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Abstract— The  number  of  computation  cycles  used  for
simulation-based Verification of Cyber Physical Energy Systems
is outpacing the available throughput of simulation resources. In
this  paper,  a  methodology  for the  verification of  the CPES at
hand  with  the  aim  of  full  coverage  of  the  system’s  states  is
proposed. This approach relies on representing the unpredictable
behaviour  of  the  environment  in  order  to  cover  all  feasible
possible scenarios. Processed by JModelica, the simulation results
are  covering  the  system’s  complete  dynamic  behaviour.
Simulation  by  complete  state  space  covering  guarantees  the
verification results  to  be  sound for  every  possible  state  of  the
system  under  verification.  The  application  to  Photovoltaic
circuits,  specifically  the  Distributed  Maximum  Power  Point
Tracking, shows the feasibility of the approach.
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I.  INTRODUCTION 

The  complexity  of  the  simulation  models  of  the  dynamic
systems  is  scaling  exponentially,  and  hence  the  amount  of
computation resource required to explore all of the states of
these  type  of  systems  is  scaling  exponentially.  As
consequence,  even  the  simplest  designs  of  today  are
impossible  to  completely  simulate.  Given  that  simulation
resources  are  more  or  less  limited,  the  verification  of  each
system is becoming less and less exhaustive. 
In  this  work,  we  consider  the  system  modeled  as  state
machines.  Intuitively,  this modeling scheme is based on the
assumption that each run of the system can be described by a
(possibly  infinite)  sequence  of  discrete  state  changes.  The
model then consists of a finite amount of information defining
the initial state of the system, as well as all the possible state
changes. A simple way of checking the correctness of such a
model is to explore its state space. Harshly speaking, the idea
is to check precisely all the possible situations that can arise
during the possible executions of the model. For instance the
works introduced in [3, 4, 5] to formalize system requirements

and  like  those  in  [6,  7,  8]  to  define  admissible  operating
scenarios.
To this end, we present an approach for performing the state-
space exploration of systems with an infinite state space with a
relevant case study of Cyber Physical Energy System (CPES)
for the Distributed Maximum Power Point Tracking (DMPPT)
system  built  out  of  the  Perturb  and  Observe  (P&O)  based
Maximum Power Point Tracking (MPPT) circuit, the model of
the system is presented in [9].
The paper is organized as follows: Section II presents our sys-
tem’s model. Section III describes the adopted approach to ex-
plore the state-space of  the system at  hand. The section IV
gives  the  experimentation  results.  The  last  section  offers  a
summary of the realised work and the future enhancement that
can be accomplished.

II. CASE STUDY :

The  models  we  study  are  primarily  about  dynamics,  the
evolution  of  the  DMPPT  [1,  2]  system  state  in  time.  Our
purpose is to verify if our system is able to minimize the loss
of  produced  power  when  the  irradiance  of  the  panels  is
changing frequently in one hand, in the other hand, to check if
the system converges to a desired behaviour under the actions
of the controller. The system is illustrated in Fig.1.

FIGURE 1: THE MODEL OF THE CPES
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A. Physical system:

Physical  modeling deals with the expression of the physical
system consisting of plant  and actuators  in mathematical  or
logical  terms.  Continuous  dynamics  modeling  is  required
since we want to know how the PS regulates the production of
energy  in  function  of  the  irradiance  variability.  In  the
modeling  of  the  DMPPT system,  the  model  of  the  overall
circuit is composed by a set of physical components: the solar
cells,  the photovoltaic  panel,  a  dc/dc  converter  and  a  dc/ac
inverter  (see  Fig.  2).  We  use  an  equation-based  modeling
approach to express the physical dynamics of the circuit. As
usual, the output current (I) of each solar cell is computed by
solving the Kirchhoff’s law:
 I = Iph – Ir · q·exp ((V +I·Rs)/η·k·T) – 1 – V + I · Rs Rp 
where  V is  the  output  voltage  of  the  cell,  Iph is  the
photocurrent, Ir is the saturation current, Rs is the resistance in
series, Rp is the resistance in parallel, q is the electrical charge
(1.6 × 10−19 C),  η is the p-n junction quality factor and k is
the Boltzmann constant. The figure below exhibit the physical
system 

FIGURE 2: THE PHYSICAL MODEL OF THE CPES.

