Synthesizing Control Software from Boolean Relations

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci
Department of Computer Science
Sapienza University of Rome
Via Salaria 113, 00198 Rome, ltaly
Email: {mari,melatti,salvo,trongi@di.uniromal.it

Abstract—Many software as well digital hardware automatic
synthesis methods define the set of implementations meeting
the given system specifications with a boolean relatiot. In
such a context a fundamental step in the software (hardware)
synthesis process is finding effective solutions to the functional
equation defined by K. This entails finding a (set of) boolean
function(s) F (typically represented using OBDDs, Ordered
Binary Decision Diagrams) such that: 1) for all = for which K
is satisfiable, K (z, F'(x)) = 1 holds; 2) the implementation of
F is efficient with respect to given implementation parameters
such as code size or execution time. While this problem has
been widely studied in digital hardware synthesis, little has
been done in a software synthesis context. Unfortunately, the
approaches developed for hardware synthesis cannot be directly
used in a software context. This motivates investigation of
effective methods to solve the above problem whe#' has to
be implemented with software. In this paper, we present an
algorithm that, from an OBDD representation for K, generates
a C code implementation for F' that has the same size as the
OBDD for F and a worst case execution time linear innr,
being n = |z| the number of input arguments for functions in
F and r the number of functions in F'. Moreover, a formal
proof of the proposed algorithm correctness is also shown.
Finally, we present experimental results showing effectiveness
of the proposed algorithm.

Keywords-Control Software Synthesis; Embedded Systems;
Model Checking

I. INTRODUCTION

implementation parameters such as code size or execution
time.

While this problem has been widely studied in digital
hardware synthesis [3][4], little has been done in a sofwar
synthesis context. This is not surprising since software
synthesis from formal specifications is still in its infancy
Unfortunately the approaches developed for hardware syn-
thesis cannot be directly used in a software context. In
fact, synthesis methods targeting a hardware implementati
typically aim at minimizing the number of digital gates and
of hierarchy levels. Since in the same hierarchy level gates
output computation iparallel, the hardware implementation
WCET (Worst Case Execution Times given by the number
of levels. On the other hand, a software implementation will
have tosequentiallycompute the gates outputs. This implies
that the software implementation WCET is the number of
gates used, while a synthesis method targeting a software
implementation may obtain a better WCET. This motivates
investigation of effective methods to solve the above bl
when F' has to be implemented with software.

A. Our Contribution

In this paper, we present an algorithm that, from an
OBDD representation fof, effectively generates a C code
implementation forK that has the same size as the OBDD

Many software as well digital hardware automatic syn-for £ and a WCET linear in linear inr, beingn = |z| the

thesis methods define the set of implementations meetin

the given system specifications with a boolean relafion
Given ann-bits (resp.,r-bits) binary encodingof states

(resp.,actiong of the system as it is usually done in Model

Checking [7] (see Sect. IlI-B), such relation typically ¢sk
as input then-bits encoding of a state and ther-bits
encoding of a proposed action to be performagdnd returns

true (i.e., 1) if and only if the system specifications are met

when performing action: in statex. In such a context, a

Eumber of bits encoding stateandr = |u| the number of
its encoding action. This is done in two steps:
1) from an OBDD representation fak we effectively
compute an OBDD representation By following the
lines of [5];
2) we generate a C code implementation fowith the
above described properties of code size and WCET.
We formally prove both steps 1 and 2 to be correct.
This allows us to synthesize correct-by-construcibon-

fundamental step in the software (hardware) synthesis prdrol software provided thatK is provably correct with

cess is finding effective solutions to the functional equrati
defined byK, i.e., K(x,u) = 1. This entails finding a tuple
of boolean functiong” = (f1, ..., f.) (typically represented
using OBDDs, Ordered Binary Decision Diagramg$2])

such that 1) for allz for which K is satisfiable (i.e., it
enables at least one actiordy,(x, F'(z)) = 1 holds, and 2)
the implementation of” is efficient with respect to given

respect to initial formal specifications. This is the case
of [6], where an algorithm is presented to synthesi¥e
starting from a) the formal specification of a Discrete-Time
Linear Hybrid System@TLHS in the following) modeling

the system (plant) to be controlled, b) its system level
formal specifications (specifying the goal to be reached
and the safe states to be traversed in order to reach it)

Specifications Plant Model
I (DTLHS)
| |

Implementation System Level Formal
Specification Specification

Sten 1 (quantization schema) (Liveness and Safety)

ep

Control |
Abstraction | e N
Finite LTS control

Problem

Symbolic strong
controller synthesis

Most general
Optimal controller

-
Control Software

G J

C Code generation
from OBDD
automaton

Figure 1. Control Software Synthesis Flow

and c) the quantization schema (i.e., the number of bitsvill not be exploited. In our approach, we exploit inter-
available for analog-to-digital conversion). The framewvo OBDDs nodes sharing, thus the control software we generate
in [6] is depicted in Figure 1. With respect to Figure 1, thefully takes advantage of OBDDs compression.
approach proposed in this paper may be used to perform step Finally, we present experimental results showing effec-
3. Thus, this methodology allows a correct-by-construrctio tiveness of the proposed algorithm. As an example, in less
control software to be synthesized, starting from formalthan 1 second and within 350 MB of RAM we are able
specifications for DTLHSs. to synthesize the control software for a functiéh of 25
Note that the problem of solving the functional equationboolean variables, divided in = 20 state variables and
K(x,F(z)) = 1 with respect toF is trivially decidable, = = 5 action variables, represented by an OBDD with
since there are finitely many. However, trying to explicitly ~ about6.6 x 10* nodes. SuchK represents the set of correct
enumerate allF’ requires timeQ2(272"). By using OBDD- implementations for a real-world system, namely a multi-
based computations, we are able to compften time input buck DC/DC converter [8], obtained as described
O(r2™) in the worst case. However, in many interestingin [6]. The control software we synthesize in such a case
cases OBDD sizes and computations are much lower thahas aboutl.7 x 10* lines of code, whilst a control software
the theoretical worst case (e.g., in Model Checking applicanot taking into account OBDDs nodes sharing would have

tions, see [7]). had about2.1 x 10* lines of code. Thus, we obtain 20%
Furthermore, once the OBDD representation forhas ~ 9ain towards a trivial implementation. _
been computed, a trivial implementation &f could use This paper is organized as follows. In Section IIl we

a look-up table in RAM. While this solution would yield give the basic notions to understand our approach. In Sec-
a better WCET, it would imply aQ(r2") RAM usage. tion IV we formally define the problem we want to solve.
Unfortunately, implementations fdr in real-world cases are In Section V we give definition and main properties of
typically implemented on microcontrollers (this is theeas COBDDs (i.e., Complemented edges OBDD®n which
e.g., forembedded systeinSince microcontrollers usually Our approach is based. Section VI describes the algorithms
have a small RAM, the look-up table based solution is notur approach consists of, whilst Section VIl proves it to be
feasible in many interesting cases. The approach we preseg@rrect. Section VIII presents experimental results shgwi

here will rely on OBDDs compression to overcome sucheffectiveness of the proposed approach. Finally, Section |
obstruction. presents the concluding remarks and gives some ideas for

