
Systems biology

SBML2Modelica: integrating biochemical models within

open-standard simulation ecosystems

F. Maggioli, T. Mancini * and E. Tronci

Computer Science Department, Sapienza University of Rome, Rome, Italy

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on April 19, 2019; revised on October 15, 2019; editorial decision on November 14, 2019; accepted on November 15, 2019

Abstract

Motivation: SBML is the most widespread language for the definition of biochemical models. Although dozens of
SBML simulators are available, there is a general lack of support to the integration of SBML models within open-
standard general-purpose simulation ecosystems. This hinders co-simulation and integration of SBML models
within larger model networks, in order to, e.g. enable in silico clinical trials of drugs, pharmacological protocols, or
engineering artefacts such as biomedical devices against Virtual Physiological Human models. Modelica is one of
the most popular existing open-standard general-purpose simulation languages, supported by many simulators.
Modelica models are especially suited for the definition of complex networks of heterogeneous models from virtual-
ly all application domains. Models written in Modelica (and in 100þ other languages) can be readily exported into
black-box Functional Mock-Up Units (FMUs), and seamlessly co-simulated and integrated into larger model net-
works within open-standard language-independent simulation ecosystems.

Results: In order to enable SBML model integration within heterogeneous model networks, we present
SBML2Modelica, a software system translating SBML models into well-structured, user-intelligible, easily modifi-
able Modelica models. SBML2Modelica is SBML Level 3 Version 2—compliant and succeeds on 96.47% of the SBML
Test Suite Core (with a few rare, intricate and easily avoidable combinations of constructs unsupported and cleanly
signalled to the user). Our experimental campaign on 613 models from the BioModels database (with up to 5438 var-
iables) shows that the major open-source (general-purpose) Modelica and FMU simulators achieve performance
comparable to state-of-the-art specialized SBML simulators.

Availability and implementation: SBML2Modelica is written in Java and is freely available for non-commercial use
at https://bitbucket.org/mclab/sbml2modelica.

Contact: tmancini@di.uniroma1.it

1 Introduction

The mathematical modelling and simulation of biochemical systems
is of paramount importance in several areas, e.g. computational and
systems biology, model-based pharmacology, chemistry. The current
de facto standard for modelling biochemical systems is Systems
Biology Markup Language (SBML, Hucka et al., 2003, http://www.
sbml.org), an XML-based markup language allowing the definition
of biochemical models in terms of reactions, species, compartments
and parameters. SBML allows the quantitative modelling of various
kinds of biological phenomena, including metabolic networks, cell
signalling pathways, regulatory networks, infectious diseases, just to
mention a few.

Simulation of SBML models of practical relevance is crucial for
their analysis, as they are often too large or intricate for being ana-
lyzed statically. Indeed, many third-party simulators of SBML mod-
els have been developed and are currently publicly available (see,
e.g. the SBML web-site).

1.1 Motivations
Available SBML simulators do not fully support the integration,
within open-standard simulation ecosystems, of SBML models with
models defined using other languages. This severely hinders the pos-
sibility to co-simulate and integrate SBML models within large
model networks comprising biochemical as well as other kinds of
models, possibly at different levels of abstraction (multi-scale model
networks, see, e.g. de Bono and Hunter, 2012), and applying stand-
ard systems engineering approaches for the model-based analysis of
such heterogeneous model networks.

For example, the interconnection of quantitative models of the
human physiology (e.g. Physiomodel, Mateják and Kofránek,
2015), drugs pharmacokinetics/pharmacodynamics (e.g. Open
Systems Pharmacology Suite, Eissing et al., 2011), (possibly semi-
autonomous) biomedical devices, pharmacological protocol guide-
lines or treatment schemes, enables the set-up of in silico clinical
trials for the (model-based) safety and efficacy pre-clinical

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2165

Bioinformatics, 36(7), 2020, 2165–2172

doi: 10.1093/bioinformatics/btz860

Advance Access Publication Date: 18 November 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2165/5628220 by Sapienza U
niversità di R

om
a user on 04 August 2020

http://orcid.org/0000-0003-3355-2170
https://bitbucket.org/mclab/sbml2modelica
http://www.sbml.org
http://www.sbml.org
https://academic.oup.com/

assessment of such drugs, protocols, treatments, devices, using
standard system engineering approaches to perform their
simulation-based analysis at system level (see, e.g. Kanade et al.,
2009; Mancini et al., 2013, 2014, 2016a, 2017; Zuliani et al., 2013;
Zuliani, 2015). Works in this direction include, e.g. (Messori et al.,
2018; Schaller et al., 2016), where a model-based verification activ-
ity of a sensor-augmented insulin pump is conducted against a
model of the human glucose metabolism in patients with diabetes
mellitus, (Madec et al., 2019), where a model of a penicillin bio-
sensor (integrating biochemistry, electrochemistry and electronics
models) is simulated to compute a first dimensioning of the sensor,
and (Mancini et al., 2015; Tronci et al., 2014), where representative
populations of virtual patients are generated from parametric mod-
els of the human physiology, a key step to enable in silico clinical tri-
als (see, e.g. Mancini et al., 2018).

One of the most widely adopted open-standard languages for
modelling dynamical systems is Modelica (http://www.modelica.
org), a general-purpose fully fledged language based on ordinary dif-
ferential as well as algebraic equations plus procedural snippets. The
language supports object-orientation and allows the definition of
complex systems as networks of smaller subsystems.

Modelica is widespread in application domains as diverse as
mechanical, electrical, electronic, hydraulic, thermal, control, elec-
tric engineering, but also physiology and pharmacology (see, e.g.
Mateják and Kofránek, 2015), and several efficient and highly con-
figurable simulators are currently available: proprietary (e.g.
Dymola and Wolfram System Modeler) as well as open-source (e.g.
OpenModelica and JModelica).

