a XSD choice model

no sense in the ER model.
• to map choice models, the algorithm uses the generalization construct of

ER diagrams.
A new entity is created and attached to the parent entity, and it is spe-

cialized in as many other entities as the content children are. Each content
model children particle is then recursively mapped and connected through
an appropriate relation to the corresponding specialized entity (see Fig. 6
for an example).

Note that the ER generalization construct may not be always semantically
consistent with the choice content model. However the generalization, used
in the particular way explained above, is the only construct that allows to
maintain at least the “mutual exclusion” semantics of the choice model in
the ER diagram.

• element particles defining local element are recursively mapped and con-
nected to their parent entity through an appropriate relation. Global ele-
ment references are simply translated into a relation from the parent entity
to the entity corresponding to the global element (i.e., global elements are
created only once, then connected to their references via relations).

As a special case, mixed content models allow freeform text to appear any-
where among the child elements, which must however be consistent with the
specified model. In this case, before mapping the model we modify it so that
a special distinct ”text” element is allowed anywhere plain text can appear.
This allows to use the standard mapping rules given above to recreate the
mixed semantics in the resulting ER model.

14

<element name="A"/>

<element name="B" substitutionGroup="A"/>

<element name="C" substitutionGroup="A"/>

<element name="D">

<complexType>

<sequence>

<element ref="A"/>

</sequence>

</complexType>

</element>

Schema Definition

ER Diagram

Xere

D

B C

R1

(1,1)

A_SubstGroup

(1,n)

A

Fig. 7. Mapping of a XSD substitution group.

Remark 2 The algorithm also takes care of complex types derived by exten-
sion (that are flattened by merging all the types in the derivation hierarchy)
and by restriction (handled as natural by rewriting the entire complex type with
appropriate restrictions), and inline expands referenced global complex types.
However, these details will not be explained for the sake of simplicity.

Mapping of Substitution Groups

Function MapSubstGroups performs a post-processing on the generated ER
diagram to map XSD substitution groups using total generalizations (see Fig.
7). In particular, the elements belonging to a substitution group become spe-
cializations of a new general entity introduced to map the substitution group
itself. Relations to any of the substitution group elements are then redirected
to the generalization root, as shown in Fig. 7.

Mapping of Identity Constraints

Function MapKeyrefs creates new relations in the generated ER diagrams to
map the key references defined by the keyref construct. The new relations are
named adequately, as shown in Fig. 8.

15

<element name="A">

<complexType>

<sequence><element name="B">

<complexType>

<attribute name="subid" type="string"/>

</complexType>

</element></sequence>

<attribute name="id" type="integer"/>

</complexType>

<key name="A_K">

<selector xpath="."/>

<field xpath="@id"/> <field xpath="B/@subid"/>

</key>

</element>

<element name="C">

<complexType>

<attribute name="k1" type="integer"/>

<attribute name="k2" type="string"/>

</complexType>

<keyref name="A_KR" refer="A_K">

<selector xpath="."/>

<field xpath="@k1"/>

<field xpath="@k2"/>

</keyref>

</element>

Schema Definition

ER Diagram

Xere

A

A_B

C

R2

(1,n)

(1,n)

id

subid

k1 k2

R1 (1,1)

(1,1)

Fig. 8. Mapping of the key/keyref XSD constructs

<element name="Person">

<complexType>

<sequence>

<element name="first" type="string"/>

<element name="last" type="string"/>

<element name="birth" type="date"/>

</sequence>

</complexType>

</element>

Schema Definition

ER Diagram

Xere

Person

R1 R2

(1,1)

(1,1)

(1,n) (1,n)

Person_first Person_last

R3

(1,1)

(1,n)

Person_birth

birth
Person

first

last

Xere Mapping: final (rifined)

Xere

Fig. 9. Refinement of nested elements with simple type.

16

Model Refinement

Finally, function RefineDiagram manipulates the generated diagram by apply-
ing some simple transformations that are used both to compress the final result
(in terms of number of entities and relationships) and to make it appearing
more human-made and therefore natural.

The MapElement function creates an entity for each element with complex or
simple type. However, elements with simple type contain only a content at-
tribute. Actually XML Schema designers often use local, nested elements with
simple types instead of simple attributes only to give the XML documents a
more modular and better-looking structure. Therefore, RefineDiagram com-
presses such kind of entities (and the corresponding relations) making them
attributes of their parent entity and mapping possible cardinality constraints
to attribute cardinalities (see Fig. 9).

The MapParticles function introduces some auxiliary entities to correctly
place the occurrence constraints. However, if these constraints are set to (1, 1),
RefineDiagram removes the auxiliary entity, since it is not needed to respect
the XML Schema definition.