B. Control algorithm:

In our approach to model the CPES, two controls are adopted:
the  first  control  is  the  Maximum  Power  Point  Tracking
(MPPT)  based  on  the  P&O  method.  This  operates  by
periodically incrementing or decrementing the output terminal
voltage  of  the  photovoltaic  cell  and  comparing  the  power
obtained in the current cycle with the power in the previous
cycle  (in  [1]  the  MPPT  control  is  discussed  in  details).
However, the main control of our design consists in adapting
the  switching  mode  (duty  cycle)  of  the  dc/dc  converter
according to the current of the connected panel (I_pan) and the
output  current  of  the  converter  (I_out).  We have  modelled
each  plant  in  such a way that  the software  modules  of  the
converter communicates the I_out value to the other modules.
In this way, each software module of the converter can detect
the  state  in  which  the  others  are  into  and  adapt  its  state
accordingly.  This  is  crucial  for  our  verification  purposes.
More precisely,  this  control  depends on the computation of
I_out and of I_pan and depending on the entered values, the
switching  mode  is  determined.  The  output  voltage  of  the
converter (V_out) is computed which modifies the switching
frequency of the converter by calculating a new value of the
MPPT duty cycle.

C. Cyber system:

As said in the previous section, the objective of the controller
is to provide two main parameters  to harvest  the maximum
energy under different environment conditions, the switching
mode and the computation of the output voltage. According to
[2] there are four possible states of the DMPPT system. 
First the MPPT state, which is the desired working way of the
dc/dc converter. In this case, the output voltage is in the range
between  (V_max)  and  (V_min).  This  protection  measure  is
realized by modeling a blocking diode. The converter in this
mode switches according to the computed value of the duty
cycle. The second state is the CUT-OFF: this typically occurs
when the converters  are connected  to un-shaded panels  and
generates much more power than shaded ones; the converter
still switches and the output voltage is computed as follows:
V_out = V_max. The third state is the PASS-THROUGH: to
boost  converters  that  are  connected  to  shaded  panels  that
generates much less power than un-shaded ones; the converter
in  this  mode  stops  switching  and  the  panel  is  directly
connected  in  series  to  the  output.  The  output  voltage  is
computed as follows:  V_out = Vpv – Rs * I_out. The fourth
state is the BY-PASS: when the panel is heavily shaded and it
cannot be connected to the string because it would sink rather
than source power. In this mode, the converter bypasses the
panel  and  here  too  stops  switching.  The  output  voltage
equation  describing  this  mode is  V _out  = -  Rs* I_out.  In
particular,  once  the  control  algorithm  detects  the  mode,
according  to  the  values  of  the  currents,  the  formula  for
computing  V_out  is  communicated  to  the  plant,  which
modifies the value of the duty cycle, this way determining the
switching mode. If the control does not detect a change in the
values  of  the  currents,  then  the  output  voltage  remains
unmodified.

III.  SIMULATION METHODOLOGY:

The simulation methodology presented in this paper is aimed
at  improving  the  efficiency  of  the  system  level  simulation
using  environment  scenarios  generation.  Efficiency  may  be
observed as the level  of coverage divided by the simulation
work required to achieve the exploration of all system’s state
space. 

A. Coverage methodology:

The coverage requires detailed modeling of the dynamics of
the environment and a clear understanding of the interaction
between  the  dynamics  of  the  system  at  hand  and  its
environment  (Sun’s  irradiance).   We  have  represented  the
environment model as an infinite transition graph that allows
us  to  perform  a  Breadth-first  search  (BFS)  algorithm  to
traverse  all  the  nodes  of  the  environment  graph  in  a  well-
defined order exploring all likely irradiance scenarios used in
the parametrization of the simulations.

B. Estimation of the simulation coverage:

The  transition  graph  of  the  state  machine  defining  the
environment model can be used to generate all the admissible
irradiance-turnover sequences. Let n be the number of panels,



k the number of  changes of the irradiance values during the
simulation process, Z the set of the possible values assigned to
the irradiance, and p the cardinality of Z. The number of traces
is  (pn)k.   We  implemented  such  an  exhaustive  simulation
scenario generator within the environment model described in
the previous section. 

C. Computing the  steady states:

After  the  step  response  duration,  the  circuit  reaches  an
equilibrium (stationary state)  where  the effects  of  transients
periodic  are  no  longer  important.  The  dynamics  of  the
system’s  state  variables,  described  by I-V relationships  and
Kirchhoff’s  law,   are  a  periodically  varying  functions
assuming  values  around  a  so  called  operating  point.  The
steady state solution of the system is obtained by integrating
from  an  appropriate  initial  value  till  the  transients  get
stabilized,  generally  after  the  warm-up duration  of  the
simulation. Our technique to reach the steady state consists on
executing  the  simulations  of  a  given  environment  scenario
inside a feedback  loop initializing the state  variables  of the
current  simulation  Xi with  the  values  where  the  previous
simulation Xi-1 was stopped. At the end of every execution, we
quantize the obtained results via a moving average filter then
we  compare  the  resulting  values  with  the  already  done
simulations,  if a match reveals that at least two simulation’s
runs lead to identical states, the loop is interrupted saving the
state of the last simulation as the steady state.