A Modelica model can also be easily exported into a Functional
Mock-Up Unit (FMU), an executable opaque (binary) object imple-
menting the Functional Mock-Up Interface (FMI, http://fmi-stand
ard.org), one of the currently most widespread open standards for
model exchange, integration and co-simulation. Being black-box,
FMU models can be shared or integrated within larger model net-
works while protecting their intellectual property (see, e.g. Mancini
et al., 2016b). This is crucial when sharing, integrating, or co-
simulating models coming from different providers (e.g. pharma
companies, or manufacturers of novel biomedical devices). The
FMI/FMU standard is currently supported by more than 100 simula-
tors for virtually all application domains, making it the largest open-
standard ecosystem for (language-independent) model exchange, in-
tegration and co-simulation.

1.2 Contributions
In this paper we present SBML2Modelica, a software system that
translates SBML models into well-modularized user-intelligible
Modelica code, which preserves both the structure and the docu-
mentation of the input SBML models. The generated Modelica mod-
els can then be easily modified, integrated within other models, and
can be readily run using any available Modelica simulator.
Furthermore, the generated Modelica models can be easily exported
into FMUs, thus allowing their seamless co-simulation and integra-
tion into model networks within open-standard language-independ-
ent simulation ecosystems (a helper tool is provided in the
SBML2Modelica repository which generates a FMU directly from
an SBML model by leveraging the JModelica API).

SBML2Modelica is compliant to the latest SBML standard (SBML
Level 3 Version 2, Hucka et al., 2018) and succeeds on 96.47% of the
SBML Test Suite Core v3.3.0 (see Section 3.1), with a few rare, intri-
cate and easily avoidable combinations of constructs (see Section 4)
unsupported and cleanly signalled to the user. Furthermore, our ex-
perimental campaign on 613 models from the BioModels database
(with up to 5438 variables) shows that major open-source (general-
purpose) Modelica and FMU simulators (OpenModelica and
JModelica, with the latter that converts the input Modelica model
into an FMU and then simulates such an FMU), when used in their de-
fault configurations achieve performance comparable to state-of-the-
art specialized SBML simulators (see Section 3.2).

SBML2Modelica can be freely downloaded for non-commercial
uses. The system has been implemented in Java and can be executed

on all platforms for which a Java Virtual Machine is available. This
includes most computer operating systems.

1.3 Available SBML simulators
A plethora of systems for the simulation of models written in SBML
are currently available (most of them are listed in the SBML web-
site), and a comprehensive review of them is out of the scope of this
article. We note, however, that both their functionalities and com-
pliance to the SBML standard is highly variable.

In particular, only for six systems a certified report of their com-
pliance to the official SBML Test Suite Core is (at the time of writ-
ing) publicly available (see the SBML web-site). Some of such
systems (namely libRoadRunner, Somogyi et al., 2015;
libSBMLSim, Takizawa et al., 2013; and Simulation Core Library,
Keller et al., 2013) are pure SBML simulators, allowing the user to
numerically simulate the SBML model given as input. All of them
support a previous SBML standard (SBML Level 3 Version 1), while
SBML2Modelica supports the latest standard (SBML Level 3
Version 2) with only a few minor limitations (see Section 4).

The other systems (namely BioUML, Kolpakov et al., 2019;
iBioSim, Myers et al., 2009; and COmplex PAthways SImulator—
COPASI, Lee et al., 2006) are more general platforms that, beyond
model simulation, allow the user to modify, extend and connect dif-
ferent SBML models together. Of them, only BioUML support
SBML Level 3 Version 2, as iBioSim and COPASI only support the
older SBML Level 3 Version 1.

By translating SBML models into an open-standard general-pur-
pose widely adopted simulation language as Modelica (preserving
both the structure and the documentation of the input models),
SBML2Modelica not only allows simulation of the generated mod-
els (using any Modelica simulator), but also opens up a huge pleth-
ora of new possibilities to integrate SBML biochemical models with
models of other kinds of systems (see Section 1.1) written in lan-
guages different than SBML.

Enabling interoperability and integration of biochemical models
into cross-domain model networks has been strongly advocated.
Attempts in this directions include, e.g. Madec et al. (2017), where
biochemical models are converted into Spice, a standard integrated
electronic circuit simulator, for the model-based design of bio-
sensors and labs-on-chip. Model conversion is performed exploiting
clever analogies between the behaviour of biochemical systems and
electronic circuits and between molecular diffusion and heat diffu-
sion (Gendrault et al., 2014; Madec et al., 2019). SBML2Modelica
acts at a higher level, by translating SBML models into a genuinely
general-purpose cross-domain open system modelling language
(Modelica), hence enabling seamless integration and co-simulation
of SBML models with models of virtually all application domains,
without the need to exploit cross-domain analogies, hence fully pre-
serving model readability and extensibility. The possibility to export
Modelica models into FMUs is one step further, allowing model in-
tegration and co-simulation in a language-independent way.

Previous approaches to translate SBML models into general-pur-
pose simulation platforms include the SimBiology Matlab toolbox and
Wolfram SystemModeler (a proprietary simulator accepting the
Modelica language) with the BioChem plug-in (Fritzson et al., 2007;
Larsdotter Nilsson and Fritzson, 2003). In particular, by providing a
user-friendly interface and high-level library abstractions, the BioChem
SystemModeler plug-in allows the definition of visually appealing bio-
chemical networks in some Modelica editors. Differently from
SBML2Modelica, both SimBiology and SystemModelerþBioChem are
based on commercial simulators and support only subsets of older
SBML standards (SBML Level 3 Version 1 and SBML Level 2 Version
4, respectively), with several major limitations, including lack of sup-
port of delayed and prioritized events. Also, for none of them a compli-
ance assessment to the SBML Test Suite core is available.