Moreover, F : B" — B’ is composed by- boolean future work.
functions, thus it is represented byOBDDs. Such OBDDs
typically share nodes among them. If a trivial implementa-
tion of F' in C code is used, i.e., each OBDD is translated as This paper is an extended version of [1]. With respect
a stand-alone C function, such inter-OBDDs nodes sharingp [1], this paper provides more details in the introduction

II. RELATED WORK

and in the related work description, extends basic defini- Finally, we note that our work lies in the wider area of
tions and algorithms descriptions, shows omitted proofs fosoftware synthesis, which has been widely studied since a
theorems and provides a revised version of the experimenttong time in many contexts. For a survey on such (non-
Synthesis of boolean functiong’ satisfying a given control) software synthesis works, see [13][14].
boolean relationk” in a way such thaf{(x, F(z)) = 1 is
also addressed in [3]. However, [3] targets a hardware set-
ting, whereas we are interested in a software implememtatio In the following, we denote witlB = {0, 1} the boolean
for I. Due to structural differences between hardware andlomain, where) stands forfalse and 1 for true. We will
software based implementations (see the discussion in Sedenote boolean functiong : B"™ — B with boolean
tion 1), the method in [3] is not directly applicable here. An expressions on boolean variables involvirglogical OR),
OBDD-based method for synthesis of boolean (reversible) (logical AND, usually omitted thuscy = « - y), ~ (log-
functions is presented in [4] (see also citations thereof)ical complementation) ane (logical XOR). We will also
Again, the method in [4] targets a hardware implementationdenote vectors of boolean variables in boldface, ecg=
thus it is not applicable here. (x1,...,z,). Moreover, we also denote witf|,,—,(z) the
An algorithm for the synthesis of C control software is boolean functionf(z1,...,z;—1,9(x),z41,...,2,) and
also presented in [9]. However, in [9] the starting pointwith 3z; f(x) the boolean functiorf|,,—o(x) + f|z,=1(x).
is a (multioutput) boolean function, rather than a boolean Finally, we denote withn] the set{1,...,n}.
relation. That is to say, the starting pointhsrather thank’]
(with respect to the discussion in Section I-A, it is supgbse A Most General Optimal Controllers
that step 1 has already been performed). Moreover, the A Labeled Transition SysterfLTS) is a tupleS =
algorithm in [9], though OBDD-based, does not generate.S, A,T) whereS is a finite set ofstates A is a finite set of
a software with the same size of the OBDDs fBr nor actions andT is the (possibly non-deterministitjansition
an estimation of its WCET (in the sense explained inrelation of S. A controller for an LTS S is a function
Section 1) is provided. Finally, an implementation of the K : S x A — B enabling actions in a given state. We denote
algorithm in [9] is not provided, thus we cannot make awith Dom(K) the set of states for which a control action
direct experimental comparison with our method. is enabled. An LTSontrol problemis a triple ? = (S, I,
Synthesis of control software is also addressed in [10](), whereS is an LTS andl,G C S. A controller K for
where the focus is on the generation of control protocolsS is a strong solutionto P if and only if it drives each
Such method cannot be applied in our context, where wénitial states € [in a goal statet € &, notwithstanding
need a C software implementation. nondeterminism of. A strong solutionk™ to P is optimal
In [6], an algorithm is presented which, starting from if and only if it minimizes path lengths. An optimal strong
a formal specification of a DTLHS, synthesizes a correctsolution K* to P is themost general optimal controllgwe
by-construction boolean relatioR’, and then a correct-by- call such solution aimmgg if and only if in each state it
construction control software implementation féf (see enables all actions enabled by other optimal controlleos. F
Figure 1). However, in [6] the implementation df is more formal definitions of such concepts, see [15].
not described in detail. Furthermore, the implementation Efficient algorithms, typically reminiscent of early work
synthesis described in [6] has not the same size of the OBDBn minimum paths by Dijkstra [16], to compute controllers
for F, i.e., it does not exploit OBDD nodes sharing. starting from suitable (nondeterministic) LTS control ipro
Many other works in the literature has the goal of syn-lems have been proposed in the literature: e.g., [11] ptesen
thesizing controllers as boolean relatio”AS under very an algorithm to generate mgos, while [12] show an algorithm
different assumptions for the target dynamic system to bdor non-optimal (but smaller in size) controllers. Once a
controlled. Such works do not deal with the effective imple-controller K has been computed, solving and implementing
mentation ofK, thus they may use the approach describedhe functional equatiorK (x,u) = 1 allows a correct-by-
here in order to have an effective software implementatiorconstruction control software to be synthesized.
of K. As an example, the following works may be cited)])
as closer to ours. In [11] controllers are generated startinB- Binary Encoding for States and Actions
from finite-state nondeterministic dynamic systems (agsi Vectors of boolean values € B™ (resp.,u € B") may
from planning problems). In [12] a method to synthesizebe used to represent statesc S (resp., actions: € A)
non-optimal (but smaller in size) controllers is presented of an LTSS = (S, A,T) (and thus of a controller for
In [5], an algorithm is presented which computes booleanS) as follows. Letn = [log,(|S])| + 1. Then,n boolean
functions F' satisfying a given boolean relatidid in a way values (bits) may be used to represent ang S. As an
such thatK (z, F(x)) = 1. This approach is very similar example, in Model Checking applications [7] an order on
to ours. However [5] does not generate the C code contrab = {s1,...,s,} Is fixed (lets; < ... < s, be such
software and it does not exploit OBDD nodes sharing. order), and then the binary encoding S — B™ is defined

IIl. BASIC DEFINITIONS

asn(si) = b such thaty""_, 2/7'b; = i — 1. An analogous
construction may be applied to actions.

C. OBDD Representation for Boolean Functions

A Binary Decision Diagran{BDD) R is a rooted directed
acyclic graph (DAG) with the following properties. Each
R nodew is labeled either with a boolean variabler(v)
(internal node) or with a boolean constantl(v) € B
(terminal node). EachR internal nodev has exactly two
children, labeled withhigh(v) andlow(v). Let z1,...,z,
be the boolean variables labeling internal nodes. Each
terminal nodev representsf,(x) = val(v). Each internal
node v representsf,(x) = ; fuigh(v)(€) + Zi flow(v) (),
being z; = var(v). An Ordered BDD(OBDD) is a BDD

where, on each path from the root to a terminal node, the

u0

ul

x0

x1

x2

variables labeling each internal node must follow the same

ordering.

