
Automatic Synthesis of Robust Numerical Controllers

Giuseppe Della Penna, Daniele Magazzeni, Alberto Tofani
Department of Computer Science

University of L’Aquila, Italy
{dellapenna,magazzeni,tofani}@di.univaq.it

Benedetto Intrigila
Department of Mathematics

University of Roma ”Tor Vergata”, Italy
intrigil@mat.uniroma2.it

Igor Melatti, Enrico Tronci
Department of Computer Science

University of Roma ”La Sapienza”, Italy
{melatti,tronci}@di.uniroma1.it

Abstract

A major problem of numerical controllers is their robust-
ness, i.e. the state read from the plant may not be in the
controller table, although it may be close to some states in
the table. For continuous systems, this problem is typically
handled by interpolation techniques. Unfortunately, when
the plant contains both continuous and discrete variables,
the interpolation approach does not work well.

To cope with this kind of systems, we propose a general
methodology that exploits explicit model checking in an in-
novative way to automatically synthesize a (time-) optimal
numerical controller from a plant specification and apply
an optimized strengthening algorithm only on the most sig-
nificant states, in order to reach an acceptable robustness
degree.

We implemented all the algorithms within our CGMurϕ
tool, an extension of the well-known CMurϕ verifier, and
tested the effectiveness of our approach by applying it to the
well-known truck and trailer obstacles avoidance problem.

1 Introduction

A control system (or, shortly, controller) is a hardware/-
software component that controls the behavior of a larger
system, called plant. In a closed loop configuration, the
controller reads the plant state (looking at its state vari-
ables) and adjusts its control variables in order to keep it in
a particular state, called setpoint, which represents its nor-
mal or correct behavior.

A numerical controller is, in essence, a table, indexed by
the plant states, whose entries are commands for the plant.
These commands are used to set the control variables in
order to reach the setpoint from the corresponding states.

Namely, when the controller reads a state from the plant, it
looks up the action described in the associated table entry
and sends it to the plant.

A major problem of numerical controllers is their robust-
ness. A controller is robust if it is able to handle all the
possible states of the plant. Indeed, due to approximation
of continuous variables, plants unavoidably present states
that are not known to the controller, although they may
be very close to some states in the table. For continuous
systems, this problem is typically handled by interpolation
techniques (e.g. see [11]). Unfortunately, when the plant
contains both continuous and discrete variables (i.e., it is
a hybrid system), the interpolation approach does not work
well. Therefore, in this case other approaches should be
applied (e.g. see ([13, 10])).

As an example, consider the well known truck and trailer
with obstacles avoidance problem. In this problem, the goal
of the controller is to back a truck with a trailer up to a
parking place starting from any initial position in the park-
ing lot and in the presence of obstacles to avoid. Note that
we assume a realistic formulation of the problem, where
the topology of obstacles is given in a tabular way (e.g.,
obtained through an automatic obstacles detection system).
This problem is known to be very hard because of the fol-
lowing reasons:

• first of all, the dynamics of the truck-trailer is very
complex and, even if the truck-trailer dynamics satis-
fies the Lipschitz condition ([1, 7]), the presence of ob-
stacles makes the problem non-Lipschitz (in particular
the transition function is not even continuous); thus, it
cannot be solved using analytical methods;

• moreover, this problem is hard to solve using a dy-
namic programming approach ([3, 2]), since a back-
ward decomposition of the cost function (e.g., the

length of the path) is hard to perform, due to the com-
plexity of the system dynamics and to the presence of
obstacles;

• finally, local heuristics (e.g. fuzzy rules) perform
poorly in this context, since the presence of obstacles
may make a good local maneuver not suitable for the
final goal.

Therefore, in this case, even the synthesis of a good nu-
merical controller (not to say a robust one) seems to be com-
putationally difficult.

To cope with this kind of systems, in [8], we proposed a
general methodology that exploits explicit model checking
in an innovative way to automatically synthesize a (time-)
optimal numerical controller from a plant specification.
Controllers generated through our technique can handle a
wide variety of plant states, and perform optimally on the
states stored in the table. This means that, when the plant is
in a known state, the controller is always able to select the
action that will drive it to the setpoint in the least number of
steps.