2 Materials and methods

In the following, we briefly outline the main structure of an SBML
(Section 2.1) and of a Modelica model (Section 2.2), before

2166 F.Maggioli et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2165/5628220 by Sapienza U
niversità di R

om
a user on 04 August 2020

http://www.modelica.org
http://www.modelica.org
http://fmi-standard.org
http://fmi-standard.org

sketching (Section 2.3) how SBML2Modelica generates a structured
Modelica model from an input SBML model.

2.1 High-level view of an SBML model
Here, we recall the main constructs of SBML, namely parameters,
compartments, species and events. The reader interested to a more
in-depth description is referred to the official SBML web-site (http://
www.sbml.org) for the full language specification.

Parameters denote quantities with a symbolic name. Such quan-
tities can be either constant or varying during model evolution.

Compartments denote containers of a particular type and posi-
tive size (possibly varying during model evolution).

Species represent model entities (e.g. biochemical substances),
whose amount may vary during model evolution. Each species
belongs to a compartment. Species may take part to reactions. At
any time, the concentration of a species in its compartment is
defined as amount

size , where size is the size of the species compartment at
that time.

Model parameters, species and size of compartments are defined
by means of model variables and can be assigned to values. An ini-
tial assignment defines the value of a model variable at time 0.

Reactions are statements describing any transformation, trans-
port or binding process that changes the amount of one or more spe-
cies. A reaction of the form a! b (where a and b are mixtures,
defined as linear combinations of species, e.g. a ¼ s1 þ 2s2; b ¼ s3,
where s1; s2; s3 are species) describes how (and how much of) certain
species (those in a, called reactants) are transformed into certain
other species (those in b, called products). Reactions have associated
kinetic rate expressions that describe how quickly they take place.

According to the SBML specification, for any species s, the set of
reactions R1; . . . ;Rn in which s occurs (together with their associ-
ated kinetic rate expressions kR1

; . . . ; kRn
) collectively define the

time derivative of the available amount of s as:

ds

dt
¼
Xn

i¼1

kRi
� �ðs;RiÞ; (1)

where �ðs;RiÞ is the sum of the coefficients that multiply the occur-
rences of s in reaction Ri. Coefficients occurring on the left side of Ri

are multiplied by –1 in order to model species consumption, while
those occurring on the right side are taken as they are in order to
model species production (see forthcoming Example 1).

Events represent instantaneous and discontinuous changes in the
value of some quantities (e.g. amounts of species, parameters, size of
compartments) of the model. An event is defined in terms of a trig-
ger condition (a Boolean formula), and a set of assignments, which
update some model variables when the event occurs (i.e. when the
trigger condition switches from false to true). Optionally, events can
be delayed by a certain time interval, whose length could change
during model evolution. To avoid that two events occurring at the
same time assign different values to the same variable, a priority ex-
pression (on the model variables) can be defined for events. Event
priority expressions, evaluated when events occur, define the order
in which concurrent events must be handled.

SBML events can be either persistent or non-persistent. Let e be
an event, t be the time instant when the trigger condition of e
becomes true and d be the event delay. Non-persistent (respectively,
persistent) event e must be executed at time instant tþd only if (re-
spectively, regardless of whether) the trigger condition remains true
during the whole delay period (i.e. from time t to time tþd).

Rules provide additional means to define the values of variables
in a model in ways that cannot be expressed using reactions or initial
assignments. The following three types of rules are provided (below,
V is a set of—possibly all—model variables). Algebraic rules are of
the form f ðVÞ ¼ 0. Assignment rules are of the form:
x ¼ f ðV � fxgÞ. Finally, rate rules define the rate of change of a
model variable and are of the form: dx

dt ¼ f ðVÞ.

Example 1 shows a simple SBML model that will be used as a running

example when outlining how SBML2Modelica works (Section 2.3).

Although the model is clearly artificial and might not recall a known

biochemical mechanism, it has the merit of compactly showing all the

most important SBML constructs that we will address in the remainder

of the paper.

Example 1 (Running example): Our SBML model (whose code is avail-

able in the SBML2Modelica repository) consists of the following

elements:

Parameters: p1 with constant value 10�6 ½l s�1�; p2 whose value is ini-

tially set to 1 ½mol�1s�1�; p3 with constant value 10�3 ½mol�; p4 whose

initial value is set to 300 ½s�.

Species (all in ½mol�): s1, s2, s3 (initially set to 10�3) and s4.

Compartments: One compartment c containing all the species.

Reactions: Reaction R : s1 þ 2s2 ! s3 with kinetic rate expression

kR ¼ p2s1s2 ½mol s�1�.

Events:

• e1 with trigger condition s1s2 � 10�7 _ s3s4 � 10�7 and prior-

ity equal to s4. When the event is triggered, parameter p2 is set to

0.
• e2 with the same trigger condition as e1, but with a delay of p4

and priority equal to s2. When triggered, parameter p2 is set to –

1 and parameter p4 is set to 0.

Rules:

• Rate rule r1, defining dp2

dt ¼ 0;
• Assignment rule r2, which sets the size of compartment c to

1þ p1 � t ½l�, where t is the value of the current time-instant;
• Algebraic rule r3, which imposes that constraint s2

s1
� s3

s4
¼ 0 holds

at all time points.

Initial assignment which sets the value of s2 to p3 at time zero.

