
Fundamenta Informaticae XX (2016) 1–43 1

DOI 10.3233/FI-2015-0000

IOS Press

Now or Never: Negotiating Efficiently with Unknown or Untrusted
Counterparts∗

Toni Mancini C

Computer Science Department, Sapienza University of Rome, Italy

http:// tmancini.di.uniroma1.it

Abstract. We define a new protocol rule, Now or Never (NoN), for bilateral negotiation processes
which allows self-motivated competitive agents to efficiently carry out multi-variable negotiations
with remote untrusted parties, where privacy is a major concern and agents know nothing about
their opponent. By building on the geometric concepts of convexity and convex hull, NoN ensures
a continuous progress of the negotiation, thus neutralising malicious or inefficient opponents. In
particular, NoN allows an agent to derive in a finite number of steps, and independently of the
behaviour of the opponent, that there is no hope to find an agreement. To be able to make such
an inference, the interested agent may rely on herself only, still keeping the highest freedom in the
choice of her strategy.

We also propose an actual NoN-compliant strategy for an automated agent and evaluate the compu-
tational feasibility of the overall approach on both random negotiation scenarios and case studies of
practical size.

Keywords: Automated Negotiation, Rational Selfish Agents, Unmediated Agent Negotiation

∗This is an extended and revised version of [1].
CCorresponding author

http://tmancini.di.uniroma1.it

2 author / short title

Contents

1 Introduction 4

2 Preliminaries and Negotiation Framework 5

3 Now or Never 8
3.1 An Introductory Example . 9
3.2 Rationale and Impact of the NoN Protocol Rule . 10
3.3 Formalisation of the NoN Protocol Rule . 12
3.4 Main Results . 13

4 A Terminating Strategy Based on Monotonic Concessions 14
4.1 Utility-Driven Phase . 15

4.1.1 Responding . 17
4.1.2 Proposing . 17
4.1.3 Conceding . 21

4.2 Non-Obstructionist Phase . 22
4.2.1 Responding . 22
4.2.2 Proposing . 22

4.3 Terminating Phase . 23

5 Handling Discrete and Categorical Variables 24

6 Implementation 25
6.1 Computing Polyhedra, Convex Hulls and Projections 25
6.2 Computing Possible Opponent Clusters . 25

7 Experiments 27
7.1 Random Negotiation Scenarios . 27

7.1.1 Generation of Random Negotiation Scenarios 27
7.1.1.1 Generation of Random Feasibility Regions 28
7.1.1.2 Generation of Random Utility Functions and Concession Policies . . . 29

7.1.2 Experimental Setting . 29
7.1.3 Experimental Results . 29

7.2 Structured Negotiation Scenarios . 30
7.2.1 Experimental Setting . 30

7.2.1.1 Alice vs. Bob . 30
7.2.1.2 Summer House . 30
7.2.1.3 England vs. Zimbabwe . 32

7.2.2 Experimental Results . 32
7.3 Discussion . 33

8 Related Work 34

author / short title 3

9 Conclusions 35

A List of Acronyms 40

B Proof of Results 40

4 author / short title

1. Introduction

Automated negotiation among rational agents is an important topic in Distributed Artificial Intelligence,
being necessary in any domain where: (i) no single agent can achieve her own goals without interaction
with the others (or she is expected to achieve higher utility with interaction), and (ii) constraints of
various kinds (e.g., security or privacy) forbid the parties to communicate their desiderata to others (the
opponent or a trusted authority), hence centralised approaches cannot be used.

In this paper we present a framework which allows two self-motivated, competitive agents to nego-
tiate efficiently and find a mutually satisfactory agreement in a particularly hostile environment, where
each party has no information on constraints, preferences, and willingness to collaborate of the opponent.
This means that also the bounds of the domains of the negotiation variables are not common knowledge.
Our framework deals with negotiations over multiple constrained variables over the type of real numbers,
regarding integer or categorical variables as special cases.

The present setting is very different from what is often assumed in the literature (see also Section 8):
the set of possible agreements is infinite and agents do not even know (or probabilistically estimate)
possible opponent’s types, variable domain bounds or most preferred values. It is not a split-the-pie
game as, e.g., in [2] although with incomplete information, as in [3], and computing equilibrium or
evaluating Pareto-optimality is not possible.