Unfortunately, the approach was not able to solve the
controller robustness problem in a really satisfactory way.
To this aim, in this paper we present a general methodology
that can be applied to any numerical controller to automati-
cally achieve a satisfying robustness degree.

To motivate our approach, consider again the truck and
trailer with obstacles avoidance problem. A computational
analysis of the controller described above, shows that there
exist some particular states which are in the controller, but
when slightly perturbed, i.e. when their position is affected
by some disturbance, give rise to non-stabilizing trajecto-
ries. Indeed, such states are those lying very near to obsta-
cles, so that only very small disturbances in their actual po-
sition are manageable. This holds also for states which are
very near to the so called ”jackknife” positions [8]. From
numerical experiments, it results that all these states can be
stabilized only in case we allow errors in their position not
greater than 0.1m for a truck 6m long. Since this precision
is not realistic, it seems more natural to cut off the most un-
safe states - so to obtain a good robustness for the resulting
controller.

Our idea is to use explicit model checking techniques
to perform a probabilistic analysis of the plant state space
in order to detect the unsafe states, from which the con-
troller has - in case of disturbances - a very low probabil-
ity of reaching the setpoint. Then, we exclude such unsafe
states from our controller and apply a strengthening algo-
rithm only to the safe (i.e. not unsafe) states. This algorithm
extends the initial controller to cope with disturbances. Af-
ter this process, we have that the controller is able, in most
cases and even in presence of disturbances, to drive the plant

from any safe state to a safe state stored in the table of the
optimal controller and, from there, reach the setpoint.

We implemented this new robustness algorithm in our
CGMurϕ tool ([5, 8]), obtaining a three-step automatic pro-
cess for the synthesis of numerical controllers. It is im-
portant to notice that while the first phase is computation-
ally very expensive, the two other phases are highly par-
allelizable. The resulting controllers are time optimal for
the states stored in the table and are quite robust w.r.t. the
other plant states, with the exception of a small set of un-
safe states, which may be controllable only in the presence
of very small disturbances.

This new approach dramatically improved our results in
the truck and trailer with obstacles avoidance case study:
from a 74-88% of robustness w.r.t. small disturbances [8]
to a 91-95% of robustness, even in the presence of big dis-
turbances.

The paper is organized as follows. In Sect. 2 we describe
our methodology and give a formal description of our prob-
abilistic approach. In Sect. 3 we present the new version
of CGMurϕ tool that includes the probabilistic strength-
ening technique. In Sect. 4 we describe our case study
and give experimental results showing the improvement ob-
tained w.r.t the previous approach. Sect. 5 concludes the
paper.

2 Optimal and Robust Controller Genera-
tion through Model Checking

We suppose to have a plant P with dynamics
F (x, q, uc, ud), where x ∈ Rn is the vector of the con-
tinuous components of the state, q ∈ Nk is the vector of the
discrete components of the state, uc ∈ Rm is the vector of
the continuous components of the control, and ud ∈ Nt is
the vector of the discrete components of the control.

The problem of the controllability of P to a specified
state (x0, q0), called the setpoint, is considered (i) with re-
spect to the continuous variables, in a given bounded region
H of Rn, containing a neighborhood of x0, and (ii) with
the discrete variables ranging over a finite subset Q of Nk.

Having continuous and discrete components P is a hy-
brid system. We always suppose that for fixed values of q
and ud, F (x, q, uc, ud) is a continuous function of (x, uc).
Moreover, we assume that only a bounded set ||uc|| ≤ γ
of continuous controls and, respectively, a finite set Ud of
discrete controls need to be considered.

After a suitable discretization of the continuous compo-
nents of both the state and the control, we can assume that
we have only a finite number of states and, in every state,
only a finite number of allowed control actions.

Our objective is to build an optimal controller for P , i.e.
a controller that is able to drive P to the setpoint starting
from any initial state. Moreover, the robustness constraint

makes us consider also states that may be reached in the
presence of errors and disturbances in the state and control
variables. Such disturbances may derive, e.g., from sensor
noise or real values approximation. Finally, the optimality
constraint requires the controller to reach the setpoint within
the smallest possible number of steps (time optimality).