The model in Example 1 comprises four species (s1; . . . ; s4) all
belonging to a single compartment (whose size is constantly increas-
ing as dictated by assignment rule r2). The time-evolution of the
available amount of s1, s2 and s3 is governed by reaction R, while
that of s4 is determined by algebraic rule r3 (hence, s4 is always equal
to s1s3

s2
). The kinetic rate expression kR of reaction R dictates how

quickly the reaction takes place. In our example, reaction R defines
the following time derivatives for the available amounts of
the involved species, according to Eq. (1): ds1

dt ¼ �kR;
ds2

dt ¼ �2kR;
ds3

dt ¼ kR. However, kR is not constant in time, and
moreover, depends on parameter p2, whose value is affected by the
two events e1 and e2. This makes our model not trivial.

Figure 1 shows the time evolution of the available amount of each
species of our model, when starting from the initial state, where the
available amount of each species is 10�3; p1 ¼ 10�6;
p2 ¼ 1; p3 ¼ 10�3; p4 ¼ 300. With p2 ¼ 1, kR is positive, hence R
defines a reaction where s1 and s2 are consumed in favour of the pro-
duction of s3. When, at time 1233:10 ½s�; s1s2 becomes � 10�7 both
events e1 and e2 are triggered. Given that e2 has a delay of
p4 ¼ 300 ½s�, e1 is processed immediately, while e2 is processed only
after 300 more seconds. This implies that p2 is immediately set to 0
(as dictated by e1). The kinetic rate expression kR of reaction R is thus
set to 0 and the system stabilizes. When, at time 1533:10 ½s�, also e2 is
processed, parameter p2 is set to –1 and p4 to 0. The new value for p2

makes kR negative, hence reaction R turns into modelling the con-
sumption of s3 in favour of the production of s1 and s2. This behav-
iour continues until time 3078:48 ½s�, when s3s4 becomes � 10�7,
thus triggering again both e1 and e2. This time, however, e2 has a
delay of p4 ¼ 0 ½s�, hence e1 and e2 are now triggered and processed
simultaneously. Since the priority of e2 (i.e. s2) is higher than the

SBML2Modelica 2167

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2165/5628220 by Sapienza U
niversità di R

om
a user on 04 August 2020

http://www.sbml.org
http://www.sbml.org

priority of e1 (i.e. s4), the SBML specification stipulates that the two
events are processed in the order e2, e1. This implies that p2 is first set
to –1 and then (at the same time point) to 0. With p2 being set to 0,
also kR becomes 0 and the system stabilizes again.

2.2 High-level structure of a Modelica model
Modelica is an object-oriented language for the definition of systems
of differential-algebraic equations. Below, we briefly recall the gen-
eral structure of a Modelica model. The reader interested to a more
in-depth description is referred to the official Modelica web-site
(http://www.modelica.org) for the full language specification.

A Modelica model is a network of objects. Each object defines a
set of variables, initial assignments as well as differential and alge-
braic equations for them, events and algorithmic sections. At any
time point, the state of a model is the value of the variables belong-
ing to all its objects. Variables belonging to an object can be refer-
enced from other objects via proper connections.

2.3 Modelica code generation
Differently from the BioChem plug-in of Wolfram SystemModeler
(the only other Modelica-based SBML simulator available),
SBML2Modelica does not rely on library abstractions, but generates
stand-alone yet well-structured and human-intelligible Modelica
code.

In particular, the Modelica model generated by SBML2Modelica
starting from the SBML model given as input is a network of differ-
ent objects of five different classes (whose code is stored in separate
files), following the structure shown in Figure 2.

This structure ensures full portability and extensibility of the
generated Modelica code (no plug-ins are required), and enables
easy modifications at the level of each basic component (as no li-
brary classes are involved).

2.3.1 The Model object

The Model object acts as an orchestrator, by holding links to the
other model objects and defining, via proper connections, the inter-
object visibility of model variables.

Furthermore, the Model object defines the algebraic equations
encoding the algebraic rules occurring in the input SBML model, as
they may constrain variables belonging to different Modelica
objects. For instance, the Model object generated from Example 1
would define an algebraic equation encoding algebraic rule r3.

Finally, the Model object hosts a set of auxiliary functions (also
generated by SBML2Modelica) needed to handle conflicting assign-
ments from simultaneous events (see Section 2.3.4).

2.3.2 The Compartment objects

SBML2Modelica defines a Modelica Compartment object for each
SBML model compartment. Such objects are then linked with the
Model object.

The object variables define the compartment size and the amount
and concentrations of all the species belonging to the compartment.
For example, the object associated to compartment c of Example 1
would define variables csize; sam

1 ; scon
1 ; . . . ; sam

4 ; scon
4 . Initial assignments

to the object variables (if defined within the input SBML model, as
it happens in Example 1) and differential/algebraic equations for the
species belonging to the compartment as well for the compartment
size are encoded using information from SBML initial assignments,
reactions and rules.

For instance, the Modelica code generated from Example 1
would define the time derivative of the amount of each species
involved in reaction R (i.e. of variables sam

1 ; sam
2 and sam

3) as stipu-
lated by Eq. (1), referencing variables (which store data on the reac-
tion) belonging to the Reactions object (see below). Hence, we
would have differential equations

dsam
i

dt ¼ �ðsi;RÞ � kR, for i 2 ½1; 3�.
Also, algebraic equation csize ¼ 1þ p1 � t (where t refers to the cur-
rent time instant) would be generated to encode assignment rule r2.
The time derivative of the amount of any species involved in a rate
rule (there are none in Example 1) would instead be encoded using
its associated rule.

Conversely, equations for species whose amount is defined by
means of an SBML algebraic rule (like s4 in Example 1) are defined
within the Model object, as they represent constraints whose scope
may span several Modelica objects.