D. Exploring the system’s state space:

To enable an effective coverage of all the system’s states, we
split  the simulation process  into two main phases.  First,  an
offline phase, where the environment model is generated and
it is given in input to the simulation function. Second, since
the size of a simulation state can easily take many GB of main
memory space, it is not possible to store too many states, even
resorting  to  the  secondary  storage  device.  Thus,  a  clever
strategy is needed to decide what are the states that have to be
kept. 
The  adopted  technique  consists  to  compare  the  set  of
evidenced states  during  the  steady  state  phase,  if  a  match
indicates  that  two  corresponding  scenarios  have  identical
steady  states,  the  system’s  state  is  saved  once  and  the
environment  parameters  defining  the  state  are  saved  into  a
data structure in which irradiance values and states machine
are associated defining new sequences of states (state paths). 
Using this association, the number of the states defining the
system decreases significantly thus reducing the system’s state
space complexity. Our approach withstands scenario explosion
by dodging as  much as possible revisiting already explored
system’s states.
The algorithm bellow describes the overall simulation process:

Algorithm 1 : Simulation process

Env_model = Generate environment model with the BFS 
foreach scenario in Env_model do 

res = simulate(scenario)

state = steady_state(res)
 if (state.match(state_machines)) then 

Store (state)
Associate(scenario , state_machine)

else 
Store_new(state)

end 

For example, let us suppose that our system described in the
figure below is defined by the set of states si and the transition
from a  state  to  another  is  done  by  the  changement  of  the
irradiance  of the photovoltaic  panels  value  represented  as  a
percentage  of  the  nominal  irradiance.

FIGURE 3: EXAMPLE OF SYSTEM’S STATES

After  the  execution  of  our  simulation  process,  a  new
correspondence  between  states  has  been  established  by
removing identical states and associating the irradiance values
to the remaining states. It stops when no further reduction can
be  applied.  The  following  figure  shows  the  resulted  state
machine:

FIGURE 4 : THE SYSTEM’S STATES AFTER THE TRANSFORMATION



IV. EXPERIMENTS

The simulations were conducted on JModelica.org [10], which
is  an  extensible  Modelica-based  open  source  platform  for
optimization,  simulation  and  analysis  of  complex  dynamic
systems.  The  JModelica.org  offers  a  Python  interface  that
enables users to use Python scripting to interact with Modelica
models.  The parameters used to configurate our simulations
are  defined  in  the  table  below.  We created  the  executable
model of our CPES in Modelica instantiating the photovoltaic
panel  equations,  the dynamic  irradiance  of  each  cell  of  the
panels,  the  feedback  control  of  the  MPPT and  the  discrete
control of the converter modes.

Parameters Values
Nominal Irradiation of the panels 1000 W/m2

Rs (series resistance) 0.11 Ω
Rp (parallel resistance) 148 Ω

T_amb 20 °C
I_ph_STC 7.7 A

T_STC 25 °C
T_NOCT 46 °C

Fs (Switching frequency if the
converter)

5^4

Ta(Sampling time of the MPPT
control)

0.01 s

Td(Sampling time of the mode
control)

0.05 s

V_max (0.8 * cell’s number) V
V_min (0.05 * cell’s number) V

TABLE 1 : PARAMETERS OF THE SIMULATIONS CONFIGURATION 

 The  state  variables  of  our  CPES  are:  I_pan the  current
generated by the photovoltaic panel, I_l the current traversing
the inductance of the converter, I_out_conv the output current
of the converter and I_out the global current produced by the
circuit.   Once the model has  been  compiled,  we obtain the
simulation  executable  code.  The  input  to  this  code  is  the
irradiance  model  that  is  generated  in  Python language.  The
irradiance  values  are  defined  as  percentage  of  the  nominal
irradiance equal to 1000 W/m2; it varies with a step of 10% in
an  interval  going  from  0%  to  100%.  The  first  step  of  the
execution is to calculate the steady state of the system under a
given value of the irradiance by iterating the simulations and
comparing  the  values  of  the  current  inside  and  outside  the
circuit, the points describing this process are:

- Simulate  for  the  first  iteration  with  (I_pan,  I_l,
I_out_conv,  I_out)  =  (0,  0,  0,  0).  The  results  are
saved in a text file in a directory called /SteadyState. 