V. SOLVING A BOOLEAN FUNCTIONAL EQUATION

Let K(z1,...,zpn,u1,...,u,) be the mgo for a given
control problem P (S, I, G). We want to solve
the boolean functional equatior(xz,u) = 1 with re-
spect to variablesu, that is we want to obtain boolean
functions f1,..., f, such thatK(z, fi(x),..., f-(x))
Ky =f,(@),....ur=f.(z)(®,u) = 1. This problem may be
solved in different ways, depending on tha&rget imple-
mentation(hardware or software) for functiong. In both
cases, it is crucial to be able to bound the WCENo(st
Case Execution Timeof the obtained controller. In fact,

Figure 2. An mgo example

V. OBDDs wiTH COMPLEMENTED EDGES

In this section, we introduce OBDDs with complemented
edges (COBDDs, Definition 1), which were first presented
in [17][18]. Intuitively, they are OBDDs where else edges
(i.e., edges of typév, low(v))) may be complemented. Then
edges (i.e., edges of type,high(v))) complementation
is not allowed to retain canonicity. Edge complementation
usually reduce resources usage, both in terms of CPU and
memory.

Definition 1. An OBDD with complemented edg&sOBDD

controllers must work in an endless closed loop with thein the following) is a tuplep = (V, V, 1, var, low, high,

systemS (plant) they control. This implies that, every
secondsgampling timg the controller has to determine the
actions to be sent t6. Thus, in order for the entire system
(plant + control software) to properly work, the controller
WCET upper bound must be at mdkt

In [3], fi,...,fr are generated in order to optimize
a hardware implementation. In this paper, we focus on
software implementations fof; (control softwarg. As it

is discussed in Section I, simply translating an hardware

implementation into a software implementation would re-
sult in a too high WCET. Thus, a method directly tar-

geting software is needed. An easy solution would be

to set up, for a given state, a SAT problem instance
C = CKl,...,CKt,Cl,...,Cn, WhereCK1 Ao N Ciy
is equisatisfiable td< and each clause; is eitherx; (if
x; is 1) or z; (otherwise). TherC may be solved using a
SAT solver, and the values assignedddn the computed

satisfying assignment may be returned as the action to be

taken. However, it would be hard to estimate a WCET for

flip) with the following properties:

1) V = {x1,...,x,} is a finite ordered set of boolean
variables;

2) V is a finite set onodes

3) 1 € V is the terminal node of p, corresponding to
the boolean constarit (non-terminal nodes are called
internal);

4) var,low, high, flip are functions defined on internal
nodes, namely:

o var: V \ {1} — V assigns to each internal node
a boolean variable iV

high[low] : V'\ {1} — V assigns to each internal
nodewv ahigh child[low child] (or then child[else
child]), representing the case in whighr(v) = 1
[var(v) = 0]

flip: V'\ {1} — B assigns to each internal node
v a boolean value; namely, ffip(v) = 1 then the
else child has to be complemented, otherwise it is
regular (i.e., non-complemented);

such an implementation. The method we propose in this 5) for each internal node, var(v) < var(high(v)) and

paper overcomes such obstructions by achieving a WCET

proportional torn.

var(v) < var(low(v)).

A. COBDDs Associated Multigraphs

We associate to a COBDp = (V, V, 1, var, low, high,
flip) a labeled directed multigrap®) = (V, E) such that
V is the same set of nodes pfind there is an eddge, w) €
E if and only if w is a child ofv. Moreover, each edge=
(v,w) € E has a typeype(e), indicating ife is athen edge
(i.e., if w is a then child ofv), aregular else edgéi.e., if w
is an else child ofv with flip(v) = 0), or acomplemented
else edgdi.e., if w is an else child o with flip(v) = 1).
Figure 2 shows an example of a COBDD depicted via its
associated multigraph, where edges are directed downwar
Moreover, in Figure 2 then edges are solid lines, regul

else edges are dashed lines and complemented else ed

are dotted lines.

The graph associated to a given COBDRD= (V, V, 1,
var, low, high, flip) may be seen as a forest with multiple
rooted multigraphs. In order to select one root vertex an
thus one rooted multigraph, we define th®&BDD restricted
to v € V as the COBDDp, = (V, V,, 1, var, low, high,
flip) such thatV, = {w € V' | there exists a path from to
w in G} (note thatv € V).

B. COBDDs Properties
For a given COBDDp = (V, V, 1, var, low, high, flip)
the following properties follow from definitions given atev
1) G is a rooted directed acyclic (multi)graph (DAG);
2) each path inG(») starting from an internal node ends
in1;
3) |et'U1, ey
var(vg).
We define théneight of a nodey in a COBDDp (notation
height ,(v), or simply height(v) if p is understood) as the
helght of the DAGG#+), i.e., the length of the longest path
fromv to 1 in G,

C. Semantics of a COBDD

vy, be a path inG(®), thenvar(vy) < ... <

In Definition 2, we define the semantifg of each node variablesz; € X asstate variablesand variablesy;

&

Example 1. Letp be the COBDD depicted in Figure 2. If we
pick nodeOxe we havefOxe, b] = 22[1,b] +z2[1,bD 1] =
Tob + Tob = x5 D b.

D. Reduced COBDDs and COBDDs Canonicity

Two COBDDs ardsomorphicif and only if there exists a
mapping from nodes to nodes preserving attribwtes flip,
high andlow. A COBDD is calledreducedif and only if it
contains no vertex with low(v) = high(v) A flip(v) = 0,
nor does it contains distinct verticeandv’ such thap, and

q&' are isomorphic. Note that, differently from OBDDs, it is

possible thafmgh() = low(v) for somewv € V, provided
tflip(v) = 1 (e.g., see node@xf andOxe in Figure 2).
heorem 1 states that reduced COBDDs a@aonical
representation for boolean functions (see [17][18]). As a
consequence, software packages implementing COBDDs op-

daratmns only deal with reduced COBDDs, since this allows

very fast equality tests between COBDDs (it is sufficient
to check if the (root node, flipping bit) pair is the same).
Accordingly, in the following we will deal with reduced
COBDDs only.

Theorem 1. Let f : B — B be a boolean function. Then
there exists a reduced COBDp = (V, V, 1, var, low,
high, flip), a nodev € V and a flipping bitb € B such that
[v,b] = f(x). Moreover, letp = (V, V, 1, var, low, high,
flip) be a reduced COBDD, let;,v, € V be nodes and
b1,be € B be flipping bits. Therfvy, b;] = [uvs, b2] if and
onIy if v1 = vy A Dy = ba.

VI. SYNTHESIS OFC CoDE FROM ACOBDD

Let K(z1,...,z,,u1,...,u,) be a controller for a given
control problem. Letp = (V, V, 1, var, low, high, flip)
be a COBDD such that there existe V, b € B such
that [v,b] = K(x1,...,2pn,u1,...,u.). Thus,V = X U
U= {x, ..., 2y }{u, ..., u,.} (we denote withd the
disjoint union operator, thust N U = @). We will call
€U as

v of a given COBDDp as the boolean function represented gction variables
by v, given the parityp of complemented edges seen on the \We want to solve the boolean functional equation problem

path from a root ta.