A major problem in our setting is that even termination of the negotiation process is not granted: it is
in general impossible for the single agent to recognise whether the negotiation is making some progress,
or if the opponent is just wasting time or arbitrarily delaying the negotiation outcome.

We solve this problem by proposing a new protocol rule, Now or Never (NoN) (Section 3), explic-
itly designed as to ensure a continuous progress of the negotiation. The rule (whose fulfilment can be
assessed independently by each party using only the exchanged information) forbids the agents to re-
consider already taken decisions, thus injecting a minimum, but sufficient amount of efficiency in the
process. This leads to the monotonic shrinking of the set of possible agreements, which in turn allows
each agent to derive in a finite number of steps, independently of the behaviour of the opponent, that
there is no hope to find an agreement.

Furthermore, we discuss the notion of non-obstructionist agents, i.e., agents who genuinely aim at
efficiently finding an agreement, even sacrificing their preferences (among the agreements they would
accept). If both agents are non-obstructionist, the NoN rule guarantees that, whenever the termination
condition arises, then no agreement actually exists. Hence, in presence of non-obstructionist agents, our
approach is both complete and terminates.

We also propose (Section 4) a full NoN-compliant strategy for an agent which ensures termination
independently of the behaviour of the opponent. The strategy, which takes into full account the presence
of a utility function on the set of acceptable deals, is inspired to the well-known mechanism of Monotonic
Concessions (MC) [4] and allows the agent to perform a sophisticated reasoning, based on the evidence
collected so far on the behaviour of the opponent, to select the best deals to offer at each step and keep
the process efficient.

In Section 5 we show how NoN and all the involved reasoning can be specialised to negotiations
involving discrete and categorical variables.

Section 6 outlines our implementation of an automated negotiator employing the strategy of Sec-
tion 4. Our system exploits a computational geometry library together with an all-SAT solver to perform
the required reasoning.

author / short title 5

In Section 7 we present experimental results on both random negotiation scenarios and real-world
case studies, showing that enforcing the NoN rule in practical negotiation instances is computationally
feasible. Section 8 discusses related work and Section 9 draws conclusions. Finally, Appendix A defines
all the acronyms used in the paper and Appendix B gives proofs of all results.

2. Preliminaries and Negotiation Framework

In the following, we denote with R, R≥0 and N+ the sets of all real numbers, non-negative real numbers
and strictly positive integers, respectively.

Our framework deals with (possibly multi-deal) negotiations between two agents (agent 0 and agent
1) over multiple constrained variables. Agents do not have any information about constraints, goals,
preferences, reasoning capabilities, willingness to collaborate, and strategy of the opponent. The only
knowledge common to both agents is the set of negotiation variables, the protocol rules and, after the
process has started, the exchanged information.

Definition 2.1 introduces the main concepts of our framework. Some of them are standard in the
literature and are adapted to our framework to ease presentation of the following definitions and results.

Definition 2.1. (Negotiation Process)
A negotiation process is a tuple π = 〈V, s, k,R〉 where V is a finite set of negotiation variables, s ∈
{0, 1} is the agent starting the negotiation, andR is the set of protocol rules.

The negotiation space is the set of assignments of real numbers to all variables in V . To ease the
presentation, without loss of generality we assume that set V is ordered. In this case, the negotiation
space is the multi-dimensional real vector space R|V|. Each point D ∈ R|V| is a deal. A proposal for π is
a set of at most k deals or the distinguished element ⊥. Value k ∈ N+ is the maximum number of deals
that can be included in a single proposal.

Negotiation proceeds in steps (starting from step 1) with agents (starting from agent s) alternately
exchanging proposals. The proposal exchanged at any step t ≥ 1 is sent by agent ag(t), defined as s if t
is odd and 1− s if t is even.

The status of negotiation process π at step t ≥ 1 is the sequence ~P = P1,P2, . . .Pt of proposals
exchanged up to step t.

At each step, the status of π must satisfy the set R of procotol rules, a set of boolean conditions on
sequences of proposals.

A strategy for agent A ∈ {0, 1} for π is a function σA that, for each step t such that ag(t) = A and
each status ~P = P1,P2, . . .Pt−1 of π at step t− 1, returns the proposal Pt to be sent by agent A at step
t, given the sequence of proposals already exchanged (σA is constant for t = 1 and A = s).