-  The next iterations start the simulation by initializing
the values of the circuit’s currents with the values of
the previous simulations by taking the values  from
the  text  file.  (I_pan,  I_l,  I_out_conv,  I_out)  =
(prev_I_pan,  prev_I_l,  prev_I_out_conv,
prev_I_out). 

- At  the  end  of  every  simulation,  we  compare  the
resulted  values  with  the  values  of  the  previous
simulations: 

  Algorithm 2 : Steady state computation

for i in range(0,k) do 
       if (I_pan = prev_I_pan [i] and I_l = prev_I_l [i]  
           and I_out_conv = prev_ I_out_conv [i]  
           and I_out = prev_ I_out [i]  )then 

print "steady state reached ";
save (/SteadyState /simulation_results.txt);
break;

else:
       next_simulation();

 end 

Where k is the number of all the simulations already done. 
When  the  steady state  is  found,  the  loop  is  exited  and  the
actual  irradiance  values  and  the  results  of  the  simulation
containing all the components of the system (e.g. value of the
duty cycle,  switching frequency of  the converter)  are saved
into  a  subdirectory  /S of  the  system’s  states  directory
called /SysState. 
The  second  step  of  the  process  is  to  explore  the  possible
system’s state, which means identify and store all the possible
resulting values of  the circuit’s components  under whatever
value of the irradiance. 
The  /SysState directory contains also a text file (index.txt) in
which the state system’s state table is described.  This table is
created  when the first  steady state  is  reached  and stored.  It
contains an association between the results of every system’s
state and the irradiance values. 
The steps of this process are: 

  Algorithm 3 : System’s state exploration

  for j in range(0,l) do
         if (I_pan = ss_I_pan [j] and I_l = ss_I_l [j]  
             and I_out_conv = ss_ I_out_conv [j]  
             and I_out = ss_ I_out [j]) then 
                    print "There is a match between states";
                   save (/SysState/S/simulation_results.txt);
                   update(/SysState/index.txt, S, S[j]);     
           else:
                print "There is NO match between states";
                    save (/SysState/S/simulation_results.txt);
                   update(/SysState/index.txt, S)
   end 

Where l is the number of all the states found, ss_I_pan is the
current panel, ss_ I_l is the inductance current, ss_ I_out_conv
is the current outside the converter and ss_ I_out is the current
outside the circuit  on the system’s states.  The iteration will
terminate when all the likely irradiance scenarios match with
at least one state. 



A part of the resulting CPES states table is presented below,
the  first  line  represents  the  irradiance  values  and  the  first
column values are the initial states of each simulation. Each
(i,j)  entry  is  the  value  of  the  transition  from state  Si  with
irradiance of the system Sj. For example, the system starting
in state S2 with an irradiance of 60% transits to the state S109.

FIGURE 5 : CPES STATES TABLE

Generally, the simulation runtime is highly dependent on the
computer’s  performance  and  specifications,  where  the
simulation  tool  is  run,  and  solver  options.  In  this  paper,  a
computer with a 16-core Intel  Xeon@2.7GHz machine with
32-Gigabyte  available  memory  with  a  fixed-time  step  is
utilized as a computational medium for simulations. 
The  number  of  states  explored  using  our  approach  is  132
states. The process took 65 hours to simulate for one second of
the simulation time. The size of the results obtained is about
70 GB. The resources committed for simulating our approach
are less important than simulating all the possible scenarios of
the  environment.  Moreover,  the  platform  JModelica.org

permits  us  to  use  the  Functional  Mock-up  Interface  (FMI)
which is a tool independent standard to support both model
exchange  and  co-simulation  of  dynamic  models  using  a
combination  of  xml-files  and  compiled  C-code  [11].  This
approach  allows  us  also  the  definition  of  methods  and
techniques  to  support  the  reuse  and  interoperability  of
simulation  models  and  their  execution  on  distributed
computing environment. 

V. CONCLUSION AND FUTURE WORKS

The  central  theme  of  this  paper  is  a  new  approach  for
performing  the  state-space  exploration  of  Cyber  physical
energy systems with an infinite  state  space modeled by the
sun’s  irradiance.  The  future  works  concern  the  use  of
Temporal  Logics  to  express  the  properties  specification.
Furthermore, we plan to develop a simulation-based algorithm
that  verifies  whether  all  the  system  trajectories  satisfy  the
desired temporal property. 
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