Definition 2. Let p (V, V, 1, var, low, high, flip)
be a COBDD. Thesemantics of the terminal node with
respect to a flipping bib is a boolean function defined as
[1,b], := b. The semantics of an internal nodee V with
respect to a flipping bib is a boolean function defined as
[v,b], := x;[high(v), b], + Z;[low(v), b & flip(v)] ,, being
x; = var(v). Whenp is understood, we will writd-] instead
of [],

Note that the semantics of a node of a COBDDis
a function of variables inY and of an additional boolean
variable b. Thus, on each nodevo boolean functions on
V are defined (one for each value ®f It can be shown

(see [15]) that such boolean functions are complementary.functionvoi d K(i nt =*x,

introduced in Sect. IV targeting softwareimplementation.
We do this by using a COBDD representing all our boolean
functions. This allows us to exploit COBDD nodes sharing.
This results in an improvement for the method in [5], which
targets a software implementation but which does not eploi
sharing. Finally, we also synthesize the software (i.e., C
code) implementation fofy, ..., f,, which is not considered

in [5]. This allows us to finally have aontrol softwarefor

the starting LTS. IfK is an mgo, this results in aoptimal
control softwarefor the starting LTS.

A. Synthesis Algorithm: Overview

Our methodSynthesizetakes as inpup, v and b such
that [v,b] = K(«,u). Then, it returns as output a C
i nt xu) with the following

property: if, before a call t&, Vi x[i — 1] = =; holds (array
indexes in C language begin frafhwith € Dom(K'), and
after the call tK, Vi u[i—1] = u; holds, thenk (z, u) = 1.
Moreover, the WCET of functioiK is O(nr).

Note that our methodSynthesizeprovides an effective
implementatiorof the controllerk, i.e., a C function which

COBDD nodes. We assume that such functions also properly

updateV, var, low, high, flip inside COBDDp (1 andV
are not affected).

Algorithm 2 Solving a boolean functional equation
Require: COBDD p, nodewv, booleanb

takes as input the current state of the LTS and outputs thEnsure: SolveFunctionalEgp, v, b):

action to be taken. Thug is indeed a control software.
Function Synthesizeis organized in two phases. First,
starting fromp, v andb (thus from K (x,u)), we generate
COBDD nodesvy,...,v, and flipping bitsb,,...,b,. for
boolean functionsfy, ..., f, such that eaclf; = [v;,b;]
takes as input the state bit vecterand computes théth
bit u; of an output action bit vecton, where K (z,u) = 1,
provided thatz € Dom(K). This computation is carried
out in function SolveFunctionalEqSecond,f, ..., f,. are
translated inside functionoi d K(int *x, int =*u).

This step is performed by maintaining the structure of the

COBDD nodes representing, ..., f,. This allows us to

exploit COBDD nodes sharing in the generated software

This phase is performed by functidBenerateCCode
Thus, functionSynthesizas organized as in Algorithm 1.
Correctness for functiosynthesizds stated in Theorem 6.

Algorithm 1 Translating COBDDs to a C function
Require: COBDD p, nodew, booleanb
Ensure: Synthesizé, v, b):
1: (v1,by,...,v.,b.) < SolveFunctionalEgp, v, b)
2: GenerateCCodp, v1,b1,...,v:,by)

B. Synthesis Algorithm: Solving a Functional Equation

In this phase, starting from, v andb (thus from[v, b] =
K(z,u)), we compute functiong, ..., f, such that for all
x € Dom(K), K(z, f1(x),..., fr(x)) =1.

To this aim, we follow an approach similar to the
one presented in [5], which is reminiscent of early work
on minimum paths by Dijkstra. Namely, we compute

fi using fi,..., fi—1, in the following way: fi(x) =
Hui+1, ey Up K((E, fl(CC), ceey fi—l(w)» 17’11/1‘_,_17 N ,Un).
Thus, functionSolveFunctionalEgp, v,b) computes and re-
turns (vq, b1, ..., v, b,.) such that for ali € [r], [v;,b;] =
fi(x). This is effectively performed by Algorithm 2, where
we use the following COBDDs manipulation functions:

« COBDD APP (instantiation) such that (vapp,
bapp) COBDD_APRz;,, ey Ly s
vy, by, ..., vk, bg, wv,b) if and only if
[vapp,bapp] = [0, 6]z, =[o1 611, .00, =8 ba]

« COBDD EX (existential quantifier elimination) such
that <UEX7 bEX> = COBDD_EX(:E“, cevy Ty, U, b)
if and onIy if [[UEXabEX]] = Elxl-l, sy Ty, [’U,b]].

We note that efficient (i.e., at mog2(|V|log|V])) al-

1: for all ¢ € [r] do

2: [[Ui, bz]] — COBDD_E)((UH_]A7 ey Up,,
C:OBDD_IAPRU,l7 ey UGy V1, bl, ey Vi1, bi—h
1,0, v, b))

3 return (vq,b1,...,0.,b,)

Correctness for functioiolveFunctionalEqs proved in
Lemma 3.

C. Synthesis Algorithm: Generating C Code

In this phase, starting from COBDD nodes ..., v, and
flipping bits by,...,b, for functions fy,..., f. generated
in the first phase, we generate two C functionsvdi d
K(int *x, int =u),whichis the required output func-
tion for our methodSynthesizeii) i nt K_bits(int xx,

i nt action), which is an auxiliary function called by
K. A call to K_bits(x, i) returnsf;(x), beingx[j —
1] = «; for all j € [n]. This phase is detailed in Algs. 3
(function GenerateCCodeand 4 (function Translatg. In
such algorithms we suppose to be able to print a nade
e.g., by printing the exadecimal value of a pointerwto

Algorithm 3 Generating C functions
Require: COBDD p, vq,...,v,, boolean value$,, ...
Ensure: GenerateCCode,v1,b1,...,v:,b,):

by

1 print “int Kbits(int *x, int action) {
int ret_b; switch(action) {"

2: for all ¢ € [r] do

3 print “case ", i—1,":"

4: print “ret_b =" b, " goto L_” v,*”

5: print “}” /* end of the switch block */

6: W<+ o

7: for all ¢ € [r] do

8: W «Translatép, v;, W)

o print “} K(int* x, intx u) {int i;”

10: print “ for(i=0; i<"r" i++)”

11 print ¢ u[i] = Kbits(x, i);}"