Finally, variables representing the concentrations of all species
are defined from their amounts. So, for compartment c of Example
1, we would have variable assignments scon

i sam
i

csize (i 2 ½1; 4�).
Suitable assertions are injected into the Modelica code to ensure

that variables referring to compartment sizes are always strictly
positive (as dictated by the SBML semantics), hence guaranteeing
that species concentration variables are always defined.

2.3.3 The Reactions object

SBML2Modelica defines a single Reactions Modelica object storing
data for all reactions defined in the input SBML model. Such an ob-
ject is then linked with the Model object.

Object variables hold the kinetic rate expression for each reac-
tion R in the model, as well as the coefficients �ðs;RÞ for each spe-
cies s occurring in reaction R [see Eq. (1)]. Thus, as for the single
reaction R of Example 1, we would have variable kR defining the
kinetic rate expression of R via the algebraic equation
kR ¼ p2 � sam

1 � sam
2 , plus variables �ðs1;RÞ; �ðs2;RÞ and �ðs3;RÞ set

to constant values –1, –2 and þ1 respectively.

2.3.4 The Event objects

An Event Modelica object is defined for each event e defined in the
input SBML model, in order to represent the event trigger condition,
the event priority and delay (if any). All such objects are linked with
the Model object.

In order to properly handle simultaneous events with conflicting
assignments, the management of event assignments is split in three
parts.

First, an auxiliary variable is defined in the Event object encod-
ing e for each SBML model variable assigned by e. When e occurs
(and after the event delay, if any), each such variable is set to the
new value to be assigned to its associated model variable v, as stipu-
lated by e.

Second, conflicting assignments stemming from simultaneous
events are resolved (within the Model object, Section 2.3.1) by
means of auxiliary functions, which also take into account the prior-
ities of the competing events.

Fig. 1. Time evolution of the SBML model of Example 1

Model

Compartment

1..*

Reactions
1

Event

Parameters

0..*

1

Fig. 2. UML class diagram of the Modelica models generated by SBML2Modelica

2168 F.Maggioli et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2165/5628220 by Sapienza U
niversità di R

om
a user on 04 August 2020

http://www.modelica.org

Third, the objects owning the variables to be assigned after the
occurring event(s) are informed of the final required changes and
take care of actually performing the assignments.

Depending on whether each event is persistent or non-persistent,
SBML2Modelica generates different code. Specialized and more effi-
cient code is also generated for the common case of events with no
delay.

2.3.5 The Parameters object

A single Parameters Modelica object is defined to encode all the
parameters of the input SBML model, together with their associated
initial assignments and differential/algebraic equations stemming
from SBML rate or assignments rules.

Hence, the Parameters object for Example 1 (which is linked
with the Model object) would define and properly initialize varia-
bles p1, p2, p3, p4 and encode differential equations dp2

dt ¼ 0 (stem-
ming from rate rule r1) and dp4

dt ¼ 0 (stemming from the fact that
value to p4 changes only upon events).

3 Results

Section 3.1 below shows the results of our experiments aimed at
assessing the correctness of SBML2Modelica against the SBML Test
Suite Core, while Section 3.2 compares the performance of general-
purpose Modelica and FMU simulators when running the Modelica
code generated by SBML2Modelica against the other SBML simula-
tors for which an SBML Test Suite Core report is publicly available.

3.1 Compliance to the SBML Test Suite Core
In order to assess the correctness of SBML2Modelica, we ran it
against the test cases provided by SBML Test Suite Core v3.3.0,
available in the SBML web-site.

As SBML2Modelica aims at supporting the latest SBML stand-
ard (SBML Level 3 Version 2), we ignored the test cases involving
deprecated and discouraged constructs such as fast reactions.
Hence, we ran SBML2Modelica against the remaining 1588 out of
the overall 1623 test cases and simulated the generated Modelica
code with the two major open-source Modelica implementations,
namely OpenModelica (we used v1.32.2) and JModelica (we used
v2.4), with the latter converting the input Modelica code into an
FMU and then simulating such an FMU.

SBML2Modelica achieves very high marks: the output (always
identical between OpenModelica and JModelica) is exactly as
expected on 1532 out of 1588 test cases (96.47%). Figure 3 com-
pares the test cases of the SBML Test Suite Core v3.3.0 successfully
simulated by OpenModelica/JModelica (on input provided by
SBML2Modelica) to the results declared by the other six systems for
which a certified public report is available in the SBML web-site.
Namely, the figure shows, for each system, a series of 1588 thin ver-
tical bars, one per test case (sorted by their identifier in ascending
order from left to right). Each vertical bar is coloured in green (re-
spectively, grey) if the simulator output is (respectively, is not) exact-
ly as expected by the SBML Test Suite Core upon numerical
simulation of that test case.

The figure shows that SBML2ModelicaþOpenModelica/
JModelica rank among the top-compliant SBML simulators, being
second only to BioUML. Note that libSBMLSim, iBioSim,
Simulation Core Library and libRoadRunner fail over a large num-
ber of test cases located on the right part of their plot. This is due to
the fact that the test cases containing the constructs introduced in
the latest SBML standard (not supported by them) have the highest
values of their identifiers.

As for the 56 test cases for which the output computed by
SBML2ModelicaþOpenModelica/JModelica differs from the output
expected by the test suite, in eight cases the difference is semantically
meaningless. In particular, the time series for the model variables
computed by our Modelica simulators contain one more line with
respect to the SBML Test Suite Core expected output, returning the
value of the model variables immediately before each event (even if
such events do not occur at time points multiple of the requested
sampling time). This is an intended behaviour of OpenModelica and
JModelica, aimed at better showing the discontinuities in the values
of the model variables that arise when events occur. By ignoring
such additional lines, our output is exactly as expected.