Thus, our controller has to decide, for every considered
plant state, which is the best action (w.r.t. the number of
steps) to reach the setpoint. The optimality of the action
chosen implies the optimality of the generated controller.

In order to build such a controller, we consider the transi-
tion graph G of P , where the nodes are the reachable states
and a transition between two nodes models an allowed ac-
tion between the corresponding states. G has a given set
{s0, s1, . . . , sl} of initial states (that is, the states arising
from the discretization of the region H). Moreover, G has a
set of goal states (that is, the (discretized) states sufficiently
near to the setpoint).

In this setting, the problem of designing the optimal con-
troller reduces to finding the minimum path in G between
each initial state and the nearest goal state.

Unfortunately, the transition graph for complex, real-
world systems could be often huge, due to the well-known
state explosion problem. Thus it is likely that G would
not fit into the available RAM memory, and then the min-
imum path finding process could be highly time consum-
ing. However, model checking techniques [4] developed in
the last decades have shown to be able to deal with huge
state spaces. Thus, we used model checking algorithms, re-
shaping them in order to automatically synthesize optimal
controllers, as presented in [8], and we implemented this
methodology in the CGMurϕ tool [5].

More in detail, we have three phases, that we describe in
the following.

2.1 Optimal Controller Synthesis

In the first phase, an explicit model checking algorithm
is used, which performs l + 1 extended depth first visits of
all the reachable states of P starting from each initial state
in {s0, s1, . . . , sl}. This phase is described in details in [8],
here we only sketch the resulting algorithm.

The depth first visit algorithm and data structures are en-
riched in order to generate the controller C. As usual, a hash
table is used in order to store already visited states. A stack
holds, together with the states on the graph path being ex-
plored, also the next action to be considered from each state.
During the i-th visit, when a goal state g is reached, then the
states in the current path from si to g are marked, and we
remember the actions taken on the path as well as the path
length. If more than one goal path starting from the same
state is found, we pick the shortest one. Thus, when all vis-
its end, we can insert in C the shortest path from each initial

��

���� ��

���� ��

13
1

13
1

23
1

23
1 0

(a) S0 is safe

��

���� ��

���� ��

23
100

00

(b) S0 is unsafe

Figure 1. Examples of Probability computa-
tion.

state to a goal state. The resulting controller is therefore op-
timal: in fact, it contains a set of optimal plans that can be
used to drive P to the goal from any controllable state (i.e.
a reachable state that is connected to a goal state).

However, C does not take into account any state outside
the optimal plans and therefore it is not robust.

2.2 Probabilistic Analysis of the Con-
troller States

In this second phase we extract a particular set of signif-
icant plant states from the optimal controller.

To this aim we first calculate, for each controlled state
s, the probability pc(s) that from s, after any sequence of
allowed actions, we are still in a state of the controller. This
gives us a measure of how much the states deriving from
s can be handled by our controller. Since we cannot take
into account any possible such sequence, we approximate
pc(s) by considering only sequences σ of a given length kc,
thus - starting from s - each time we apply all n possible
actions of the controller. In this way we construct a tree T
of sequences.

For a given sequence σ in T , we define |σ| as follows:
let i, with 1 ≤ i ≤ kc, be the minimum value (if it exists)
such that the action σ(i) leads to a state in the controller,
and we put |σ| = i; we let |σ| undefined otherwise.

Let T ∗ be the set of all sequences σ such that |σ| is de-
fined. Now we compute

pc(s) =
{ ∑

σ∈T ∗
1

n|σ| if T ∗ is not empty;
0 otherwise.

(1)

Note that the choice of kc depends on the required degree
of accuracy (e.g., we choose kc = 4 for our case study, see
section 4). In the following, we suppose kc to be fixed.

We say that a state s is unsafe if pc(s) < Mc, where the
safety threshold Mc is a small value, typically below 10%.
Otherwise, s is safe. Safe states represent the normal states

of the plant, whereas unsafe states correspond to extreme
states of the plant, that are practically uncontrollable in case
of disturbances.

Therefore, our idea is to identify the set of safe states
S = {s | pc(s) ≥ Mc} and concentrate the strengthening
process on them.