Details of Function GenerateCCodéAlgorithm 3):
Given inputsp, vy, by, ..., v, b, (Output by SolveFunc-
tionalEg), Algorithm 3 works as follows. First, function
int Kbits(int »x, int action) is generated. If
X[j—1] = z; for all j € [n], the callK_bits(x, 1)
has to returnf;(z). In order to do this, the grapty(r::)

gorithms [17][18] exist to compute the above defined func-is traversed by taking, in each node the then edge if
tions. Moreover, the above defined functions may create new([j—1] = 1 (with j such thatvar(v) = z;) and the else edge

otherwise. When nodg is reached, them is returned if and The C code block for internal node is generated in

only if the integer sunz+b; is even, being: the number of lines 3 and 7-13. The block consists of a labelk: and

complemented else edges traversed. Note that parity-6f ani f -t hen- el se C construct. Note that labél v uni-

may be maintained by initializing a C variablet _b tob;, vocally identifies the C code block related to nadeThis

then complementing et _b (i.e., by performing a et _b may be implemented by printing the exadecimal value of a

= lret_b statement) when a complemented else edge ipointer tov.

traversed, and finally returninget _b. Thei f-then-el se C construct is generated so as to
This mechanism is implemented inside functinbi t s traverse nodev in graph G*+) in the following way. In

by properly translating each COBDD node= | J._, V,,, in line 8 the check[i —1] = 1 is generated, beingsuch that

a C code block. Each block is labeled with a unique labelvar(v) = ;. The code to take the then edgevdf also gen-

depending o, and maintains in variableet _b the current erated. Namely, it is sufficient to generatgat o statement

parity of ¢+ b; as described above. This is done by functionto the C code block related to nodiésh(v). In lines 10-11

Translate called on line 8 and detailed in Algorithm 4. and 13 the code to take the else edge is generated, in the case
Thus, the initial part of functiorkK bi t s consists of a x[7— 1] =1 is false. In this case, if the else edge is com-

swi t ch block (generated in lines 1-5 of Algorithm 3), plemented, i.e.flip(v) holds (lines 10-11), it is necessary

which initializesr et _b to b; and then jumps to the label to complement et _b and then perform got o statement

corresponding to node;. Then, the C code blocks cor- to the C code block related to nodew(v) (lines 10-11).

responding to COBDD nodes are generated in lines 6-®therwise, it is sufficient to generategot o statement to

of Algorithm 3, by callingr times functionTranslate(see the C code block related to nodew(v) (line 13).

Algorithm 4) with parameters, ..., v,.. Note thatiW” main- Thus, the block generated for an internal nogefor

tains the already translated COBDD nodes. Since functioproperi, [andh, has one of the following forms, depending

Translateonly translates nodes not iV, this allows us to on flip(v):

gx(gl?;t sharcllrzgvgot only inside eadfi*+), but also inside Lo if (x[i — 1]) goto L_h: else goto
anally, funcFionI.(is generated' i'n lines 9-11. Fupction . t:i if (x[i—1]) goto L_h; else {ret b

K simply consists in & or loop filling each entryu[i] = Iret_b; goto L [}

of the output arrayu with the boolean values returned by - -

K_bits(x, i). Correctness of functioiGenerateCCode There are two base cases for the recursion of function

is proved in Lemma 5. Translate
o« v € W (line 1), i.e.,v has already been translated into
Algorithm 4 COBDD nodes translation a C code block as above. In this case, the set of visited
Require: COBDD p, nodev, nodes setV’ COBDD nodeslV is directly returned (line 1) without
Ensure: Translatép, v, W): generating any C code. This allows us to retain COBDD
1. if v € W then return W node sharing;
22 W« WU {v} e v = 1 (line 4), i.e., the terminal nodd has been
3 print “L_", v, “:” reached. In this case, the C code block to be generated
4 if v = 1 then is simplyL_1: return ret_b;. Note that such a
5. print “return ret_b;” block will be generated only once.
6: else In all other cases, functioiiranslateends with the recur-
7. leti be such thavar(v) = z; sive calls on the then and else edges (lines 14-15). Note
8 print “if(x["i-1"==1)goto L_" high(v) that the visited nodes s&t’ passed to the second recursive
9 if flip(v) then call is the result of the first recursive call. Correctness of
10: print “el se {ret_b = lret_b;"’ function Translateis proved in Lemma 5.
11: print “goto L_", low(v),"; }"
12: else
13: print “el se goto L_”, low(v) D. An Example of Translation
14: W <« Translatép, high(v), W)

Consider the COBDDp shown in Figure 2. Withinp,
consider mgoK (zg, 1, x2, ug, u1) = [0x17, 1]. By
applying SolveFunctionalEgwe obtain f; (zg, 1, x2) =
[0x15, 1] and fo(xg, x1, x2) = [0x10,1]. Note thatOxe

Details of FunctionTranslatg(Algorithm 4): Given in- is shared betwee@'(?ox15) and G(#ox10), Finally, by calling
putsp, v, W, Algorithm 4 performs a recursive graph traver- GenerateCCodésee Algorithm 3) onfy, f2, we have the C
sal of G(»») as follows. code in Figure 3.

15: W «Translatép,low(v), W)
16: return W

int K bits(int *x, int action) {
int ret_b;
switch(action) {
case 0: ret_b = 0; goto L_0x15;
case l: ret_b = 0; goto L_0x10;
}
L_0Ox15:
if (x[0] == 1) goto L_O0x13;
else { ret_b = !ret_b; goto L_O0x14;}
L _0x13:
if (x[1] == 1) goto L_Oxe;
else{ ret_b = !ret_b; goto L_1; }
L_Oxe:
if (x[2] == 1) goto L_1;
else{ ret_b = !ret_b; goto L_1; }
L _0x14:
if (x[1] == 1) goto L_Oxe;
else gotoL_1;
L_0x10:
if (x[0] == 1) goto L_Oxe;
else { ret_b = !ret_b; goto L_Oxf; }
L_Oxf:
if (x[1] == 1) goto L_Oxe;
else{ ret_b = !ret_b; goto L_Oxe; }
L_1:
return ret_b;
}
void K(int xx, int xu) {
int i;
for(i = 0; i < 2; i++)
ufi] = Kbits(x, i);
}

Figure 3. C code for the mgo in Figure 2 as generatedsiaythesize

VII. TRANSLATION PROOF OFCORRECTNESS

3“i+17'~-;u7‘—1 K(m,fl(a:),...,fi_l(m),l,ui+1,...,ur_l).
We have thatz € Dom(K) implies that either
x € Dom(Kl|,—0) or = € Dom(K|y—1).
Suppose « € Dom(Kl,,=1) holds. We
have that K|, —i(z, fo(x),..., fr(x)) = 1,
where for al i = 2..r fi(z) =
i1y, Uy K|ul:1(w,f2(w),...,fZ 1()y Ly Ui 1y ey Uy).
By construction, we have that fi(x) = 1
and fi(x) = fi(z) for i > 2, thus 1 =
K‘ulzl(m’fQ(m)’.--7f7'($)) = K(m’fl()v""fT'())

Analogously, ifz ¢ Dom(K|,,=1) Az € Dom(K|,,—o) We
have thatfi(z) = 0 and f;(z) = fi(z) for i > 2, thus1 =
K‘u1:0($7 fQ(QE), SRR fr(w)) = K(ma fl(m)7 SERE) fr(w))
[|
Lemma 3 states correctness of funct®olveFunctionalEq
of Algorithm 2.