4 An Example

In this section we introduce a complete example of XSD to ER mapping
obtained through the Xere algorithm. We first describe the real world objects
we want to capture with our XML documents. Then we give the complete
XML Schema that describes and validates the documents we need. Finally,
we apply the Xere mapping to the XML Schema and show the resulting ER
model.

The example presented has been obtained from the W3C “International Pur-
chase Order” schema used to exemplify the XML Schema language [11]. With
respect to the original example, we removed some secondary details and added
keys, key references, substitution groups, etc.

4.1 The Problem

We want to describe with an XML language a general purchase order. A pur-
chase order is a business document used to purchase one or more products from
a single supplier. The document can contain two distinct delivery addresses:
a mandatory shipment address, which is the address the products will be sent
to, and an optional billing address, which is where the payment invoice has

17

to be sent, if different from the shipment address. Since the document can be
used for both national and international orders, we should take into account
the different address formats used in various countries, so that the address
parts are always distinct and well characterized in the XML structure. The
main part of the document contains the list of the ordered products: each list
item includes the code of the product and its textual description, the price,
the required quantity, and a shipment date. Finally, the last section of the
document can contain comments or special handling instructions referred to
some of the ordered products.

4.2 The XSD model

The XML Schema that formalizes the purchase order document described
above is shown in Fig. 1. We use an element called purchaseOrder as the XML
document root. The root contains four sub–elements: shipAddress, billAddress,
items and shippingDetails. The shipAddress and billAddress elements contain
the shipping and the (optional) billing addresses, respectively. These elements
in turn contain an Address element, which can be substituted with a more
specialized USAAddress. The items element contains a sequence of item ele-
ments that describe the required product details. In particular, each item has
a partNum attribute to specify the product code. Finally, the shippingDetails
element can contain zero or more item elements, each referring to one of the
items listed under the items list. This reference is forced using the key/keyref
XML Schema constructs. Each shippingDetails item contains a comment or
some handlingInstructions.

4.3 The ER model obtained with Xere

The ER model generated by the Xere algorithm applied to the XML Schema
described above is shown in Fig. 10. We may highlight some details of the
resulting diagram:

• The substitution group for the Address element has been translated in a
generalization of the auxiliary entity Address substGroup.

• The sequence models have been translated using simple relations, like R1.
When one of the sequence children has a multiplicity, as for item in the items
content model, the corresponding relation has a pos attribute (R21 in the
example).

• The choice model in the shippingDetails element has been mapped
to a specialization using the auxiliary root entity purchase-
Order shippingDetails item.

18

Fig. 10. Xere mapping of the international purchase order XML Schema.

• The key definition for the element items/item has been mapped by setting
the partNum attribute as the corresponding entity primary key.

• The keyref construct in the shippingDetails/item element generated a corre-
sponding relation RK1 between the two entities involved.

4.4 Discussion

The case study given in this Section contains almost all of the XML Schema
constructs, nesting as well as global definitions, text-only elements and substi-
tutions groups. Therefore, the ”purchase order” offers a fairly representative
example of how the Xere algorithm works on a complex and general XML
Schema definition. The resulting diagram is very simple, and captures all the
specifications in a compact and realistic way. We remark that, besides some
secondary details, the diagram shown in Fig. 10 is what a professional ER de-
signer would create from the above specifications, whereas in our case the ER
diagram has been automatically generated from a XML Schema definition.

It is worth noting that the Xere approach is modular and its behavior does
not rely on the overall XML Schema definition, since the algorithm works lo-
cally to map and then to refine each element, attribute, key, etc. This makes
Xere scalable and suitable for any XML Schema, regardless of its size and
complexity. Indeed, the aim of Xere is not to simplify the information given
in the XML Schema, since it mostly works at syntactic level, to give a good
conceptual view on the XML Schema contents. If the XML Schema is itself

19

complex and large, so it will be the ER diagram. However, we feel that, if
the XML Schema definition is good (this is, obviously, a precondition of any
schema-transformation algorithm), then the resulting ER will always be read-
able and semantically clear. To verify this we are currently experimenting Xere
on many different Schemas that can be found on various web repositories.

5 Soundness and Completeness

In this section we make two formal statements on the Xere mapping algorithm
described in Section 3.2. Namely, we show that the algorithm is complete,
i.e. it is able to translate in an ER diagram every given XSD (that does
not contain the minor XSD aspects listed in Section 3.2), and sound, that
is it properly translates the given XSD. To this end, we will show that the
ER diagram E obtained from the XSD S allows to store and retrieve the
information contained in any XML document which is valid w.r.t. S.