To compute the pc(s) of each state s in the controller, we
use a breadth first visit from s and we incrementally calcu-
late the probability pc(s). The exploration of each path is
stopped after kc levels or when a state of the controller is
reached. Indeed, from Equation (1) we know that the re-
maining paths do not contribute to the increment of pc(s).
Moreover, a particular class of states to be considered is the
one of error states which may or may not exist according
to the system under consideration. If an error state is unre-
coverable, that is we cannot escape from it, we have also to
stop the visit at any such state.

An example of this computation is shown in Figure 1
where solid circles are the states in C, dashed circles are the
states not in C, barred circles are the error states and for each
leaf-node the contribution to pc(s) is indicated. Supposing
that Mc = 20%, in case (a) we have that s0 is safe since
pc(s0) = 8

9 ≥ Mc, whereas in case (b) s0 is unsafe since
pc(s0) = 1

9 < Mc. Note that, in the case (b), s0 indeed cor-
responds to a position of the truck close to an obstacle, thus
most of the actions available lead the truck to hit an obsta-
cle; as expected, this result in an error state (in our example,
there are three error states s1, s2 and s4, corresponding to
different ways to hit the obstacle). Our algorithm takes ad-
vantage of such a situation by not expanding the error states,
thus pc(s0) is incremented only when s6 (i.e. the only state
in the controller in this example) is reached.

Once we have built the set S, we can apply the third
phase only on the safe states.

2.3 Controller Strengthening

The last phase of our approach performs a strengthening
of the controller C generated by the first phase.

As described in the previous Subsection 2.2, in this phase
we consider only the set of safe states S.

To ensure the robustness of the controller, we explore a
larger number of states obtained by randomly perturbing the
states in S. That is, for each state s ∈ S we apply a set of
small random changes and obtain a set of new states which,
generally speaking, are not in the controller.

Then, from each new state s′, we start a breadth first visit
of the state space of P stopping it after a given number ks

of levels or if we find a state s′′ such that pc(s′′) ≥ Ml, for
a suitably chosen constant Ml.

The meaning of this procedure is the following: from s′

we look for a state which is in the controller and, moreover,
is sufficiently safe. So in a sense, we use the safe states of

the controller as an extended setpoint.
Formally, let N(s′) be the set of visited states dur-

ing this visit and let t be a state in S ∩ N(s′) such that
∀t′ ∈ S ∩N(s′) : pc(t) ≥ pc(t′) . If pc(t) > Mh, the path
from s′ to t is stored in C, otherwise we declare s unsafe
(see Section 2.2). Here, the meaning of constants ks, Ml

and Mh, where it is required that Mh < Ml, is: the length
of the breadth first visit, the minimum probability value that
we accept to consider a state near to the controller and, re-
spectively, the maximum probability value that we consider
too low to consider a state as safe. Note that the choice of
the constants ks, Ml and Mh depends on the required con-
troller accuracy.

After some iterations of this process, we have that C is
able to drive P from any reasonable system state to the
best near state of the optimal controller and, from there,
reach a goal. That is, C has been augmented with new
(state, action) pairs in order to deal with a larger number
of possible plant states. This makes it more robust without
too much affecting its optimality.

3 The Controller Generator Murϕ Tool

The CGMurϕ tool [5] is an extended version of the
CMurϕ ([6, 9]) model checker. It is based on an explicit
enumeration of the state space, and it was originally devel-
oped to verify protocol-like systems.

In order to generate controllers for complex systems we
added to CGMurϕ some important features, i.e. finite preci-
sion real numbers handling (to model systems with contin-
uous variables) and external linking to C/C++ functions (to
easily model the most complex aspects of the plant, or even
to interface the model with a complete plant simulator).

In the new version of CGMurϕ (available on [5]), we im-
plemented the probabilistic analysis of the controller states
as well as the new strengthening phase, while the first phase
(the optimal controller synthesis) is the same as in previous
version (details can be found in [8]). Therefore, in the fol-
lowing we give details only for the new algorithms, namely
the probabilistic analysis and the strengthening algorithms.

Both algorithms work on a main data structure called
CTRL, that holds the controller table together with a set of
variables needed to process it. In particular, CTRL contains,
for each reachable system state s that leads (in one or more
steps) to a goal, a pair (r, c) indicating that the shortest path
leading from s to a goal state has c steps, where the first
step is the action given by rule r. Moreover, to compute the
probability pc (see Section 2.2), we added to each state in
CTRL a prob variable, initially set to 0.