Lemma 3. Let p = (V, V, 1, var, low, high, flip) be
a COBDD withyY = XuUd, v € V be a node,b € B
be a flipping bit. Let[v,b] = K(x,u) and r [].
Then functionSolveFunctionalEg, v, b) (see Algorithm 2)
outputs nodesy, . .., v, and boolean valueg, ..., b, such
that for all i € [r] v, b;] = fi(x) and x € Dom(K)

implies K (x, f1(x),..., fr(x)) =1

functions COBDD_APP
lemma hypotheses)

Correctness of
and COBDD EX (and
implies that for all i € [r] fi(x)
i1, ur Kz, fi(z),. .., fir(®), L wiga, .
By Lemma 2 we have the thesis.

Proof:

Uy).

[|
Let Translatedup be a function that works as function
Translateof Algorithm 4, but that does not take nodes shar-
ing into account. Functioranslatedup may be obtained

In this section, we prove the correctness of our approaclrom function Translateby deleting line 1 (highlighted in

(Theorem 6). That is, we show that the functiémve gener-
ate indeed implements the given controliéy thus resulting
in a correct-by-construction control software.

We begin by stating four useful lemmata for our proof.
Lemma 2 is useful to prove Lemma 3, i.e., to prove correct-
ness of functionSolveFunctionalEq

Lemma 2. Let K : B" x B — B and let
fl; .. .,fr be such that fZ(CC) = E"U,H_l,. oy Uy
K(z, f1(z),..., fi-1(x), 1, ujr1,...,u,) for all ¢ € [r].
Then,z € Dom(K) = K(z, fi(z),..., fr(x)) =1

Proof: Let x € B™ be such thatt € Dom(K), i.e.,
Ju K(x,u) = 1. We prove the lemma by induction on
Forr = 1, we havefi(z) = K(x,1). If fi(x) =1, we
have K (x, f1(x)) = K(x,1) = fi(z) = 1. If fi(x) =0,
we haveK (z, f1(x)) = K(«,0), and K(x,0) = 1 since

x € Dom(K) and K (x,1) = 0.

Suppose by induction that for all K
B” x B~ — B Kz fi(z),...,fri(x) =
1, where for al i ¢ [r — 1 fix) =

Algorithm 4) and by replacing calls téranslatein lines 14
and 15 with recursive calls téranslatedup (with no changes
on parameters). Lemma 4 states correctness of functiams-
late_dup.

Lemma 4. Let p = (V, V, 1, var, low, high, flip) be a
COBDD,v € V be a node) € B be a flipping bit, andV C

V be a set of nodes. Then functidnanslatedupp, v, W)
generates a sequence of labeled C statemBnts . By such
thatk > |V, | and for allw € V,,: 1) label L_w is in B; for
some: and 2) starting an execution from lab&l w with
Vi € [n] x[i—1] = z; andret _b= b, if [w,b] = fus
then areturn ret_b; statement is invoked in at most
O(p) steps withret_b = f,, ,(x) and p = height(w).

Proof: We prove this lemma by induction on. Let
v = 1, which implies[v, b] = b andV, = {1}. We have that
function Translatedup(p,v, W) generates a single block
B; (thusk = 1 = |V4]) such thatB; =L_1: return
ret _b; (lines 3-5 of Algorithm 4). Since by hypothesis
we haver et _b= b, and since starting fronB, the return

statement is invoked irD(1) steps, the base case of the of Algorithm 4 and by functionGenerateCCoda lines 6—

induction is proved.

Let v be an internal node withvar(v) = =z; and let
f(x) = [v,b]. Sincew € V, if and only if w =
vV w € Vhigh(v) VW € Vigw(v), DY induction hypothesis
we only have to prove the thesis favr = v. We have
that f(x) = x;[high(v),b] + z;[low(v),b @ flip(v)], i.e.,
f(z) = z;[high(v),d] + Z;[low(v),b] if fip(v) = 0 and
f(x) = z;[high(v), b] + Z;[low(v), b] if flip(v) = 1. Since
f(®) = 2ifls,—1(2) + Zifls—o(@), by Theorem 1 we
have that[high(v),b] = f|.,=1(x), and that[low(v),b] =
flei=o(z) if flip(v) = 0 and [low(v),b] = fls,—o(x) if
flip(v) = 1.

By lines 3 and 8-13 of Algorithm 4, we have
that function Translatedup(p,v, W) generates blocks
BBj1...B1yBs1 ... By such thatB :L_v: if (X[i —
1] 1) goto L_high(v); el se Bg where By is
either goto L_low(v); if flip(v) 0 or {ret_b
= lret_b; goto L_low(v);} if flip(v) 1, and
Bi1...By, (Bo...By) are generated by the recur-
sive call Translatedup(p, high(v), W) in line 14 (Trans-
late dup(p,low(v), W) in line 15). By induction hypothesis

8 of Algorithm 3. In fact, functionTranslate when called
on parameterg, v, W, returns a set¥’’ O W, and function
GenerateCCodealls Translateby always passing thél’
resulting by the previous call. Since a block is generated fo
nodewv only if v is not in W, andv is added tolW only
when a block is generated for node this proves this part
of the lemma.

As for correctness, we prove this lemma by induction on
m, being m the number of times that theet urn W;
statement in line 1 of Algorithm 4 is executed. As base of the
induction, letm = 1 and letp, v, W be the parameters of the
recursive call executing the firstet urn W; statement.
Then, by construction of functiorTranslate v has been
added tolV in some previous recursive call with parameters
p,v,W. In this previous recursive call, a block, with
label L_v has been generated. Moreover, for this previous
recursive call, thus for parametetsv, W, we are in the
hypothesis of Lemma 4, which implies that the induction
base is proved.

Suppose now that the thesis holds for the firstexe-
cutions of thereturn W; statement in line 1 of Algo-

and the above reasoning, if the execution starts at labeithm 4. Then, by construction of functiofiranslate v has

L_high(v) andr et _b=b, thenareturn ret _b; state-
ment is invoked in at mosO(p — 1) steps withret_b =

flz,=1(x). As for the else case, we have that starting fromwith labelL_v has been generated. Let, W1, ..