Our alternating offers [5] based framework primarily focuses on real variables. In Section 5 we
discuss how more specialised domains (e.g., integers, categories) can be handled as special cases, and
which is the added value of primarily dealing with real variables. Also, as each proposal can contain up
to k deals, our framework supports multi-deal negotiations when k > 1. Section 4 discusses the added
value given by the possibility of exchanging multi-deal proposals.

We will use Example 2.2 as a running example throughout the paper.

6 author / short title

Example 2.2. (Alice vs. Bob)
Alice wants to negotiate with her supervisor Bob to schedule a meeting. At the beginning, agents agree
on the relevant variables V: (i) the start day/time t; (ii) the meeting duration d.

Deals are assignments of values to variables, as, e.g., D = 〈t = “Mon 11 am”, d = “30 min”〉.
Deals can be easily encoded as points in R2.

Protocol rules are important to prevent malicious or inefficient behaviour. Well-designed rules are
crucial when the process involves self-motivated and/or unknown/untrusted opponents. For protocol
rules to be effective, agents must be able at any time to verify them using the current negotiation status
only.

Given that our framework may allow multi-deal proposals (when k > 1), we assume that the follow-
ing protocol rule is always enforced (hence belongs to set R): for all t > 1, |Pt ∩ Pt−1| ≤ 1. This rule
avoids ambiguity in case of acceptance (see Definition 2.3).

Definition 2.3. (Negotiation Outcomes)
Let π = 〈V, s, k,R〉 be a negotiation process whose status at step T > 1 is ~P = P1,P2, . . .PT . We say
that π terminates at step T if and only if T is the smallest value such that one of the following two cases
holds:

• success: PT ∩ PT−1 = {D} (ag(T) accepts deal D proposed by ag(T − 1) at step T − 1)

• opt-out: PT =⊥ (ag(T) opts-out).

If no such a T exists, then π is non-terminating (non-term).
Success, opt-out and non-term are the possible negotiation outcomes.

A negotiation process can be infinite (case non-term) or terminate in a finite number of steps, either
with an agreement found (case success, where point D is the agreement) or with a failure (case opt-out,
where one of the agents proposes ⊥, which aborts the process).

For a deal to be acceptable to an agent, some constraints must be satisfied. Such constraints, which
are private information of the single agent, are formalised by Definition 2.4.

Definition 2.4. (Feasibility region)
Let π = 〈V, s, k,R〉 be a negotiation process. The feasibility region of agent A ∈ {0, 1}, denoted by
RA, is the subset of the negotiation space R|V| of deals acceptable to A.

For agent A, any deal in RA is better than failure. Conversely, any deal outside RA would not be
accepted by agent A. Thus, an agreement is any deal D ∈ R0 ∩R1.

Example 2.5. (Alice vs. Bob, continued)
Alice wants the meeting no later than Wednesday. Her (private) agenda up to Wednesday is shown in
Figure 1a. Normally, Alice needs at least 30 minutes and does not want the meeting to last more than
one hour; however, if she has to wait until Wednesday, she would have time during her Tuesday’s trip to
prepare new material to show; in this case she wants the meeting to last at least one hour, but no more
than 75 minutes. Again, these constraints are private information. Conversely, Bob has his own, private,
constraints.

Figure 1b shows Alice’s feasibility region in the 2-dimensional real vector space R2, as the areas
delimited by the three polygons. The region takes into account duties in her agenda (e.g., Alice is busy
on Monday from 1pm to 4pm, see Figure 1a).

author / short title 7

Sheet1

Page 1

Wed

Early morn

09:00 AM

10:00 AM

11:00 AM

12:00 PM

01:00 PM Carol

02:00 PM Juliet

03:00 PM

04:00 PM

05:00 PM

06:00 PM

07:00 PM
Gym

08:00 PM

Late even

Mon Tue

Trip to
Paris

Project
meeting

Meeting
w John

Laura's
b'day
party

(a) Alice’s agenda

9a
m

12
pm 6p

m
1p
m

4p
m

7p
m

3p
m

6p
m

Mon Tue Wed

30'

60'

90'

u=
50

u=40

u=
20 u=10

u
=
2
0

u
=
2
0

u
=
5

Legend: RAlice

(b) Alice’s region and utility

Figure 1: Alice vs. Bob (Example 2.5)

Agents may have preferences on the deals in their feasibility region. Such preferences are represented
by a private utility function.