The algorithm for probabilistic analysis of the controller
states performs a breadth first visit starting from each state
in the controller table. In particular, in each step we extract
a state s from the breadth first visit queue and generate a

set of new states by applying a specified set of the allowed
actions on it. The newly generated states that are not in the
controller table are enqueued, whereas those already con-
trolled are used to update the pc(s).

The algorithm for the controller strengthening performs
a number of breadth first visits, each starting from a state
obtained by disturbing each controllable state in the con-
troller table. The final outcome is that we add paths to the
controller, in order to be able to control also these disturbed
states.

Note that both the probabilistic analysis and the strength-
ening algorithms are highly parallelizable. Indeed, the con-
troller states can be partitioned in several subsets and pro-
cessed simultaneously by different processes (possibly on
different machines).

4 Case Study

To measure the effectiveness of our new strengthening
approach, we applied it to the truck and trailer with obsta-
cles avoidance problem already addressed in [8]. In this
way, we will also show the improvements w.r.t. the previ-
ous strengthening approach used in [8].

4.1 Problem Definition

We want to synthesize a controller that is able to back
a truck with a trailer up to a specified parking place start-
ing from any initial position in the parking lot. Moreover,
the parking lot contains some obstacles, which have to be
avoided by the truck while maneuvering to reach the park-
ing place. The obstacles position and geometry are given in
a tabular way, i.e. each obstacle is a composition of bidi-
mensional figures defined through the position of their ver-
texes relative to the parking lot origin. This is a reasonable
representation that could be automatically generated, e.g.
by analyzing an image of the parking lot. We also disallow
corrective maneuvers, that is the truck cannot move forward
to backtrack from an erroneous move.

In this setting, finding a suitable maneuver to reach the
goal from any starting position is a hard task. On the other
hand, as pointed out in the Introduction, finding an optimal
maneuver is a very complex problem, that cannot be mod-
eled and resolved using common mathematical or program-
ming strategies.

Moreover, note that the states of this system contain both
continuous variables (e.g., the truck position) and discrete
ones (e.g., the boolean variable that indicates if the truck
has hit an obstacle). In such a hybrid system interpolation
techniques cannot be use to obtain a robust controller.

In the following sections, after giving more details about
the truck and trailer model, we show the results obtained

by applying the methodology described in Section 2 to syn-
thesize an optimal and robust numerical controller for this
problem.

4.2 Model Description

θ
s

θ
c

u

(x, y)

x

y

·

·

·

·

·

·
·

·

·

·

Figure 2. Truck and Trailer System Descrip-
tion

Our model of the truck and trailer is based on the set
of equations presented in [12]. Moreover, in our setting
the parking region is an open bounded region of R2, de-
limited by a set of obstacles. We call Γ the parking re-
gion. The system has four state variables relative to its po-
sition in Γ: the coordinates of the center rear of the trailer
(x, y ∈ [0, 50]), the angle of the trailer w.r.t. the x-axis
(θS ∈ [−90◦, 270◦]) and the angle of the cab w.r.t the
x-axis (θC ∈ [−90◦, 270◦]). Moreover the system has a
boolean status variable q, which has two possible values:
operation, when the truck lies in Γ, and, respectively,
error, otherwise.

We assume that the truck moves backward with constant
speed of 2m/s, so the only control variable is the steer-
ing angle u ∈ [−70◦, 70◦]. Figure 2 shows a schematic
view of the truck and trailer system with its state and con-
trol variables. We single out ten points on the truck and
trailer border (displayed in the Figure 2 by bold points) as
representative of the truck and trailer position.