L_low(v) with ret _b= b (ret_b= b) if flip(v) = 0
(flip(v) = 1), then areturn ret_b; statement is in-
voked in at mosO (p—1) steps withret_b = f|,,—o(x). By
construction of blockB, starting from labelL_v, ar et ur n
ret _b; statementisinvoked in at moSt(p—1+1) = O(p)
steps withret b = ; f|s,=1(x) + Zi flz;=0(x) = f(2).
Finally, note that by induction hypothesis > |Viign ()l
and! > [Vigw(w)|, thus we have that = 1 +h +1 >
1+ |Vhigh(v)| + ‘Vlow(v)| > |VU‘

been added téV in some previous recursive call with pa-
rametersp, v, W. In this previous recursive call, a blodg,
) w’m: Wma
be such that then recursive calls executing theet ur n
W, statement have parameters;, W; (note that they are
not necessarily distinct). By induction hypothesis, fdriat
[m] starting from label _w; with Vj € [n] X[j — 1] = x;
andret _b=b, areturn ret_b; statement is invoked
in at mostO(p) steps withret_b = f,, »(x). By Lemma 4
and its proof, the same holds for alle V,\ {w1,...,wn},
thus it holds for allv € V,,.

]

Finally, Theorem 6 states and proves correctness for func-

Lemma 5 extends Lemma 4 by also considering nodesion Synthesizeof Algorithm 1.

sharing, thus stating correctness of funct@anerateCCode
of Algorithm 3 and functionTranslateof Algorithm 4.

Lemma 5. Let p = (V, V, 1, var, low, high, flip)
be a COBDD andvi,...,v, € V be r nodes and
bi,...,b. € B ber flipping bits. Then lines 6-8 of function
GenerateCCodp, v, b, . .., v, b,.) generate a sequence of
labeled C statement®; ... By, such thatk = |Ul_; V,,
and for all v € U;_,V,,: 1) the labelL_v is in B; for
some;j and 2) starting an execution from lab&l v with
Vj € [n] X[j— 1] = z; andret _b= b, if [v,b] = fos
then areturn ret_b; statement is invoked in at most
O(p) steps withret_b = f, ;() and p = height(w).

Proof: We begin by proving that: = | Ul_, V,,
To this aim, we prove that for each nodec U]_,V,,,
a unique blockB, is generated. This follows by how the
nodes setl is managed by functioffranslatein lines 1-3

Theorem 6. Let p = (V, V, 1, var, low, high, flip) be a
COBDD withY = Xuld, v € V be a nodep € B be a
boolean. Let[v,b] = K(x,u), r = U] andn = |X|. Then
function Synthesiz&, v,b) generates a C functiovoi d
K(int *x, int =u) withthe following property: for all
x € Dom(K), if before a call toK Vi € [n] x[i — 1] =
x;, and after the call toK Vi € [r] u[i — 1] = w,, then
K(z,u)=1.

Furthermore, functiork has WCET)_|_; O(height(v;)),
being vy, ..., v, the nodes output by functio8olveFunc-
tionalEq

Proof: Let z € Dom(K) (i.e., 3u K(z,u) = 1) and
suppose that for alj € [n] X[j — 1] = z;. By lines 9—
11 of Algorithm 3, for alli € [r], u[¢ — 1] will take
the value returned b¥ _bits(x,). In turn, by lines 3
and 4 of Algorithm 3, eacliK_bi t s(x, i) setsret_b

I
i
+oy! Lu 1+U1111 Diy
Ill
i1 D i
o D, Ly
#Ni +v,
Vi —— I L ©
J
Vi ol D
i—1 ‘ 1 uy tue c
Vi ... Iz ﬂ,{) R
i An, i(;\ v
-‘V +vp ‘ZU

Figure 4. Multi-input Buck DC-DC converter.

to b; and makes a jump to labél v;. By Lemma 3 and by
construction ofSynthesize suchby,...,b. andwvy,..., v,
are such that thafv,,b1] = fi(x),...,[v.,b.] = fr(x)
and K(x, f1(x),..., fr(x)) = 1. By Lemma 5, the se-
quence of callsK bits(x, 1), ..., K bits(x,)
will indeed return, in at mosd_’_, O(height(v;)) steps,
h@),..., fr(®).

[|

Corollary 7. Letp = (V, V, 1, var, low, high, flip) be a
COBDD withY = Xuld, v € V be a nodep € B be a
boolean. Let[v,b] = K(x,u), r = |U| andn = |X|. Then
the C functionK output by functionSynthesiz, v, b) has
WCETO(rn).

Proof: The corollary immediately follows from Theo-
rem 6 and from the fact that, for all € V, height(v) < n.
|

VIIl. EXPERIMENTAL RESULTS

Table |

KSSPERFORMACES
r CPU MEM K| |F*msh| |Sw) %
1 3.0e-02 1.0e+08 12137 2646 2646 0.0e+00
2 1.1e-01 1.3e+08 25848 5827 5076 1.3e+01
3 1.7e-01 1.8e+08 36430 10346 8606 1.7e+01
4 25e-01 24e+08 46551 15004 12285 1.8e+01
5 3.6e-01 3.3e+08 65835 21031 16768 2.0e+01

for buck DC-DC converters have been widely studied. The
typical software based approach (e.g., see [22]) is to obntr
the switchesuy, ..., u; in Figure 4 (typically implemented
with a MOSFET, i.e., a metal-oxide-semiconductor field-
effect transistor [24]) with a microcontroller.

In the following experiments, we fix = || = 20 and
we have thatr; = |u| = i. Finally, K; is an intermediate
output of the QKS tool described in [6].

For eachp;, we run KSS so as to compu&ynthesizé&;,
v;, b;) (see Algorithm 1), beindv;, b;] = K;(x,u). In the
following, we will call (vy;, bii, ..., vy, by), With v; €
Vi, bj; € B, the output of functiorSolveFunctional E@p;, v;,
b;). Moreover, we callfy;,. .., fi; : B® — B the i boolean
functions such thafv;;, b;;] = f;:(x). All our experiments
have been carried out on a 3.0 GHz Intel hyperthreaded
Quad Core Linux PC with 8 GB of RAM.

B. KSS Performance

In this section, we will show the performance (in terms
of computation time, memory, and output size) of the al-

We implemented our synthesis algorithm in C program-dorithms discussed in Section VI. Table | show our experi-
ming language, using the CUDD (Colorado University De-mental results. Théth row in Table I corresponds to exper-
cision Diagram [19]) package for OBDD based computa-iments running KSS so as to compugnthesiz€o;, v;, b;).
tions and BLIF (Berkeley Logic Interchange Format [20]) Columns in Table | have the following meaning. Column
files to represent input OBDDs. We name the resulting tooShows the number of action variables (note thatjz| = 20

KSS (Kontrol Software Synthesi2eKSS is part of a more

on all our experiments). Colum@PU shows the computa-

thesizer[6]).