Definition 2.6. (Utility Function)
Let π = 〈V, s, k,R〉 be a negotiation process. The utility function of agentA ∈ {0, 1}, denoted by uA, is
a functionRA → R≥0 mapping each deal acceptable toA into a (without loss of generality non-negative)
real number. For each pairs of deals D1, D2 ∈ RA:

• if uA(D1) > uA(D2) we say that agent A prefers an agreement on D1 to an agreement on D2;

• if uA(D1) = uA(D2) we say that agent A considers D1 and D2 equally good.

Figure 1b shows that, e.g., the best agreement for Alice would be a 60-minute long meeting on
Monday at 9am (having utility 50). Also, Alice considers, e.g., a 30-minute long meeting on Monday
at 12.30pm and a meeting on Wednesday at 3pm (having whichever duration from 30 to 60 minutes)
equally good (utility 20). The worst (but still acceptable) deal for Alice is a 60-minute long meeting on
Wednesday at 5pm (ending up at 6pm just before Laura’s birthday party). Such a deal has utility value
5. Again, utility information is kept private. We will handle the agent utility function in Section 4 when
we present a full strategy for an agent.

We assume (as typically done, see, e.g., [6, 7]) that agents offer only deals in their feasibility region
(i.e., agents do not offer deals they are not willing to accept). This does not limit our approach, as suitable
ex-post measures (e.g., penalties) can be set up to cope with the case where a deal offered by an agent
(but not acceptable to her) is accepted by the other.

8 author / short title

(a) A convex region

P1 P2

P3P4

P5

(b) conv({P1, . . . , P5}) (region delimited by the dashed line)

P1 P2

P3P4

P5

Q1 Q2

Q3Q4

Q5

(c)
⋃
♦D, with D = {{P1, P2, P3, P4, P5}, {Q1, Q2, Q3, Q4, Q5}}

(union of the two regions delimited by the dashed lines)

Figure 2: Examples of concepts of Definition 3.1 in R2.

3. Now or Never

We are interested in negotiations which are guaranteed to terminate in a finite number of steps (note that,
being negotiation variables real-valued, the set of potential agreements is infinite), so we want to avoid
case non-term of Definition 2.3. In this section we define a protocol rule, the Now or Never (NoN) rule,
which is our key to drive a negotiation process towards termination, avoiding malicious or inefficient
agents behaviour. The rule relies on the notions of Definition 3.1.

Definition 3.1. (Convex Region, Convex Hull, Operator
⋃
♦)

Let Rn be the n-dimensional real vector space (for any n > 0). Region R ⊆ Rn is convex if, for any two
points D1 and D2 in R, the straight segment D1D2 is entirely in R.

Given a finite set of points D ⊂ Rn, the convex hull of D, conv(D), is the smallest convex region of
Rn containing D.

Given a collection of finite sets of points D,
⋃
♦D is the union of the convex hulls of all sets in D:⋃

♦D =
⋃
D∈D{conv(D)}.

Examples of the concepts above are shown in Figure 2 (in the 2-dimensional real vector space R2).
Convexity arises often in feasibility regions of agents involved in negotiations. An agent feasibility

region is convex if, for any two acceptable deals D1 and D2, all intermediate deals (i.e., those lying on
D1D2) are acceptable as well. In some cases [8, 7, 9] the feasibility region of an agent is entirely convex
(consider, e.g., a negotiation instance over a single variable, the price of a good). In other cases this does
not hold. However, a feasibility region may always be considered as the union of a number of convex
sub-regions. Furthermore, in most real cases, this number is finite and small. Also, in most practical

author / short title 9

situations, the closer two acceptable deals D1 and D2, the higher the likelihood that intermediate deals
are acceptable as well.

Example 3.2. (Alice vs. Bob, continued)
Knowing that deals 〈t = “Mon at 11am”, d = “30 min”〉 and 〈t = “Wed at 3pm”, d = “1 hour”〉 are
both acceptable to Bob would not be a strong support for Alice to assume that also 〈t = “Tue at 1pm”,
d = “45 min”〉 would be acceptable to him. On the other hand, if 〈t = “Mon at 9am”, d = “40 min”〉
and 〈t = “Mon at 9.30am”, d = “20 min”〉 are both acceptable to Bob, it would not be surprising if
also 〈t = “Mon at 9.15am”, d = “30 min”〉 is acceptable.