The other 48 test cases where the output of
SBML2ModelicaþOpenModelica/JModelica differs from the output
expected from the test suite are due to combinations of SBML con-
structs unsupported by SBML2Modelica. Such combinations are dis-
cussed in Section 4. However, we anticipate that they are very rare in
practice, semantically intricate and easily avoidable. Although some
more involved/cryptic Modelica code could be in principle be gener-
ated to handle them, we chose to keep our output Modelica models as
structured and human-intelligible as possible, in order to ease their ex-
tension and integration within larger model networks.

Anyway, there is no risk to accidentally generate flawed
Modelica code, since any problematic combinations of constructs are
statically detected by SBML2Modelica, which warns the user during
model translation about possible issues. The user can then act directly
on the generated Modelica code to fix any raised issue. Also, to fur-
ther assist the user, suitable assertions are injected in the generated
Modelica code that would raise proper exceptions during simulation
in case the Modelica model (generated with warnings) actually
behaves in a way not fully compliant to the SBML semantics.

3.2 Model simulation performance
In this section we aim at assessing to what extent translating SBML
models into an open-standard general-purpose modelling language
such as Modelica and into an open-standard general-purpose simu-
lation ecosystem such as FMI/FMU introduces an overhead in simu-
lation performance, when compared to simulation algorithms
specialized to biochemical models. To this end, we consider the
major open-source (general-purpose) Modelica and FMU simulators
(OpenModelica and JModelica, respectively). Note that, while
OpenModelica simulates the input model directly, JModelica works
by translating the input Modelica model into an FMU and then by
actually simulating such an FMU using the FMI API.

The performance of OpenModelica and JModelica/FMI in simu-
lating SBML models translated by SBML2Modelica is compared
against that of the specialized SBML simulators reported in Section
3.1 plus SystemModelerþBioChem, the only other available
Modelica-based simulator for SBML models.

Although our results are by no means to be intended as the out-
come of a competition among SBML simulators, they clearly show
that the advantages of using SBML2ModelicaþOpenModelica and
SBML2ModelicaþJModelica/FMI do not generally come at any sig-
nificant performance overhead.

3.2.1 Benchmarks

We used the BioModels Database (Le Novère et al., 2006), a well-
known repository of mathematical models of biological and bio-
medical systems taken from the scientific literature. Models manual-
ly reviewed to guarantee reproducibility of results belong to the set
of manually curated models. This set of models is widely used as a
benchmark for SBML interpreters and simulators.

Fig. 3. Compliance of SBML2Modelica-generated code (simulated by

OpenModelica and JModelica) to the SBML Test Suite Core v3.3.0, compared to

other SBML simulators with certified public reports (test cases with deprecated

SBML constructs are ignored)

SBML2Modelica 2169

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2165/5628220 by Sapienza U
niversità di R

om
a user on 04 August 2020

We selected the subset of manually curated models of the
BioModels Database (as of December 2018) that are accepted by
SBML2Modelica (i.e. do not contain deprecated constructs or the
unsupported combinations of constructs described in Section 4). As
a result, our benchmark set consists of 613 models (out of the 641
manually curated models of the BioModels Database), which have
from 6 to 5438 variables.

3.2.2 Experimental setting

The computational complexity of a model simulation is affected by
many factors, which are way beyond the mere number of variables.
For example: number and structure of the differential as well alge-
braic equations; number and frequency of occurrence of events and
complexity of their trigger conditions; algorithm and parameters
used by the simulation engine.

Setting up a methodologically sound competition among
OpenModelica, JModelica/FMI and specialized SBML simulators is
a complex task, which is clearly out of the scope of this paper. So is
the choice of the optimal simulation algorithm and configuration for
a given model (in particular both OpenModelica and JModelica/
FMI offer a wide portfolio of highly configurable integrators to
choose from).

Given our goals (see Section 3.2), in our analysis, we proceeded
as follows.

First, for each system we measured the core simulation time, i.e.
the time of simulating the given model from its (system-specific) in-
ternal representation. This is consistent with the most demanding
use-cases, such as parameter identification or estimation procedures,
where simulator initialization and model preparation are performed
only once, while a large number of simulations (with different par-
ameter assignments) takes place, among which such initialization
costs are amortized. As for OpenModelica and JModelica/FMI, this
means that we ignored SBML2Modelica translation time, which,
anyway, always takes less than 6% of the simulation time. For the
same reason, as for JModelica/FMI we also ignored the time to gen-
erate the FMU (which is also negligible).

Second, we used all systems with their default integrators and
settings.

Third, we fixed the simulation horizon and the maximum time
step to, respectively, 100 and 0.01 (model) time units. This last
choice allowed us to extrapolate a clear performance trend of each
system on the basis of the number of model variables.

All simulations were performed on a commodity computer
(AMD A12-9720P CPU, 12 GB RAM, SSD, standard Linux envir-
onment), with a time-out of 360 s.

3.2.3 Experimental results

The scatter (log–log) plot in Figure 4 shows a dot for each model in
our benchmark set and each system (if that system terminated within
our time-out). For each dot in position (x, y), x denotes the number
of variables of the associated SBML model, while y denotes the
time (in seconds) required by the system associated to the dot
colour to terminate. SBML model import in Wolfram
SystemModelerþBioChem and iBioSim requires manual user inter-
action via GUI and could not be automated. We overcame this issue
by manually launching such systems on all models with at least 250
variables.

Figure 4 shows that OpenModelica and JModelica/FMI are com-
petitive on most of the benchmark set, although, on the two largest
models, there is a visible performance gap with respect to some of
the other systems, with OpenModelica and JModelica going in time-
out for, respectively, one and both of them. Also, OpenModelica
appears generally faster than JModelica/FMI, even if it seems to
slow down a bit when simulating models with frequently occurring
events (as shown by the bimodal behaviour on models having a simi-
lar number of variables). However, also in these cases, its overall
performance remain aligned to that of several specialized SBML
simulators. Conversely, performance of JModelica/FMI is more sta-
ble, regardless of the events occurrence frequency.