Proposition 3 (Xere Mapping Completeness) Let S be a well–formed
XSD (w.r.t. the W3C XML Schema Specification [11]). Suppose that S does
not contain elements of type any, anyAttribute or notation and that all the key,
unique and keyref statements in S have a only child like <selector xpath=”.”>

(the aim of these limitations has been discussed in Section 3.2). Then, the
procedure Xere of Fig. 3 correctly terminates on input S, and translates all the
S elements.

PROOF. We only sketch the proof, since taking into account all the XSD
aspects would require too much space. We can note that the procedure Xere of
Fig. 3 correctly handles all the XSD elements listed, except those we explicitly
choose not to deal with (i.e. any, anyAttribute and notation). Moreover, the
procedure is recursive, thus all the possible nestings are taken into account;
namely, all the base elements of S are translated into adequate ER constructs,
while the parent–child relations of S result in ER relations. This ends our
sketch of proof.

To prove the soundness of the Xere mapping we proceed as follows. We consider
the ER E output by procedure Xere of Fig. 3 when the input is a given XSD
S (with the same limitations of Proposition 3). Then, we show that E may
be used to store the information contained in every XML document D valid
w.r.t. S. Moreover, starting from the information stored in E , we prove that
is possible to obtain an XML document D′ which is equivalent to D. In this
way, we show that E effectively maintains the structure and the information
contained in of S.

20

Before going on with the proof, we have to clarify when two XML documents
are equivalent. Roughly speaking, two XML documents are equivalent if they
contain the same information and the same nestings. The attribute order in
the documents should not be considered, whereas the element ordering is sig-
nificant only when it derives from a sequence complex content, or there is an
element repetition due to a maxOccurs 6= 1 setting. This notion is formalized
in the following Definition.

Definition 4 (Document Equivalence) We say that two XML documents
D1 and D2, both valid w.r.t. the same XML Schema S, are equivalent iff their
root elements are equivalent. In turn, two XML elements E1 and E2 of D1

and D2, respectively, are equivalent iff all the following conditions hold.

• E1 and E2 have the same tag.
• E1 and E2 have the same attributes with the same values. Attribute order

is not considered. Attribute values should be expanded w.r.t. their defaults,
as defined in S.

• If E1 and E2 have a simple content, then the contents are identical.
• If E1 and E2 have a complex content, let EC

1
= {E11, . . . , E1n} and EC

2
=

{E21, . . . , E2m} be the children of E1 and E2, respectively. Then, m = n and
there exists a bijective mapping f between EC

1
and EC

2
s.t., for all 1 ≤ k ≤ n

· E1k and f(E1k) are equivalent.
· if the complex content of E1 and E2 has a sequence model, then f(E1k) =

E2k.
· if EC

1
and EC

2
contain repetitions of some or all of the complex content el-

ements (due to a maxOccurs 6= 1 declared in S), then f has to preserve the
relative ordering of the repeated elements (this rule will be better explained
in the proof of Proposition 5).

We are now ready to give our soundness theorem.

Proposition 5 (Xere Mapping Soundness) Let S be a XSD satisfying
the same hypothesis of Proposition 3 and E the ER diagram generated by
procedure Xere of Fig. 3 applied to S. Then, if D is a XML document valid
w.r.t. S, all the information in D can be stored in an instance of E, and it is
possible to retrieve from that instance of E a XML document D′ equivalent to
D.

PROOF. The proof is sketched using structural induction on the syntax of
D.

As induction basis, we suppose that D has only one element E, having a
simple content (i.e., not containing any nested element) and n attributes.
Thus, S has to be similar to the XML Schema fragment of Fig. 11. Procedure
Xere translates S in the ER diagram E of Fig. 11, consisting of an entity

21

E

<element name="E">

<complexType>

<simpleContent>

<extension base="t">

<attribute name="a1" type="t1"/>

...

<attribute name="an" type="tn"/>

</extension>

</simpleContent>

</complexType>

</element>

content

a1

an

...

<E a1=v1… an=vn> txt </E>

Schema Definition ER Diagram

Document Instance

In
s
ta
n
c
e

Xere

Fig. 11. Mapping of a simple element.

E with n + 1 attributes, namely content and a1, . . . , an, which correspond
to the textual content and to the attributes of E, respectively. Thus, all the
information contained in E can be properly stored in (an instance of) E . On
the other hand, the information stored in an instance of E can be trivially
used to build up an XML document D′ equivalent to D by properly retrieving
the attribute values and the content of E. The only difference between D and
D′ could be in the ordering of a1, . . . , an, which is not taken into account for
the XML document equivalence (see Definition 4).

For the induction step, we suppose that the thesis holds for the elements nested
in the root element E of D, and we prove that the thesis holds also for E.