3.1. An Introductory Example

Before formalising the NoN rule (Definition 3.5), we introduce it using our example.

Example 3.3. (Alice vs. Bob, continued)
Steps below are shown in Figure 3.

Steps 1 and 2

Alice starts the negotiation by sending proposal P1 = {Aa1, Ab1}, thus hoping that Bob will accept one
of them. Unfortunately, none of these deals are accepted by Bob, who sends back a proposal consisting
of two counteroffers P2 = {Ba

2 , B
b
2} (see Figure 3a). As none of Bob’s counteroffers, Ba

2 and Bb
2,

belong to conv({Aa1, Ab1}) = Aa1A
b
1, all deals in such a region are removed from further consideration

(by exploiting the NoN rule). The rationale is as follows:

(a) Bob had no evidence that conv({Aa1, Ab1}) includes deals outside RAlice (i.e., at the end of step
1 Bob had no evidence that this portion of RAlice is not convex).

(b) Given that Bob has not proposed any such deal therein, then either RBob ∩ conv({Aa1, Ab1}) = ∅
(in which case, Bob has no interest at all in proposing there), or Bob has chosen not to go for any such a
deal now (as, e.g., he currently aims at higher utility).

(c) In the latter case, the NoN rule forbids Bob to reconsider that decision anymore (never): no deal
in conv({Aa1, Ab1}) can be proposed or accepted by Bob in the sequel.

Step 3

Alice, having no evidence that conv({Ba
2 , B

b
2}) includes deals outsideRBob, proposesP3 containing deal

Aa3 ∈ conv({Ba
2 , B

b
2}) ∩ RAlice (see Figure 3b): by proposing Aa3 she aims at closing the negotiation

successfully now, believing that such a deal (intermediate to Ba
2 and Bb

2) is likely to be acceptable also
to Bob. Alice also includes in P3 deal Ab3 (according to her strategy, which is not of interest in this
example).

10 author / short title

Step 4

The situation at this point is shown in Figure 3b and the sequence of proposals exchanged so far is
summarised in Figure 3c.

At step 4 it’s Bob’s turn again. By receiving P3 = {Aa3, Ab3}, Bob knows that such deals be-
long to RAlice. Assume that Bob rejects P3 by sending a counteroffer. As there is no evidence that
conv({Aa1, Aa3, Ab3}), conv({Ab1, Ab3}), or conv({Ab1, Aa3}) (the 3 light-grey areas in Figure 3b) include
deals outside RAlice, the NoN rule forces him to take a decision: either Bob includes, in his counteroffer
P4, at least one deal (among the k deals he can include in his next proposal) belonging to at least one of
such regions (showing Alice that he is potentially interested in reaching an agreement there), or he must
forget those regions forever.

Note that the NoN rule does not apply to, e.g., conv({Ab1, Aa3, Ab3}), as this region contains Bb
2,

which was part of a Bob’s proposal already rejected by Alice. Hence, Alice already has evidence that
some of the deals in conv({Ab1, Aa3, Ab3}) are acceptable to Bob and the NoN rule does not forbid agents
to further explore that region.

3.2. Rationale and Impact of the NoN Protocol Rule

In this section we informally outline the rationale of the NoN rule and its impact on negotiation processes,
before giving a full formalisation of the rule (Section 3.3) and of our main results (Section 3.4).

From Example 3.3 it can be seen that, at each step of the negotiation process, if the set of deals
received so far reveals portions of the counterpart’s region for which there is no evidence that they are
not convex, then the NoN rule enforces the proposing agent to make a choice:

1. Either she includes, in her next proposal, at least one deal in at least one such portions (now
decision); or

2. No deal in any such portions can be offered in the future (never decision).

In case 1 (now decision), the proposing agent shows the counterpart that she is potentially interested
in reaching an agreement which is intermediate with respect to a subset of the deals received so far (one
of the subsets of the deals received so far whose convex hull has not been already proven to contain
points unacceptable to any party).