A. Experimental Settings

We present experimental results obtained by using KSE£OBDD representations ofy;, . ..

on given COBDDspy, ..., p5 such that for alli € [5] p;
represents the mgé&;(x, u) for a buck DC/DC converter
with ¢ inputs

The multi-inputbuck DC-DC converter [21] in Figure 4 is

usage for KSS (in bytes). Colum| shows the number
of nodes of the COBDD representation féf; (x, u), i.e.,
|V,,|. Column|Fumsh| shows the number of nodes of the

, fi:, without consider-
ing nodes sharing among such COBDDs. Note that we do
consider nodes sharing inside eagth separately. That is,
|Funsh| = Z;Zl |Vy,;;| is the size of a trivial implemen-
tation of f1,,..., fi; in which eachf;; is implemented by

a mixed-mode analog circuit converting the DC input voltagea stand-alone C function. Colum$w| shows the size of

(Vi in Figure 4) to a desired DC output voltageo(in

Figure 4). As an example, buck DC-DC converters are usedodes of the COBDD representatiorig;, . . .

off-chip to scale down the typical laptop battery voltag2-(1

24) to the just few volts needed by the laptop processor, (e.g}Sw| = \Uélew

see [22]) as well as on-chip to suppdynamic Voltage

and Frequency Scalin@VFS) in multicore processors (e.g.,

the control software generated by KSS, i.e., the number of
, fi:, consid-
ering also nodes sharing among such COBDDs. That is,
is the number of C code blocks generated
by lines 6-8 of functionGenerateCCodén Algorithm 3.
Finally, Column% shows the gain percentage we obtain by

see [23]). Because of its widespread use, control schema®nsidering nodes sharing among COBDD representations

| Sw]
Funshl

for fii,..., fu, e, (1—)100.

(4]

From Table | we can see that, in less than 1 second

and within 350 MB of RAM we are able to synthesize the

control software for the multi-input buck with = 5 action
variables, starting from a COBDD representationfofwith

(5]

about6.6 x 10* nodes. The control software we synthesize [6]

in such a case has about7 x 10* lines of code, whilst

a control software not taking into account COBDD nodes

sharing would have had aboitl x 10* lines of code. Thus,
we obtain a20% gain towards a trivial implementation.

IX. CONCLUSION AND FUTURE WORK

(7]

(8]

In this paper, we presented an algorithm which, starting

from a boolean relatiod” representing the set of implemen-
tations meeting the given system specifications, geneeates

correct-by-construction C code implementiig This en-
tails finding boolean functiong’ such thatk (z, F'(z)) = 1

holds, and then implement sué¢h WCET for the generated

control software is linear linear inr, beingr the number

of functions in F andn = |x|. Furthermore, we formally

proved that our algorithm is correct.

We implemented our algorithm in a tool named KSS.

9]

(10]

Given our algorithm properties explained above, by using
KSS it is possible to synthesize correct-by-construction

control software, provided thak™ is provably correct with
respect to initial formal specifications. This is the casgin

(11]

thus this methodology, e.g., allows to synthesize correct-
by-construction control software starting from formal spe [12]

ifications for DTLHSs. We have shown feasibility of our

proposed approach by presenting experimental results on
using it to synthesize C controllers for a multi-input buck [13]

DC-DC converter.

The WCET of the resulting control software may be too

high for some systems in whichr is high, or for which

the control software has to provide actions with an high

(14]

frequency. In order to speed-up the WCET, a natural possible

future research direction is to investigate how to parakel
the generated control software.

ACKNOWLEDGMENTS

This work has received funding both from MIUR project

(15]

(16]

TRAMP and the FP7/2007-2013 project ULISSE (grant agreg

ment r?218815).

REFERENCES

[1] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “From boolean

relations to control software,” iIlCSEA 2011 pp. 528-533.

(18]

[2] R. Bryant, “Graph-based algorithms for boolean function [19]

manipulation,”IEEE Trans. on Computersol. C-35, no. 8,
1986, pp. 677-691.

[3] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive

paradigm to solve boolean relation$EEE Trans. on Com-
puters vol. 58, no. 4, 2009, pp. 512-527.

(20]

R. Wille and R. Drechsler, “Bdd-based synthesis of reversible
logic for large functions,” inDAC 2009 pp. 270-275.

E. Tronci, “Automatic synthesis of controllers from formal
specifications,” INCFEM 1998 pp. 134-143.

F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” ifCAV 2010 ser. LNCS 6174, pp. 180-195.

E. M. Clarke, O. Grumberg, and D. A. Pelddodel Check-
ing. The MIT Press, 1999.

F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Quantized
feedback control software synthesis from system level for-
mal specifications for buck dc/dc converter€bRR vol.
abs/1105.5640, 2011.

M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

A. Sangiovanni-Vincentelli, E. Sentovich, and K. Suzuki,

“Synthesis of software programs for embedded control ap-
plications,” IEEE Trans. CADvol. 18, 1995, pp. 834—849.

T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Formal
synthesis of embedded control software: Application to ve-
hicle management systems,” BIAA Infotech@Aerospace,
2011

A. Cimatti, M. Roveri, and P. Traverso, “Strong planning
in non-deterministic domains via model checking,” AlPS
1998 pp. 36—43.

V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci,
“On model based synthesis of embedded control software,”
in EMSOFT 2012pp. 227-236.

A. Pnueli and R. Rosner, “On the synthesis of an asyn-
chronous reactive module,” ilCALP 1989 pp. 652—671.

A. Girault andE. Rutten, “Automating the addition of fault
tolerance with discrete controller synthesiBgrmal Methods
in System Designvol. 35, no. 2, 2009, pp. 190-225.

——, “From boolean functional equations to control soft-
ware,” CoRR vol. abs/1106.0468, 2011.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms (3. ed.) MIT Press, 2009.

K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
implementation of a bdd package,” DAC 199Q pp. 40-45.

S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision
diagram with attributed edges for efficient boolean function
manipulation,” inDAC 199Q pp. 52-57.

“CUDD Web Page,” http://visi.colorado.edu/ fabio/CUDD,
last accessed 20th dec 2012

“Berkeley logic interchange format (BLIF),"
bear.ces.cwru.edu/eecad/sisblif.pdf, last accessed 20th
dec 2012.

[21] M. Rodriguez, P. Fernandez-Miaja, A. Rodriguez, and J. Se- Electronics vol. 11, no. 1, 1996, pp. 24-32.
bastian, “A multiple-input digitally controlled buck converter
for envelope tracking applications in radiofrequency power[23] W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks, “En-
amplifiers,”IEEE Trans. on Power Electronigcsol. 25, no. 2, abling on-chip switching regulators for multi-core processors
2010, pp. 369-381. using current staggering,” iIASGI 2007

[22] W.-C. So, C. Tse, and Y.-S. Lee, “Development of a fuzzy [24] Y. Cheng and C. HUMOSFET Modeling and Bsim3 User’s
logic controller for dc/dc converters: design, computer simu- Guide Kluwer Academic Publishers, 1999.

lation, and experimental evaluationEEE Trans. on Power