We begin by supposing that E has a sequence content model. Thus, the most
general XML Schema for D is like the one named S in Fig. 12. The corre-
sponding general form for D is also shown in Fig. 12, where each αxyz is a
sequence of attributes, m ≤ h ≤ M and mi ≤ kxi ≤ Mi,∀x ∈ [1, h]. Note that
if mi = 0 then for some i ∈ [1, n] we can have kxi = 0, i.e., element Ei could
not appear in some cases. This would not change our proof significantly.

The Xere algorithm would translate this XML Schema fragment in the ER
diagram E shown in Fig. 12. Note that the n elements E1, . . . , En inside the
sequence model generate n ER subdiagrams E1, . . . , En. These subdiagrams are
rooted in n ER entities E1, . . . , En, linked by n relations RE s−E1 , . . . , RE s−En

to the auxiliary entity E s. E s is then directly linked to the root entity E.

Storing and retrieval of the E attributes are correctly performed by the same
arguments of the induction basis. As for the E content model, let 1 ≤ x ≤ h,

22

E

<element name="E">

<complexType>

<sequence minOccurs="m" maxOccurs="M">

<element name="E1" minOccurs="m1" maxOccurs="M1" type="t1"/>

...

<element name="En" minOccurs="mn" maxOccurs="Mn" type="tn"/>

</sequence>

<attribute name="a1" type="t’1"/>

...

<attribute name="al" type="t’l"/>

</complexType>

</element>

Schema Definition ER Diagram

a1

al

...

<E a1=v1… al=vl>

<E1 111> S111 </E1> … <E1 11k > S11k </E1>

...

<En 1n1> S1n1 </En> … <En 1nk > S1nk </E1>

...

<E1 h11> Sh11 </E1> … <E1 h1k > Sh1k </E1>

...

<En hn1> Shn1 </En> … <En hnk > Shnk </E1>

 </E>

Document Instance

11 11

1n 1n

hn hn

h1 h1

E_s

RE_s-E1 RE_s-En
. . .

pos

pos

E1 En

1 n

RE-E_s

In
s
ta
n
c
e

Xere

pos

Fig. 12. Mapping of a sequence model.

1 ≤ y ≤ n and 1 ≤ z ≤ kxy. Then, the information Sxyz as well as the
attributes values αxyz, contained in a tag Ey, will be correctly stored and
retrieved, by induction hypothesis, in an instance of the corresponding ER
subdiagram Ey. In particular, the content Sxyz is stored in an instance of Ey,
which is connected through an instance of relation RE s−Ey

having pos = z to
an instance of Es, that is in turn connected to E through a relation instance
RE−E s having pos = x. This implies that two different contents Sxyz and
Sx′y′z′ with x 6= x′ and/or y 6= y′ and/or z 6= z′ cannot overlap, and their
ordering is stored through the pos attributes (the ordering among the elements
E1, . . . , En is not stored, since it is fixed and can be retrieved from the XML
Schema S). In the same way, the attributes αxyz are correctly stored and
retrieved from the entity Ey. Thus, the document equivalence (see Definition 4)
is preserved.

Note that diagram refinements could slightly change the shape of the diagram
shown in Fig. 12. Indeed, if M = 1, then the generated ER diagram does
not contain neither E s nor RE−E s and the relations RE−E1 , . . . , RE−En

are
directly linked to E. Moreover, if Ei has a simple content type, it will be
collapsed into an attribute of the entity E s or E, depending on the value of
M . In both cases, showing that the document storage and retrieval continues to
satisfy the document equivalence property requires only trivial modifications
to the given proof.

Consider now the case in which E has a choice content model. Thus, the
corresponding most general XML Schema for D has to be like the one of
Fig. 13, where m ≤ h ≤ M and ∀x ∈ [1, h] ∃i ∈ [1, n] s.t. mi ≤ kx ≤ Mi ∧
∀y ∈ [1, kx] Exy = Ei. However, we suppose the content model not to contain

23

E<element name="E">

<complexType>

<choice minOccurs="m" maxOccurs="M">

<element name="E1" minOccurs="m1" maxOccurs="M1" type="t1"/>

...

<element name="En" minOccurs="mn" maxOccurs="Mn" type="tn"/>

</choice>

</complexType>

</element>

Schema Definition ER Diagram

<E>

<E11> S11 </E11> … <E1k > S1k </E1k >

...

<Eh1> Sh1 </Eh1> … <Ehk > Shk </Ehk >

 </E>

Document Instance

1

E_c

R_E1-E1 R_En-En
. . .

pos

pos

1 n

RE-E_c

In
s
ta
n
c
e

Xere

1 1

h h h

_E1 _En

E1 En

pos

Fig. 13. Mapping of a choice model.

attributes, since their handling is the same as in the sequence case. In Fig. 13
we also report the general form for D.