Note that, when taking a now decision, the proposing agent is free to choose any eligible subset
of received deals where to propose next (and none of such subsets will be forbidden in the future).
Furthermore, the agent is free to place her proposed deal everywhere within the convex hull of the chosen
set of received deals. This makes the NoN rule non-invasive, as agents can exploit their (private) strategy
to choose the deals to offer within the various regions.

Also, if multi-deal proposals are allowed, i.e., k (the maximum number of deals in a proposal) is
greater than 1, then the proposing agent has full freedom in choosing the remaining k − 1 deals to
be included in her next proposal. This makes it possible to adapt and exploit any agent strategy in a
negotiation process which enforces the NoN rule.

Case 2 (never decision) is used as a mechanism to inject a minimum amount of efficiency into the
process. Although the proposing agent is obviously not forced to take a now decision whenever possible,
the NoN rule forbids that this decision is reconsidered in the future, as this would lead to possible infinite
negotiations.

author / short title 11

9a
m

12
pm 6p

m
1p
m

4p
m

7p
m

3p
m

6p
m

Mon Tue Wed

30'

60'

90'

A
1

a

A
1

b

B
2

b

B
2

a

Legend:
⋃
♦NoN (1) =

⋃
♦Never (2)⋃

♦NoN (2)

(a) End of step 2

9a
m

12
pm 6p

m
1p
m

4p
m

7p
m

3p
m

6p
m

Mon Tue Wed

30'

60'

90'

A
1

a

A
1

b

B
2

b

B
2

a

A
3

a

A
3

b

Legend:
⋃
♦Never (3)⋃
♦NoN (3)

(b) End of step 3

{A
1

a, A
1

b}

{B
2

a, B
2

b}

{A
3

a, A
3

b}

Alice Bob

step 1

step 2

step 3

(c) Summary of the exchanged proposals up to step 3

Figure 3: Alice vs. Bob (Example 3.3).

12 author / short title

Proposition 3.6 shows that when a certain condition (which can be assessed independently by each
agent using only information on the exchanged deals) is met, then there is no hope to find an agreement
in the future, and the process can be safely terminated. Also, Section 4 shows that the NoN rule can
be exploited by any agent to ensure that the termination condition arises in a finite number of steps.
Importantly, termination is guaranteed independently of the opponent behaviour.

Summing up, the NoN rule can be thought as a (minimally invasive) deterrent, for each agent, to
delay the negotiation by not exploiting promising portions of the space of possible agreements which,
although containing deals acceptable to her, do not grant herself the utility she currently aims at. As the
NoN rule forbids the agents to propose such deals in the future, any such “obstructionist” behaviour has
a price in terms of opportunities that must be sacrificed forever.

Of course in our setting (where full privacy is guaranteed), agents have no means to derive that their
counterpart is acting in an obstructionist way (i.e., that she does not take now decisions whenever pos-
sible). The NoN protocol rule does not forbid obstructionism (which might be crucial for successful
negotiators), it does only enforce agents to keep a coherent behaviour during the course of the negotia-
tion.

Non-obstructionist agents are formally defined in Definition 3.7. Non-obstructionist agents genuinely
aim at finding an agreement efficiently, even sacrificing their preferences among deals they would accept.
However, they are not necessarily collaborative, as they do not disclose to the opponent their constraints
and preferences. Proposition 3.8 shows that, in case both agents are non-obstructionist, then the NoN rule
guarantees completeness: when the termination condition arises, not only agents know that no mutually
acceptable agreement can still be found; agents have also a proof that no mutually acceptable agreement
actually exists.

3.3. Formalisation of the NoN Protocol Rule

Compliancy of an agent to the NoN rule can be assessed independently by the other agent, by computing
sets Never and NoN (Definition 3.4), using only public knowledge, i.e., the set of already exchanged
deals.