If the values of the state variables at time t are q[t] =
operation, x[t], y[t], θS [t] and θC [t], and the steering an-
gle is u, then the new values of state variables at time t + 1
are determined by following equations:

x[t + 1] = x[t]−B ∗ cos(θS [t])
y[t + 1] = y[t]−B ∗ sin(θS [t])

θS [t + 1] = θS [t]− arcsin
(

A∗sin(θC [t]−θS [t])
LS

)
θC [t + 1] = θC [t] + arcsin

(
r∗sin(u)
LS+LC

)
q[t + 1] = q[t]

(2)
where A = r ∗ cos(u), B = A ∗ cos(θC [t]− θS [t]), r = 1
is the truck movement length per time step, LS = 4 and
LC = 2 are the length of the trailer and cab, respectively (all

the measures are in meters), provided that: (x[t+1], y[t+1])
still lies in Γ and all the truck movement (up to a reasonable
approximation) can be performed in Γ. Otherwise the po-
sition variables remain the same and the status variable is
set to error. When the status variable has the error value,
the system state remains the same, that is the error is unre-
coverable. Moreover, after computing the new value of θC ,
we adjust it to satisfy jackknife constraint: |θS−θC | ≤ 90◦.
See [8] for details.

To simplify the problem of ensuring that the maneuver
can be performed inside the parking region Γ we used a
Monte Carlo method to estimate a security border value
(0.98m) to expand the obstacles perimeter. Again, see [8]
for details.

4.3 Experimental Results

Figure 3. Optimal Trajectory generated by
CGMurϕ from initial position x = 12, y =
16, θS = 0, θC = 0.

We tested our methodology using several obstacles
topologies. As an example, we consider the map shown
in Figure 3, where the black shapes represent the obstacles
and the security borders are drawn grey. In the following we
present the results of each phase of our controller generation
methodology.

To synthesize the optimal controller we approximate real
variables rounding x and y to 0.2 meters and θS , θC and u
to the nearest degree. The resulting controller is generated
in 32847 seconds (using a 2.8GHz Intel Xeon workstation
with 4GB of RAM) and its table contains 1749586 entries.
The state space explored to synthesize the optimal trajecto-
ries has 12227989 states, showing how CGMurϕ is able to
deal with systems having millions of states.

In the second phase, we single out the safe states in the
optimal controller by calculating the probability pc on each
state (see Sect. 2.2). Using Eq. 1 with kc = 4 and n = 29
we obtain the distribution of probability pc shown in Fig-
ure 4. The graph shows the number of states having a
given value for pc. It is clear that most of the states are

safe (high values of pc), whereas there is a little but consis-
tent set of unsafe states. If we set Mc to 0.1, we have that
|S| = 1493876 and so in the last phase we have to consider
only 85% of states in the optimal controller.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f S
ta

te
s

Probability

Figure 4. Distribution of pc on the optimal
controller states

Note that, in the system under consideration, there are
two kinds of extreme positions: (a) when the truck is very
near to obstacles and (b) when the truck and trailer are in
the jackknife position (i.e. when |θS − θC | = 90◦). Indeed,
in the case (a) only a very little number of actions are safe
for the truck, whereas the other ones make it crash on an
obstacle. On the other hand, in the case (b), it is very diffi-
cult to bring the truck outside the jackknife position, since
the truck could follow an exceedingly long almost circular
trajectory. Therefore, according to Section 2.2, this phase
correctly identifies as unsafe all the states corresponding to
positions of case (a). On the other hand, positions of case
(b) could be identified as unsafe only after the third phase.

Finally, in the last phase we consider the set S generated
in the previous phase and we perform the strengthening of
the optimal controller using the algorithm of section 2.3 and
choosing ks = 4, Ml = 0.7 and Mh = 0.2 as the constant
values.

After the strengthening phase, a significant number of
entries (1497114) has been added to the controller to make
it robust, due to the complexity of the truck-trailer dynam-
ics. On the other hand, 218260 more states of the con-
troller have been marked as unsafe: these states correspond
to jackknife positions of the truck and trailer. The final con-
troller now handles a total of 3246700 states.

Note that the last two phases were parallelized by parti-
tioning the controller states in 9 subsets and performing the
analysis and strengthening separately for each of these par-
titions using different workstations. In this way, generating
the robust controller took less than an hour.

In order to check the robustness of final controller, we

considered, from each safe state in the controller, a trajec-
tory starting from it. For each state s occurring in a given
trajectory, we applied a random disturbance on the state
variables, generating a new state sp, and then we applied to
sp the rule associated to the controller state s′ that is nearest
to sp. A trajectory is robust if, applying the disturbances
above, it eventually reaches the goal state.