The Xere algorithm would translate this XML Schema fragment in the ER
diagram E shown in Fig. 13.

To show that E is fit to store and retrieve the information in D, we fix 1 ≤
x ≤ h and 1 ≤ y ≤ kx. Suppose that Exy = Ei. Then, the information Sxy

contained in the tag Ei will be correctly stored and retrieved, by induction
hypothesis, in the ER subdiagram Ei. In particular, Sxy is stored in an instance
of Ei, connected through an instance of the relation R Ei−Ei

, having pos = y,
to an instance of Ec (we are collapsing the generalization into Ec for sake of
simplicity), which is in turn linked to E through an instance of RE−E c having
pos = x. Thus, the information contained in two different elements Exy and
Ex′y′ with x 6= x′ and/or y 6= y′ and/or Exy = Ei, Ex′y′ = Ej, i 6= j cannot
overlap and the element ordering is again preserved by the pos attributes.
Thus, the document equivalence (see Definition 4) is preserved.

Finally, the all content model is mapped exactly as the sequence model, but it
is not necessary to maintain the order in the content model elements. Then,
the retrieved XML document will be equivalent to the starting one, according
to Definition 4.

Although we only give here a sketch of the inductive soundness proof, we think
it should be enough to discuss the soundness of the Xere approach.

24

6 Design and Implementation

To test the Xere algorithm, we also implemented a prototypal tool that trans-
lates XML Schemas to ER diagrams, described in an appropriate language,
and finally displays them. This allowed to debug and refine our approach,
as well as to create the examples used in this paper. We designed the Xere
mapping tool as a multi–step transformation. The design we propose follows
the pipes and filters architectural pattern [16] where each processing step is
encapsulated in a filter component and data is passed through pipes between
adjacent filters. The components (Filters) read streams of data on input pro-
ducing streams of data on output, making local incremental transformation
to input stream. Instead, connectors (Pipes) transmit outputs from one filter
to input of other.

Fig. 14. Software Architecture for the Xere mapping.

Fig. 14 shows the software architecture for the Xere mapping. The system is
composed by four different components in sequence (namely pipeline), each
implementing a different processing step:

(1) ER Diagram Generation takes as input the initial XML Schema and out-
puts an intermediate file where ER entities, attributes, relationships and
specializations (together with their cardinalities) are identified. This step
implements the MapElement and MapSubstGroups functions described
in Section 3.2.

(2) Refinement creates an ER diagram represented in XML, that is nearly
the final output of the algorithm, by applying function RefineDiagram
shown in Fig. 3 to the output of the ER Diagram Generation step.

(3) finally, the Cross-Reference Resolution step takes the output of Refine-
ment and generates the final ER diagram. Its task is to resolve the cross–
references due to the use, in the starting XML Schema, of the keyref
construct (function MapKeyrefs described in Section 3.2).

(4) Finally, the last step Rendering draws the resulting ER diagram.

We implemented each step by means of XSLT [5]. The algorithm is defined
inductively over the syntactical structure of the processed documents and the
XML transformation stylesheets represent the natural choice to manipulate
well–formed XML documents especially when the manipulation is syntax–
driven. Also the last step is implemented by a stylesheet using SVG [17]. The
data streams a filter passes to its successor in the pipeline is an XML file
whose structure describes an ER diagram. Describing such language is out of
the scope of this paper, but the reader can find the corresponding XML Schema
at the url http://dellapenna.univaq.it/xere/ where it is also possible to

25

try the algorithm online.

7 Related Works

As we noted in the introduction, most of the work in our field is aimed at
translating XML in some other formalism to directly store it in a database.
Only few works try to map XML into conceptual structures, like the ER
diagrams used by Xere, and use them for more general purposes. For instance,
[18] tries to give a support to data integration between XML and UML, and
[19] does the opposite by mapping UML class diagrams to XML DTDs.

Since most of the related works on the XML document mapping deal with
some kind of translation from XML to database systems, in this section we
outline some of the most interesting works and technologies related to the
XML–to–DBMS issue. We first give an overview on the current support for
XML storage given by the leading commercial DBMS, and then list some
remarkable research works in this area.

7.1 XML Support in Relational Databases

The XML support has been introduced in almost all the commercial DBMS
in few years. XML documents are basically managed by DBMS using two dif-
ferent storage methodologies: document–centric or data–centric. In the former
case, documents are stored as character entities in CLOB (Character Large
OBject) fields. These fields can be manipulated using the common DBMS
string handling functions, and possibly queried using XPath. This technique
is useful when XML data are often accessed as entire documents, i.e. queries
do not address the document structure.