Besides the above peculiarities, the overall trend emerging from
Figure 4 is that the benefits enabled by a translation into a general-
purpose open-standard modelling language for dynamical systems
such as Modelica and, as for JModelica/FMI, into a general-purpose
open-standard simulation ecosystem such as FMI/FMU, generally
come at no significant overhead, when compared against perform-
ance of specialized SBML simulators.

4 Discussion

Section 3 shows that, by translating SBML models into Modelica
(and in turn, as for JModelica/FMI, into FMUs), SBML2Modelica
effectively enables seamless integration of SBML models into larger

Fig. 4. Performance trend (log-log plot) of general-purpose OpenModelica (v1.32.2) and JModelica/FMI (v2.4) simulators on our benchmark models (from BioModels) trans-

lated with SBML2Modelica, compared with that of specialized SBML simulators. (Due to the need of manual GUI interaction, results of Wolfram SystemModelerþBioChem

and iBioSim are reported only for models with at least 250 variables.)

2170 F.Maggioli et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2165/5628220 by Sapienza U
niversità di R

om
a user on 04 August 2020

heterogeneous model networks without (in most cases) sacrificing
simulation performance.

Below we analyze the 48 test cases in the SBML Test Suite Core
containing those combinations of SBML constructs not supported
by SBML2Modelica (see Section 3.1). Note that such construct com-
binations are rare in real-world models, semantically intricate and
can be easily circumvented. SBML2Modelica always detects such
cases and warns the user accordingly; hence, there is no risk to run
flawed Modelica code.

4.1 Events recomputation
If, at a certain time instant t, multiple events are simultaneously trig-
gered, such events are ordered by their priorities and the event e
with the highest priority is executed first (Example 1 shows one such
case). However, the execution of e might change the value of varia-
bles that occur in the priority expression or in the trigger condition
of some of the other events waiting to be executed. In such situations
(which can easily be circumvented by modelling the underlying
mechanisms of such interfering events more explicitly),
SBML2Modelica cannot generate correct Modelica code. To avoid
to generate a flawed translation, SBML2Modelica statically detects
whether such interferences might occur between events and warns
the user.

4.2 Nested triggers
Assume that a persistent event e is triggered for the first time at time
t1 and that it is requested to be delayed by duration d1. If, for some
reason, event e is triggered again at time t2 such that t1 < t2 <
t1 þ d1 and is requested to be delayed by duration d2, the trigger
must be recorded and e must execute at time t2 þ d2. As we cannot
statically detect how many times the trigger of a persistent event can
be nested, SBML2Modelica raises a warning during model transla-
tion, informing the user that a second trigger for a persistent model
event might potentially occur when a previous trigger for the same
event is on hold because of a delay. Also, SBML2Modelica injects
an assertion into the generated Modelica code which stops the simu-
lation in case this situation actually occurs at run-time (making the
model behaviour not compliant with the SBML semantics). Again,
such situations can be easily circumvented by modelling the underly-
ing causes of event delays in more explicit ways.

4.3 Negative time
SBML allows the definition of quantities also in negative time
points. This may cause issues. For example, the value of a model
variable x at time 0 could be re-assigned by an event trigger (proc-
essed at time 0) using an expression such as

�
preðxÞ

�
ð0Þ. In this

case, the SBML semantics stipulates that
�

preðxÞ
�
ð0Þ must be deter-

mined somewhere else in the model (otherwise, a semantic error
occurs). Another example of negative time is the occurrence of
f ðt � dÞ, where f is a function and d>0 is the duration of a delay.
According to the SBML specifications, the value of f ðt � dÞ is
defined also when t<d, by assuming that f is defined also for nega-
tive time points. Conversely, the Modelica language specification
forbids negative time points, as time point 0 is assumed to be the ini-
tial time point for simulation.

Although, in principle, additional Modelica code could be gener-
ated by SBML2Modelica in order to properly handle such cases (e.g.
by computing a suitable time-offset for all the model variables, and
by artificially shifting in time the evolution of the entire model), we
decided not to support this possibility, in order to keep the generated
Modelica code well-structured and fully readable. Hence, when the
above situations are detected, SBML2Modelica issues a warning.
The user interested in supporting such cases, can take full responsi-
bility by acting directly on the generated Modelica code.

4.4 Unsupported math
SBML allows users to explicitly assign value NaN to variables.
When such values are found in the input SBML model,

SBML2Modelica notices the user, since the numerical model simula-
tion is clearly not possible.

5 Conclusions

In this article, we presented SBML2Modelica, an SBML Level 3
Version 2—compliant software system that translates SBML models
into well-structured, user-intelligible, easily modifiable Modelica code,
an open-standard general-purpose modelling language for which several
efficient simulators (both commercial and open-source) are available.
Modelica models can also be exported into black-box language-inde-
pendent FMUs, an open standard supported by more than 100 simula-
tors from virtually all application domains.

All this paves the way to the seamless integration (without lack
of simulation performance) of SBML models within open-standard
ecosystems, where biochemical models can be used as components
of large heterogeneous model networks (together with models of,
e.g. human physiology, clinical protocol guidelines, treatment
schemes, biomedical devices), and where standard system engineer-
ing approaches can be employed to perform their simulation-based
analysis at system level.

Acknowledgement

Authors are very grateful to the anonymous reviewers for their
valuable comments.