Disturb. Range Previous Methodology
for x,y Disturb. Robust

for θS ,θC Trajectories
± 0.1m ± 1◦ 74%
± 0.25m ± 1◦ <70%
± 0.5m ± 1◦ <70%

Disturb. Range New Methodology
for x,y Disturb. Robust

for θS ,θC Trajectories
± 0.1m ± 5◦ 95%
± 0.25m ± 5◦ 94%
± 0.5m ± 5◦ 91%

Table 1. Previous and new results about Con-
troller Robustness

As shown in Table 1, we obtain completely satisfying
percentages of robust trajectories: even in the presence of
big disturbances (0.5 meters for x and y and 5 degrees for θs

and θc) the controller robustness is more than 90%. More-
over, we have a significant improvement (more than 20%)
w.r.t. the results of our previous approach described in [8].

5 Conclusions

In this paper we described a probabilistic approach to the
robustness problem for numerical controllers. Our method-
ology exploits the model checking technology to identify
the most unsafe states of the system, i.e. the untractable
ones, thus allowing to focus the controller strengthening
only on the others. Indeed, we experimented this methodol-
ogy on the truck and trailer with obstacles avoidance case
study, obtaining a controller with a robustness degree of 91-
95%, even in the presence of big disturbances. This is a
completely satisfactory result for such a complex problem.

This algorithm is now part of our CGMurϕ tool [5],
which allows to generate robust and optimal controllers
through a completely automatic three-step highly paralleliz-
able process.

The tool offers a very versatile product to its potential
user. Indeed, thanks to the parallelization, she/he can exper-
iment, in a reasonable time, the controller generation with
different safety thresholds until the required controller ro-
bustness is obtained. Moreover, she/he can also use the ba-
sic optimal controller w.r.t. the unsafe states, at the cost of
a high precision.

Another point that deserves consideration is the size of
our numerical controllers. The corresponding tables con-
tain millions of states and have an average size of tens of
Megabytes. So, we are currently working on compression
techniques to obtain a reduction of the controller size with-
out affecting its performances.

References

[1] V. I. Arnold. Ordinary Differential Equations. Springer-
Verlag, Berlin, 1992.

[2] D. P. Bertsekas. Dynamic Programming and Optimal Con-
trol. Athena Scientific, 2005.

[3] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari.
Dynamic programming for constrained optimal control of
discrete-time linear hybrid systems. Automatica, 41:1709–
1721, 2005.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and
beyond. Inf. Comput., 98(2):142–170, 1992.

[5] CGMurphi Web Page. http://www.di.univaq.it/
magazzeni/cgmurphi.php.

[6] CMurphi Web Page. http://www.dsi.uniroma1.
it/˜tronci/cached.murphi.html.

[7] E. A. Coddington and N. Levinson. Theory of Ordinary Dif-
ferential Equations. McGrawHill, 1955.

[8] G. Della Penna, B. Intrigila, D. Magazzeni, I. Melatti,
A. Tofani, and E. Tronci. Automatic generation of op-
timal controllers through model checking techniques. to
be published in Informatics in Control, Automation and
Robotics III, Springer-Verlag (draft available at the url
http://www.di.univaq.it/magazzeni/cgmurphi.php.

[9] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and
M. Venturini Zilli. Exploiting transition locality in auto-
matic verification of finite state concurrent systems. STTT,
6(4):320–341, 2004.

[10] H. Kautz, W. Thomas, and M. Y. Vardi. 05241 executive
summary – synthesis and planning. In H. Kautz, W. Thomas,
and M. Y. Vardi, editors, Synthesis and Planning, number
05241 in Dagstuhl Seminar Proceedings, 2006.

[11] G. Kreisselmeier and T. Birkholzer. Numerical nonlinear
regulator design. IEEE Transactions on Automatic Control,
39(1):33–46, 1994.

[12] D. Nguyen and B. Widrow. The truck backer-upper: an ex-
ample of self learning in neural networks. In In Proceeding
of IJCNN., volume 2, pages 357–363, 1989.

[13] M. Papa, J. Wood, and S. Shenoi. Evaluating controller
robustness using cell mapping. Fuzzy Sets and Systems,
121(1):3–12, 2001.