The second technique, data–centric, stores the XML document data in rela-
tional structures so that they can be better indexed and searched using the
DBMS query language features. This technique is the most suitable for XML
documents describing complex data structures. To map XML documents to re-
lational structures, many DBMS (e.g. Oracle [8]) use an intermediate mapping
on the object–relational model: this way is very natural since XML elements
can be easily seen as objects with fields (attributes, textual content, etc.) and
aggregated objects (the child elements).

Oracle 9i [8] with XDB [20] offers an advanced built–in support for XML
through the special type XMLType. This type can be assigned to any column,
and XML data can be converted and assigned to XMLType columns using

26

the xmltype constructor. The way XML documents are actually stored in the
XMLType fields can be both data or document–centric: if a XML Schema is
associated to the XMLType, the DBMS uses it to create an object–relational
mapping of the XML data, otherwise the data are stored as a CLOB. To use a
particular XML Schema in an XMLType field, Oracle requires it to be first reg-
istered through the dbms xmlschema package. The DBMS creates a mapping
of the XML Schema structure and datatypes through objects and relational
tables and modifies the XML Schema with special attributes that indicate
the way each element is mapped. These attributes can be possibly modified
by the user to change the mapping and use other tables and/or datatypes,
and represent the only documentation that Oracle gives about the created
mapping. However, it is very difficult to change the XML Schema used by an
XMLType. This “type update” is not common with standard database types,
but can be very common with XML Schemas that are subject to evolution
and extension. Querying and updating XML documents in Oracle requires
the use of complex functions like decode and extractvalue in support of the
standard select statement. Moreover, the new keyword updatexml must be
used to build XML–specific update statements.

Another commercial DBMS that offers a good support to XML is Microsoft
SQLServer 2000 [10, 21]. This DBMS can use both annotated XML Schemas
or a specifically–designed restriction of Schemas, called XML–Data Reduced
(XDR) [22], to drive data extraction from the DBMS. XML data can be stored
in the database in CLOB fields or accessed from external files. The XML
documents are transformed “on the fly” in virtual tables using the openxml

rowset provider, and then queried through the standard SQL statements. The
mapping of XML documents to these virtual tables is driven by annotated
XSD or XDR schemas where the user specifies the target relation and field of
each XML element and attribute.

The most remarkable XML–supporting feature in SQLServer is the XML ex-
traction mechanism. All the data stored in a database can be retrieved as XML
fragments using the for xml keywords in the query statement. The data can
be organized in a simple XML structure that directly reflects the selected
fields (i.e. each column becomes an element with the same name, etc.) or can
be restructured using an explicit mapping included in the query statement.
Finally, the user can define special XML views on the data by specifying a
mapping through an annotated XML Schema.

Other DBMS that offer a more limited support to XML are e.g. Sybase [23]
and IBM DB2 [9, 24]. We can make some final considerations on the XML
support included in the leading commercial DBMS. The XML data mapping
is often driven by an XML Schema and the mapping target is directly the
relational or object–relational model of the database. However, the mapping
mechanism is not completely transparent and often lacks of documentation.

27

The mapping can be completely up to the user, or created automatically.
In both cases, the resulting relational schema does not preserve or document
many of the advanced structural constraints on the data specified by the XML
Schema.

Native XML databases are a new generation of DBMS specifically designed
to store XML data. Native XML databases have the XML document as their
main storage unit (like the rows of relational DBMS), preserve the physical
structure of XML documents as well as comments, processing instructions,
DTDs, etc. and can also store XML documents without a schema. The main
(and in most cases the only) manipulation and querying mechanisms offered
by native XML DBMS are the native XML technologies, such as XPath, the
DOM, or XML-specific APIs. One of the most known and refined native XML
DBMS is Tamino [7]. However, the application of these new DBMS is currently
limited, since they cannot efficiently interface with legacy data and relational
databases.

7.2 XML Document Mapping Techniques

Many papers in this field still address SGML as the standard formalism for the
definition of structured documents, so they actually talk about SGML–DBMS
mappings. In fact, there were several studies on the management of structured
documents even before XML emerged [25]. However, since XML is a subset of
SGML, the SGML–DBMS mapping techniques explained in these papers also
apply to XML.

There are two main approaches to design relational database schemas for XML
documents. The first approach, namely the structure-mapping approach, cre-
ates relational schemas based on the structure of XML documents (deduced
from their DTD, if available). Basically, with this approach a relation is cre-
ated for each element type in the XML documents, [12, 13], and a database
schema is defined for each XML document structure or DTD. More sophisti-
cated mapping methods have also been proposed, where database schemas are
designed based on detailed analysis of DTDs, [26]. There are also more general
approaches to store structured or semi–structured data in relational databases,
that also work with XML documents. For instance, [27] uses an intermediate
language, STORED, to describe the mapping from semi–structured data to
relational structures. The mapping definition is accompanied by an overflow
mapping that ensures a lossless storage. The authors show how STORED
mappings and overflow mappings can be built using data mining and other
techniques applied to instance documents. Overflow mappings can also take
advantage of a pre–existing DTDs. To this category of papers also belongs [28],
which is based on a different intermediate language (Hypergraph-based Data

28

Model, HDM) for the translation; however, [28] directly addresses XML doc-
uments, without considering neither DTDs nor XSDs.

