
A Methodology for a Complete Simulation of Cyber-
Physical Energy Systems

Youssef Driouich
Dip.to di Ingegneria dell'Informazione ed Elettrica e

Matematica Applicata (DIEM)
Università degli Studi di Salerno, Italy

ydriouich@unisa.it

Mimmo Parente
Dip.to Scienze Statististiche & Innovation of

Systems (DISA-MIS)
Università degli Studi di Salerno, Italy

 parente@unisa.it

Enrico Tronci
Dip.to di Informatica

Università degli Studi di Roma,
"La Sapienza", Italy

tronci@di.uniroma1.it

Abstract— The number of computation cycles used for
simulation-based Verification of Cyber Physical Energy Systems
is outpacing the available throughput of simulation resources. In
this paper, a methodology for the verification of the CPES at
hand with the aim of full coverage of the system’s states is
proposed. This approach relies on representing the unpredictable
behaviour of the environment in order to cover all feasible
possible scenarios. Processed by JModelica, the simulation results
are covering the system’s complete dynamic behaviour.
Simulation by complete state space covering guarantees the
verification results to be sound for every possible state of the
system under verification. The application to Photovoltaic
circuits, specifically the Distributed Maximum Power Point
Tracking, shows the feasibility of the approach.

Keywords-component: Cyber-Physical Energy Systems;
Simulation; Simulation-based Verification; JModelica; Distributed
Maximum Power Point Tracking; Photovoltaic circuit; System
Under Verification

I. INTRODUCTION

The complexity of the simulation models of the dynamic
systems is scaling exponentially, and hence the amount of
computation resource required to explore all of the states of
these type of systems is scaling exponentially. As
consequence, even the simplest designs of today are
impossible to completely simulate. Given that simulation
resources are more or less limited, the verification of each
system is becoming less and less exhaustive.
In this work, we consider the system modeled as state
machines. Intuitively, this modeling scheme is based on the
assumption that each run of the system can be described by a
(possibly infinite) sequence of discrete state changes. The
model then consists of a finite amount of information defining
the initial state of the system, as well as all the possible state
changes. A simple way of checking the correctness of such a
model is to explore its state space. Harshly speaking, the idea
is to check precisely all the possible situations that can arise
during the possible executions of the model. For instance the
works introduced in [3, 4, 5] to formalize system requirements

and like those in [6, 7, 8] to define admissible operating
scenarios.
To this end, we present an approach for performing the state-
space exploration of systems with an infinite state space with a
relevant case study of Cyber Physical Energy System (CPES)
for the Distributed Maximum Power Point Tracking (DMPPT)
system built out of the Perturb and Observe (P&O) based
Maximum Power Point Tracking (MPPT) circuit, the model of
the system is presented in [9].
The paper is organized as follows: Section II presents our sys-
tem’s model. Section III describes the adopted approach to ex-
plore the state-space of the system at hand. The section IV
gives the experimentation results. The last section offers a
summary of the realised work and the future enhancement that
can be accomplished.

II. CASE STUDY :

The models we study are primarily about dynamics, the
evolution of the DMPPT [1, 2] system state in time. Our
purpose is to verify if our system is able to minimize the loss
of produced power when the irradiance of the panels is
changing frequently in one hand, in the other hand, to check if
the system converges to a desired behaviour under the actions
of the controller. The system is illustrated in Fig.1.

FIGURE 1: THE MODEL OF THE CPES

978-1-5386-6405-6/18/$31.00 ©2018 IEEE

A. Physical system:

Physical modeling deals with the expression of the physical
system consisting of plant and actuators in mathematical or
logical terms. Continuous dynamics modeling is required
since we want to know how the PS regulates the production of
energy in function of the irradiance variability. In the
modeling of the DMPPT system, the model of the overall
circuit is composed by a set of physical components: the solar
cells, the photovoltaic panel, a dc/dc converter and a dc/ac
inverter (see Fig. 2). We use an equation-based modeling
approach to express the physical dynamics of the circuit. As
usual, the output current (I) of each solar cell is computed by
solving the Kirchhoff’s law:
 I = Iph – Ir · q·exp ((V +I·Rs)/η·k·T) – 1 – V + I · Rs Rp
where V is the output voltage of the cell, Iph is the
photocurrent, Ir is the saturation current, Rs is the resistance in
series, Rp is the resistance in parallel, q is the electrical charge
(1.6 × 10−19 C), η is the p-n junction quality factor and k is
the Boltzmann constant. The figure below exhibit the physical
system

FIGURE 2: THE PHYSICAL MODEL OF THE CPES.