Definition 3.4. (Sets Never and NoN)
Let π = 〈V, s, k,R〉 be a negotiation process and ~P = P1,P2, . . .PT its status at step T ≥ 1. For each
agent A ∈ {0, 1} and each step 1 ≤ t ≤ T , let dealsA(t) be the set of all the deals in ~P proposed by A
up to step t (included). Sets Never (t) and NoN (t) are defined inductively for each t ≥ 1 as follows:

t = 1: Never (1) = ∅, NoN (1) = {P1}

t > 1:

Never (t) =

{
Never (t− 2) ∪NoN (t− 1) if Pt ∩

⋃
♦NoN (t− 1) = ∅

Never (t− 2) ∪ {{D} | D ∈ NoN (t− 1)} otherwise

NoN (t) =
{
D ⊆ dealsag(t)(t) | conv(D) ∩

⋃
♦Never (t) = ∅

}
where Pt is the proposal sent by ag(t) at step t and Never (0) = ∅.

At each step t,
⋃
♦NoN (t) represents the region, defined by ag(t)’s deals, for which the other agent

1 − ag(t) needs, in the next step (t + 1) to take a NoN decision: to include in her proposal at least one

author / short title 13

deal therein (showing to ag(t) that she is potentially interested to that region) or to neglect that region
forever. In case multi-deal proposals are allowed, i.e., k > 1, ag(t) can choose in full freedom up to
k − 1 other deals to be included in her next proposal.

Similarly,
⋃
♦Never (t) represents the region, defined by (1−ag(t))’s deals, for which ag(t) has taken

a never decision. Deals therein cannot be offered any more.
We have that

⋃
♦Never (t) ⊇

⋃
♦Never (t− 2) for all t ≥ 2, i.e., sequences Never (t) for odd and even

values of t are monotonically non-decreasing. Figure 3 shows NoN and Never regions at all steps of
Example 3.3.

Definition 3.5 formalises our NoN protocol rule, which forbids agents to reconsider never decisions
already taken.

Definition 3.5. (Now or Never Protocol Rule)
Status ~P = P1,P2, . . .PT of negotiation process π = 〈V, s, k,R〉 satisfies the NoN protocol rule if, for
all steps 2 ≤ t ≤ T , Pt ∩

⋃
♦Never (t− 2) = ∅.

3.4. Main Results

Despite the simplicity of the NoN rule of Definition 3.5, Proposition 3.6 (proof delayed to Appendix B)
shows that it is enough to allow agents to infer whether no further agreements are possible.

Proposition 3.6. (Termination Condition)
Let π = 〈V, s, k,R〉 be a negotiation process where the NoN rule is enforced and let ~P = P1,P2, . . .PT
be the status of π at step T ≥ 2.

If Rag(T) ⊆
⋃
♦Never (T − 1) ∪

⋃
♦Never (T − 2) and PT is not a singleton {D} ⊆ PT−1, then:

(a) There exists no extension ~P ′ = P1,P2, . . . , PT−1, PT , . . . , PT ′ of ~P to step T ′ > T such that
PT ′ = {D} ⊆ PT ′−1

(b) For all D ∈ R0 ∩R1, there exists 1 < tD < T such that D ∈
⋃
♦NoN (tD − 1) ∩

⋃
♦Never (tD).

A consequence of (a) is that, if at step T ≥ 2, Rag(T) ⊆
⋃
♦Never (T − 1) ∪

⋃
♦Never (T − 2) and

agent ag(T) cannot or does not want to accept a deal offered in the last incoming proposal PT−1, she
can safely opt-out by proposing PT =⊥, as she has no hope to reach an agreement in the future. Also,
from (b), for every mutually acceptable agreement D, there was a step tD < T in which agent ag(tD)
took a never decision on a NoN region containing D. This means that ag(tD), although knowing that
D ∈ Rag(tD) was likely to be acceptable also to the opponent (because she had no evidence, at that time,
that the portions of the opponent region defined by deals in NoN (tD − 1) were not convex), explicitly
decided not to take that chance and proposed elsewhere.

As anticipated in Section 3.2, NoN can be thought as a (minimally invasive) deterrent, for each agent,
to delay the negotiation by ignoring plausible agreements which, although acceptable to her, do not grant
herself the utility she currently aims at. As NoN forbids the agents to propose such deals in the future,
any such “obstructionist” behaviour has a price in terms of opportunities that must be sacrificed forever.

Definition 3.7 defines non-obstructionist agents. As outlined in Section 3.2, non-obstructionist agents
(although not being necessarily collaborative, as they do not disclose to the opponent their constraints
and preferences) genuinely aim at finding an agreement efficiently, even sacrificing their preferences
among deals they would accept.