In the model-mapping approach, a fixed database schema is used to store the
structure of all XML documents. Basically, this kind of relational schema
stores element contents and structural rules of XML documents as separate
relations. Early proposals of this approach include, e.g., [29], or the “edge
approach”, [30], in which edges in XML document trees are stored as relational
tuples. A more recent research using this approach is [31], that also defines an
efficient method to query this kind of structure.

In both the approaches above, XML documents are decomposed into frag-
ments and distributed in different relations. Obviously, these decomposition
approaches have drawbacks – it takes time to restore the entire or a large
subportion of the original XML documents. A simple alternative approach,
supported in almost all the XML-enabled RDBMS (e.g. Oracle, SQL Server,
etc.), is to store the entire text of XML documents in a single database at-
tribute as a CLOB. On the other hand, this approach does not allow queries
on the document structure using SQL (since all the document is stored in a
single field), and the search for a particular document node always implies
loading all the XML text and searching using regular expression- or XPath-
based engines.

The current research on XML and database integration also presents some
interesting techniques to find the best storage mapping for XML documents.
Since there are many ways to map XML trees on flat relations, a variety of
heuristic techniques can be applied to find an optimal mapping with respect
to a given data access model. For example, [32] introduces an extension of
XML schemas that embeds statistical information about the data. The authors
describe a set of heuristics that exploit these information to find a suitable
mapping for the XML Schema.

Moreover, there are currently a number of papers addressing the opposite
problem, that is mapping relational structures to XML documents. These
techniques aim at the creation of XML views of relational databases for two
main purposes: integrate “legacy” data with XML documents in XML native
databases, and allow the use of XML query languages such as XQuery [33]
on relational databases. Among other approaches, we may cite SilkRoute [34],
that the authors present as a ”general, dynamic and efficient tool for viewing
and querying relational data in XML”. The paper describes a language for
defining XML views on relational data and gives an algorithm that composes
mapping definitions with XQuery statements to obtain new mappings. More-
over, in [35] the authors describe an efficient translation of such mappings to
a set of SQL queries to be applied on the original relational data.

29

8 Conclusions and Future Works

In this paper, we presented a rule–based recursive algorithm that maps an arbi-
trary XML Schema to an ER diagram. The given algorithm is able to translate
almost all the complex XML Schema constructs using the full expressiveness
of the ER model. The resulting diagram is self–explanatory, human–readable,
and easily manipulable by database designers to analyze and optimize the
XML data representation, and to integrate it with other data sources. All these
features are hard or impossible to obtain with the DBMS–storage–oriented
mapping techniques that target to the flat relational model.

Moreover, the mapping is proved sound and complete w.r.t. the document
identity and XML Schema definition, respectively. The document identity de-
fines a congruence relation with classes of isomorphic documents. Indeed, fu-
ture works include some investigations on the formal property of such con-
gruence relation, since different interoperability styles, possibly a hierarchy
of styles, may be given by means of different congruences denoting different
XML representations of the same data.

Once the Xere algorithm will be fully implemented, refined and tested, we
could apply it in many data analysis, optimization and integration contexts.
For instance, in the database context, we plan to show how the Xere–generated
diagrams can be used for documentation and data integration, and also as an
helper tool to generate the code that allows transparent storage, retrieval and
querying of XML documents in relational DBMS.

References

[1] W3C, eXtensible Markup Language (XML), http://www.w3.org/TR/1998/REC-
xml-19980210 (1998).

[2] ISO, Information processing—text and office systems—standard general
markup language (sgml), iSO-8879 (1986).

[3] W3C, World Wide Web Consortium, http://www.w3.org.

[4] W3C, XML Path Language, http://www.w3.org/TR/xpath (1999).

[5] W3C, eXtensible Stylesheet Language (XSL), http://www.w3.org/Style/XSL/
(2001).

[6] W3C, Simple Object Access Protocol (SOAP), http://www.w3.org/TR/SOAP/
(2001).

[7] SoftwareAG, Tamino XML Server, http://www.softwareag.com/tamino/ (2003).

30

[8] Oracle Corporation, Oracle9i,
http://www.oracle.com/ip/deploy/database/oracle9i/ (2003).

[9] IBM, DB2 universal database 8.1,
http://www-3.ibm.com/software/data/db2/udb/ (2003).