B. Control algorithm:

In our approach to model the CPES, two controls are adopted:
the first control is the Maximum Power Point Tracking
(MPPT) based on the P&O method. This operates by
periodically incrementing or decrementing the output terminal
voltage of the photovoltaic cell and comparing the power
obtained in the current cycle with the power in the previous
cycle (in [1] the MPPT control is discussed in details).
However, the main control of our design consists in adapting
the switching mode (duty cycle) of the dc/dc converter
according to the current of the connected panel (I_pan) and the
output current of the converter (I_out). We have modelled
each plant in such a way that the software modules of the
converter communicates the I_out value to the other modules.
In this way, each software module of the converter can detect
the state in which the others are into and adapt its state
accordingly. This is crucial for our verification purposes.
More precisely, this control depends on the computation of
I_out and of I_pan and depending on the entered values, the
switching mode is determined. The output voltage of the
converter (V_out) is computed which modifies the switching
frequency of the converter by calculating a new value of the
MPPT duty cycle.

C. Cyber system:

As said in the previous section, the objective of the controller
is to provide two main parameters to harvest the maximum
energy under different environment conditions, the switching
mode and the computation of the output voltage. According to
[2] there are four possible states of the DMPPT system.
First the MPPT state, which is the desired working way of the
dc/dc converter. In this case, the output voltage is in the range
between (V_max) and (V_min). This protection measure is
realized by modeling a blocking diode. The converter in this
mode switches according to the computed value of the duty
cycle. The second state is the CUT-OFF: this typically occurs
when the converters are connected to un-shaded panels and
generates much more power than shaded ones; the converter
still switches and the output voltage is computed as follows:
V_out = V_max. The third state is the PASS-THROUGH: to
boost converters that are connected to shaded panels that
generates much less power than un-shaded ones; the converter
in this mode stops switching and the panel is directly
connected in series to the output. The output voltage is
computed as follows: V_out = Vpv – Rs * I_out. The fourth
state is the BY-PASS: when the panel is heavily shaded and it
cannot be connected to the string because it would sink rather
than source power. In this mode, the converter bypasses the
panel and here too stops switching. The output voltage
equation describing this mode is V _out = - Rs* I_out. In
particular, once the control algorithm detects the mode,
according to the values of the currents, the formula for
computing V_out is communicated to the plant, which
modifies the value of the duty cycle, this way determining the
switching mode. If the control does not detect a change in the
values of the currents, then the output voltage remains
unmodified.

III. SIMULATION METHODOLOGY:

The simulation methodology presented in this paper is aimed
at improving the efficiency of the system level simulation
using environment scenarios generation. Efficiency may be
observed as the level of coverage divided by the simulation
work required to achieve the exploration of all system’s state
space.

A. Coverage methodology:

The coverage requires detailed modeling of the dynamics of
the environment and a clear understanding of the interaction
between the dynamics of the system at hand and its
environment (Sun’s irradiance). We have represented the
environment model as an infinite transition graph that allows
us to perform a Breadth-first search (BFS) algorithm to
traverse all the nodes of the environment graph in a well-
defined order exploring all likely irradiance scenarios used in
the parametrization of the simulations.

B. Estimation of the simulation coverage:

The transition graph of the state machine defining the
environment model can be used to generate all the admissible
irradiance-turnover sequences. Let n be the number of panels,

k the number of changes of the irradiance values during the
simulation process, Z the set of the possible values assigned to
the irradiance, and p the cardinality of Z. The number of traces
is (pn)k. We implemented such an exhaustive simulation
scenario generator within the environment model described in
the previous section.

C. Computing the steady states:

After the step response duration, the circuit reaches an
equilibrium (stationary state) where the effects of transients
periodic are no longer important. The dynamics of the
system’s state variables, described by I-V relationships and
Kirchhoff’s law, are a periodically varying functions
assuming values around a so called operating point. The
steady state solution of the system is obtained by integrating
from an appropriate initial value till the transients get
stabilized, generally after the warm-up duration of the
simulation. Our technique to reach the steady state consists on
executing the simulations of a given environment scenario
inside a feedback loop initializing the state variables of the
current simulation Xi with the values where the previous
simulation Xi-1 was stopped. At the end of every execution, we
quantize the obtained results via a moving average filter then
we compare the resulting values with the already done
simulations, if a match reveals that at least two simulation’s
runs lead to identical states, the loop is interrupted saving the
state of the last simulation as the steady state.