Funding

This work was partially supported by Italian Ministry of University and

Research under grant ‘Dipartimenti di Eccellenza 2018–2022’ of the

Department of Computer Science of Sapienza University of Rome; EC FP7

project PAEON (Model Driven Computation of Treatments for Infertility

Related Endocrinological Diseases, 600773); INdAM ‘GNCS Project 2019’;

Sapienza University 2018 project RG11816436BD4F21 ‘Computing

Complete Cohorts of Virtual Phenotypes for In Silico Clinical Trials and

Model-Based Precision Medicine’.

Conflict of Interest: none declared.

References

de Bono,B. and Hunter,P. (2012) Integrating knowledge representation and

quantitative modelling in physiology. Biotechnol. J., 7, 958–972.

Eissing,T. et al. (2011) A computational systems biology software platform

for multiscale modeling and simulation: integrating whole-body physiology,

disease biology, and molecular reaction networks. Front. Physiol., 2, 4.

Fritzson,P. et al. (2007) Biochemical mathematical modeling with modelica

and the biochem library. In: APLIMAT 2007, pp. 147–159.

Gendrault,Y. et al. (2014) Modeling biology with HDL languages: a first step

toward a genetic design automation tool inspired from microelectronics.

IEEE Trans. Biomed. Eng., 61, 1231–1240.

Hucka,M. et al. (2003) The Systems Biology Markup language (SBML): a me-

dium for representation and exchange of biochemical network models.

Bioinformatics, 19, 524–531.

Hucka,M. et al. (2018) The Systems Biology Markup Language (SBML): lan-

guage specification for Level 3 Version 2 Core. J. Integr. Bioinf., 15,

Kanade,A. et al. (2009) Generating and analyzing symbolic traces of

Simulink/Stateflow models. In: CAV 2009, LNCS, vol. 5643. Springer,

Berlin, pp. 430–445.

Keller,R. et al. (2013) The systems biology simulation core algorithm. BMC

Systems Biol., 7, 55.

Kolpakov,F. et al. (2019) BioUML: an integrated environment for systems

biology and collaborative analysis of biomedical data. Nucl. Acids Res., 47,

W225–W233.

Larsdotter Nilsson,E. and Fritzson,P. (2003) BioChem—a biological and

chemical library for Modelica. In: Modelica 2003, pp. 215–220.

Lee,C. et al. (2006) COPASI—a COmplex PAthway SImulator.

Bioinformatics, 22, 3067–3074.

Madec,M. et al. (2017) Modeling and simulation of biological systems using

SPICE language. PLoS One, 12, e0182385.

SBML2Modelica 2171

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2165/5628220 by Sapienza U
niversità di R

om
a user on 04 August 2020

Madec,M. et al. (2019) Environment for modeling and simulation of biosys-

tems, biosensors, and lab-on-chips. IEEE Trans. Electron Dev., 66, 34–43.

Mancini,T. et al. (2013) System level formal verification via model checking driven

simulation. In: CAV 2013, LNCS, vol. 8044. Springer, Berlin, pp. 296–312.

Mancini,T. et al. (2014) System level formal verification via distributed

multi-core hardware in the loop simulation. In: PDP 2014. IEEE, New

York, pp. 734–742.

Mancini,T. et al. (2015) Computing biological model parameters by parallel

statistical model checking. In: IWBBIO 2015, LNCS, vol. 9044. Springer,

Berlin, pp. 542–554.

Mancini,T. et al. (2016a) Anytime system level verification via parallel ran-

dom exhaustive hardware in the loop simulation. Microprocess. Microsyst.,

41, 12–28.

Mancini,T. et al. (2016b) SyLVaaS: system level formal verification as a ser-

vice. Fundament. Inf., 1–2, 101–132.

Mancini,T. et al. (2017) On minimising the maximum expected verification

time. Inf. Process. Lett., 122, 8–16.

Mancini,T. et al. (2018). Computing personalised treatments through in silico

clinical trials. A case study on downregulation in assisted reproduction. In:

RCRA 2018, CEUR-WS.org, vol. 2271.

Mateják,M. and Kofránek,J. (2015) Physiomodel—an integrative

physiology in Modelica. In: EMBC 2015. IEEE, New York, pp. 1464–1467.

Messori,M. et al. (2018) Individualized model predictive control for the artifi-

cial pancreas: in silico evaluation of closed-loop glucose control. IEEE

Control Syst. Mag., 38, 86–104.

Myers,C. et al. (2009) iBioSim: a tool for the analysis and design of genetic cir-

cuits. Bioinformatics, 25, 2848–2849.

Novère,L. et al. (2006) BioModels database: a free, centralized database of

curated, published, quantitative kinetic models of biochemical and cellular

systems. Nucleic Acids Res., 34, D689–D691.

Schaller,S. et al. (2016) Robust PBPK/PD-based model predictive control of

blood glucose. IEEE Trans. Biomed. Eng., 63, 1492–1504.

Somogyi,E. et al. (2015) libRoadRunner: a high performance SBML simula-

tion and analysis library. Bioinformatics, 31, 3315–3321.

Takizawa,H. et al. (2013) LibSBMLSim: a reference implementation of fully

functional SBML simulator. Bioinformatics, 29, 1474–1476.

Tronci,E. et al. (2014). Patient-specific models from inter-patient

biological models and clinical records. In: FMCAD 2014. IEEE, New

York, pp. 207–214.

Zuliani,P. (2015) Statistical model checking for biological applications. Int. J.

Softw. Tools Technol. Transfer, 17, 527–536.

Zuliani,P. et al. (2013) Bayesian statistical model checking with application

to Stateflow/Simulink verification. Formal Methods Syst. Des., 43,

338–367.

2172 F.Maggioli et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2165/5628220 by Sapienza U
niversità di R

om
a user on 04 August 2020