[10] Microsoft, SQLServer 2000, http://www.microsoft.com/sql/ (2003).

[11] W3C, XML Schema, http://www.w3.org/XML/Schema (2001).

[12] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, J. Siméon,
Querying documents in object databases, Int. J. Dig. Lib. 1 (1) (1997) 5–19.

[13] V. Christophides, S. Abiteboul, S. Cluet, M. Scholl, From structured documents
to novel query facilities, SIGMOD Rec. 3 (2) (1994) 313–324.

[14] G. Della Penna, A. Di Marco, B. Intrigila, I. Melatti, A. Pierantonio,
Xere: Towards a natural interoperability between xml and er diagrams, in:
Proceedings of the 6th Conference on Fundamental Approaches to Software
Engineering (FASE 2003), Vol. 2621, LNCS, Springer, 2003, pp. 356–371.

[15] P. Chen, The Entity-Relationship Model: Toward a Unifying View of Data,
ACM Transactions on Data Base Systems 1 (1) (1976) 9–36.

[16] D. Garlan, M. Shaw, Software Architecture: Perspectives on an Emerging
Discipline, 1996.

[17] W3C, Scalable Vector Graphics (SVG), http://www.w3.org/Graphics/SVG/
(2001).

[18] M. R. Jensen, T. H. Møller, T. B. Pedersen, Converting xml dtds to
uml diagrams for conceptual data integration, Data Knowl. Eng. 44 (3) (2003)
323–346.

[19] R. Conrad, D. Scheffner, J. C. Freytag, Xml conceptual modeling using uml., in:
A. H. F. Laender, S. W. Liddle, V. C. Storey (Eds.), ER, Vol. 1920 of Lecture
Notes in Computer Science, Springer, 2000, pp. 558–571.

[20] Oracle Corporation, Oracle XMLDB whitepaper,
http://otn.oracle.com/tech/xml/xmldb/pdf/XMLDB Technical Whitepaper.pdf
(2003).

[21] Microsoft, SQLXML and XML mapping technologies,
http://msdn.microsoft.com/nhp/Default.asp?contentid=28001300 (2003).

[22] C. Frankston, H. S. Thompson, XML-Data Reduced (XSL),
http://www.ltg.ed.ac.uk/ ht/XMLData-Reduced.htm (1998).

[23] Sybase Inc., Sybase database server,
http://www.sybase.com/products/databaseservers (2003).

[24] IBM, DB2 XML extender,
http://www-3.ibm.com/software/data/db2/extenders/xmlext/ (2003).

31

[25] G. Navarro, R. Baeza-Yates, Proximal nodes: A model to query document
databases by content and structure, ACM Trans. Inf. Syst. 5 (4) (1997) 400–435.

[26] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. Dewitt, J. Naughton,
Relational databases for querying xml documents: Limitations and
opportunities, in: Proceedings of the 25th International Conference on Very
Large Data Bases, 1999, pp. 302–314.

[27] A. Deutsch, M. Fernandez, D. Suciu, Storing semistructured data with
STORED, in: Proceedings of the ACM SIGMOD international conference on
Management of data, ACM Press, 1999, pp. 431–442.

[28] P. McBrien, A. Poulovassilis, A semantic approach to integrating xml and
structured data sources, in: CAiSE ’01: Proceedings of the 13th International
Conference on Advanced Information Systems Engineering, Springer-Verlag,
London, UK, 2001, pp. 330–345.

[29] J. Zhang, Application of OODB and SGML techniques in text database: an
electronic dictionary system, ACM SIGMOD Record 4 (1) (1995) 3–8.

[30] D. Florescu, D. Kossmann, Storing and querying xml data using an rdmbs,
IEEE Data Eng. Tech. Bull. 2 (3) (1986) 27–34.

[31] M. Yoshikawa, T. Amagasa, A path-based approach to storage and retrieval
of XML documents using relational databases, ACM Transactions on Internet
Technology 1 (1) (2001) 110–141.

[32] From xml schema to relations: A cost-based approach to xml storage, in: ICDE
’02: Proceedings of the 18th International Conference on Data Engineering
(ICDE’02), IEEE Computer Society, Washington, DC, USA, 2002, p. 64.

[33] W3C, XML Query, http://www.w3.org/XML/Query (2001).

[34] M. Fernandez, W.-C. Tan, D. Suciu, Silkroute: trading between relations and
xml, Comput. Networks 33 (1-6) (2000) 723–745.

[35] M. Fernandez, A. Morishima, D. Suciu, Efficient evaluation of XML middle–
ware queries, in: Proceedings of the ACM SIGMOD international conference on
Management of data, ACM Press, 2001, pp. 103–114.

32