D. Exploring the system’s state space:

To enable an effective coverage of all the system’s states, we
split the simulation process into two main phases. First, an
offline phase, where the environment model is generated and
it is given in input to the simulation function. Second, since
the size of a simulation state can easily take many GB of main
memory space, it is not possible to store too many states, even
resorting to the secondary storage device. Thus, a clever
strategy is needed to decide what are the states that have to be
kept.
The adopted technique consists to compare the set of
evidenced states during the steady state phase, if a match
indicates that two corresponding scenarios have identical
steady states, the system’s state is saved once and the
environment parameters defining the state are saved into a
data structure in which irradiance values and states machine
are associated defining new sequences of states (state paths).
Using this association, the number of the states defining the
system decreases significantly thus reducing the system’s state
space complexity. Our approach withstands scenario explosion
by dodging as much as possible revisiting already explored
system’s states.
The algorithm bellow describes the overall simulation process:

Algorithm 1 : Simulation process

Env_model = Generate environment model with the BFS
foreach scenario in Env_model do

res = simulate(scenario)

state = steady_state(res)
 if (state.match(state_machines)) then

Store (state)
Associate(scenario , state_machine)

else
Store_new(state)

end

For example, let us suppose that our system described in the
figure below is defined by the set of states si and the transition
from a state to another is done by the changement of the
irradiance of the photovoltaic panels value represented as a
percentage of the nominal irradiance.

FIGURE 3: EXAMPLE OF SYSTEM’S STATES

After the execution of our simulation process, a new
correspondence between states has been established by
removing identical states and associating the irradiance values
to the remaining states. It stops when no further reduction can
be applied. The following figure shows the resulted state
machine:

FIGURE 4 : THE SYSTEM’S STATES AFTER THE TRANSFORMATION

IV. EXPERIMENTS

The simulations were conducted on JModelica.org [10], which
is an extensible Modelica-based open source platform for
optimization, simulation and analysis of complex dynamic
systems. The JModelica.org offers a Python interface that
enables users to use Python scripting to interact with Modelica
models. The parameters used to configurate our simulations
are defined in the table below. We created the executable
model of our CPES in Modelica instantiating the photovoltaic
panel equations, the dynamic irradiance of each cell of the
panels, the feedback control of the MPPT and the discrete
control of the converter modes.

Parameters Values
Nominal Irradiation of the panels 1000 W/m2

Rs (series resistance) 0.11 Ω
Rp (parallel resistance) 148 Ω

T_amb 20 °C
I_ph_STC 7.7 A

T_STC 25 °C
T_NOCT 46 °C

Fs (Switching frequency if the
converter)

5^4

Ta(Sampling time of the MPPT
control)

0.01 s

Td(Sampling time of the mode
control)

0.05 s

V_max (0.8 * cell’s number) V
V_min (0.05 * cell’s number) V

TABLE 1 : PARAMETERS OF THE SIMULATIONS CONFIGURATION

 The state variables of our CPES are: I_pan the current
generated by the photovoltaic panel, I_l the current traversing
the inductance of the converter, I_out_conv the output current
of the converter and I_out the global current produced by the
circuit. Once the model has been compiled, we obtain the
simulation executable code. The input to this code is the
irradiance model that is generated in Python language. The
irradiance values are defined as percentage of the nominal
irradiance equal to 1000 W/m2; it varies with a step of 10% in
an interval going from 0% to 100%. The first step of the
execution is to calculate the steady state of the system under a
given value of the irradiance by iterating the simulations and
comparing the values of the current inside and outside the
circuit, the points describing this process are:

- Simulate for the first iteration with (I_pan, I_l,
I_out_conv, I_out) = (0, 0, 0, 0). The results are
saved in a text file in a directory called /SteadyState.

- The next iterations start the simulation by initializing
the values of the circuit’s currents with the values of
the previous simulations by taking the values from
the text file. (I_pan, I_l, I_out_conv, I_out) =
(prev_I_pan, prev_I_l, prev_I_out_conv,
prev_I_out).

- At the end of every simulation, we compare the
resulted values with the values of the previous
simulations:

 Algorithm 2 : Steady state computation

for i in range(0,k) do
 if (I_pan = prev_I_pan [i] and I_l = prev_I_l [i]
 and I_out_conv = prev_ I_out_conv [i]
 and I_out = prev_ I_out [i])then

print "steady state reached ";
save (/SteadyState /simulation_results.txt);
break;

else:
 next_simulation();

 end

Where k is the number of all the simulations already done.
When the steady state is found, the loop is exited and the
actual irradiance values and the results of the simulation
containing all the components of the system (e.g. value of the
duty cycle, switching frequency of the converter) are saved
into a subdirectory /S of the system’s states directory
called /SysState.
The second step of the process is to explore the possible
system’s state, which means identify and store all the possible
resulting values of the circuit’s components under whatever
value of the irradiance.
The /SysState directory contains also a text file (index.txt) in
which the state system’s state table is described. This table is
created when the first steady state is reached and stored. It
contains an association between the results of every system’s
state and the irradiance values.
The steps of this process are:

 Algorithm 3 : System’s state exploration

 for j in range(0,l) do
 if (I_pan = ss_I_pan [j] and I_l = ss_I_l [j]
 and I_out_conv = ss_ I_out_conv [j]
 and I_out = ss_ I_out [j]) then
 print "There is a match between states";
 save (/SysState/S/simulation_results.txt);
 update(/SysState/index.txt, S, S[j]);
 else:
 print "There is NO match between states";
 save (/SysState/S/simulation_results.txt);
 update(/SysState/index.txt, S)
 end

Where l is the number of all the states found, ss_I_pan is the
current panel, ss_ I_l is the inductance current, ss_ I_out_conv
is the current outside the converter and ss_ I_out is the current
outside the circuit on the system’s states. The iteration will
terminate when all the likely irradiance scenarios match with
at least one state.

A part of the resulting CPES states table is presented below,
the first line represents the irradiance values and the first
column values are the initial states of each simulation. Each
(i,j) entry is the value of the transition from state Si with
irradiance of the system Sj. For example, the system starting
in state S2 with an irradiance of 60% transits to the state S109.

FIGURE 5 : CPES STATES TABLE

Generally, the simulation runtime is highly dependent on the
computer’s performance and specifications, where the
simulation tool is run, and solver options. In this paper, a
computer with a 16-core Intel Xeon@2.7GHz machine with
32-Gigabyte available memory with a fixed-time step is
utilized as a computational medium for simulations.
The number of states explored using our approach is 132
states. The process took 65 hours to simulate for one second of
the simulation time. The size of the results obtained is about
70 GB. The resources committed for simulating our approach
are less important than simulating all the possible scenarios of
the environment. Moreover, the platform JModelica.org

permits us to use the Functional Mock-up Interface (FMI)
which is a tool independent standard to support both model
exchange and co-simulation of dynamic models using a
combination of xml-files and compiled C-code [11]. This
approach allows us also the definition of methods and
techniques to support the reuse and interoperability of
simulation models and their execution on distributed
computing environment.

V. CONCLUSION AND FUTURE WORKS

The central theme of this paper is a new approach for
performing the state-space exploration of Cyber physical
energy systems with an infinite state space modeled by the
sun’s irradiance. The future works concern the use of
Temporal Logics to express the properties specification.
Furthermore, we plan to develop a simulation-based algorithm
that verifies whether all the system trajectories satisfy the
desired temporal property.

REFERENCES

[1] M. De Cristofaro; N. Femia; M. Migliaro; G. Petrone “Minimum
Computing Adaptive MPPT Control” ISIE 2014, Pages: 1384 - 1389,
DOI: 10.1109/ISIE.2014.6864816.

[2] M. De Cristofaro; G. Di Capua; N. Femia; G. Petrone; G. Spagnuolo; D.
Toledo “Models and Methods for Energy Productivity Analysis of PV
Systems” INDIN’15, Pages: 1153 – 1158, DOI:
10.1109/INDIN.2015.7281898

[3] A. Murano, M. Napoli, M. Parente. “Program Complexity in
Hierarchical Module Checking”, LPAR'08, ISBN: 978-3-540-89438-4.

[4] A. Ferrante, M. Napoli, M. Parente, “Model-Checking for Graded CTL”,
Fundamenta Informaticae, 96(3), 323-339, 2009.

[5] A. Ferrante, M. Napoli, M. Parente, “Graded-CTL: Satisfiability and
Symbolic Model Checking”, Int.l Conf. on Formal Engineering
Methods, (ICFEM) 2009: 306-325, Lecture Notes in Computer Science
5885, Springer 2009, ISBN 978-3-642-10372-8.

[6] T. Mancini; F. Mari; A. Massini; I. Melatti; E. Tronci “SyLVaaS:
System Level Formal Verification as a Service”, PDP 2015 Pages: 476 -
483, DOI: 10.1109/PDP.2015.119

[7] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci
“System level Formal Verification via Model Checking Driven
Simulation”, CAV 2013, DOI: 10.1007/978-3-642-39799-8_21

[8] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, “System Level
Formal Verification via Distributed Multi-Core Hardware in the Loop
Simulation”, PDP 2014, DOI: 10.1109/PDP.2014.32

[9] Y. Driouich; M. Parente; E. Tronci, “Modeling cyber-physical systems
for automatic verification”, SMACD 2017, DOI:
10.1109/SMACD.2017.7981621

[10] http://www.jmodelica.org/

[11] http://fmi-standard.org/