14 author / short title

Definition 3.7. (Non-obstructionist Agent)
Let π = 〈V, s, k,R〉 be a negotiation process where the NoN rule is enforced. Agent A ∈ {0, 1} is
non-obstructionist if her strategy satisfies the following conditions for all t ≥ 2 such that ag(t) = A:

1. if Pt−1 ∩RA 6= ∅, then Pt = {D} ⊆ Pt−1 ∩RA

2. else if
⋃
♦NoN (t− 1) ∩RA 6= ∅, then Pt ∩

⋃
♦NoN (t− 1) 6= ∅.

A non-obstructionist agent A accepts any acceptable deal D ∈ RA and takes a now decision at all
steps t when

⋃
♦NoN (t− 1) intersects RA.

Proposition 3.8 (proof delayed to Appendix B) shows that, in a negotiation process between two
non-obstructionist agents, if one of the parties reaches the termination condition of Proposition 3.6, then
no agreement actually exists (i.e., R0 ∩R1 = ∅).

Proposition 3.8. (Completeness)
Let π = 〈V, s, k,R〉 be a negotiation process between two non-obstructionist agents where the NoN rule
is enforced.

If π reaches, at step T − 1 ≥ 2, status ~P = P1,P2, . . .PT−1 s.t. Rag(T) ⊆
⋃
♦Never (T − 1) ∪⋃

♦Never (T − 2), then R0 ∩R1 = ∅.

4. A Terminating Strategy Based on Monotonic Concessions

Propositions 3.6 and 3.8 show that the Now or Never (NoN) rule allows each agent to detect when the
negotiation process can be safely terminated, as no agreement can be found in the sequel. However, still
the termination condition may not arise in a finite number of steps.

In this section we show that, with NoN, termination can be enforced by any agent alone, without
relying on the willingness to terminate of the counterpart. To this end, from now on we focus on one
agent only, which we call agent A (A can be either 0 or 1). To ease presentation, the other agent, agent
1−A, will be called agent B.

We make some assumptions on the feasibility region of agent A:

(a) RA is bounded and defined as the union P1∪· · ·∪Pq of a finite number q of convex sub-regions;

(b) Each convex sub-region Pi (1 ≤ i ≤ q) of RA is defined by linear constraints, hence is a
(bounded) polyhedron in R|V|.

Any bounded feasibility region can be approximated arbitrarily well with a (sufficiently large) union of
bounded polyhedra. However, in many practical cases, a small number of polyhedra suffices.

Deals in RA may not be equally worth for agent A, who may have a (again, private) utility function
uA to maximize. We assume that uA is piecewise-linear and defined (without loss of generality) by a
linear function

uiA = ci +
∑
v∈V

aiv · v

(with aiv’s and ci being real coefficients) for each polyhedron Pi of RA (1 ≤ i ≤ q). For this definition
to be well founded, if a deal D belongs to two different polyhedra Pi and Pj of RA, it must be uiA(D) =

author / short title 15

Utility-Driven
Phase

Non-Obstructionist
Phase

Terminating
Phase

Agreement Found

Process Aborted

Figure 4: The three phases of our NoN-compliant agent strategy.

ujA(D). Note that, again, any differentiable utility function can be approximated arbitrarily well with a
piecewise-linear utility, provided RA is decomposed in an enough number of polyhedra.

In this setting, we define a full strategy for agent A for negotiation processes π = 〈V, s, k,R〉 for
which k ≥ 2, i.e., in which exchanged proposals can contain multiple deals. Although our strategy is
correct independently of the opponent region shape, it is designed for the common cases where agent
A believes that the opponent feasibility region is the union of a small number of convex sub-regions
(not necessarily polyhedra). Hence, a task of agent A while following the strategy is to discover non-
convexities of the opponent region during negotiation and take them into account.

Our strategy is inspired by (but different from) the well-known mechanism of Monotonic Conces-
sions (MC) [4]. It has three phases, utility-driven, non-obstructionist, and terminating phases, which are
executed in the given order (see Figure 4).

Algorithm 1 shows high-level pseudo-code for the knowledge base and the main loop of our agent
(agent A). As all procedures called by the main loop need to have access to most of the agent knowledge
base and do modify components of the agent knowledge base, for simplicity of presentation we defined
the agent knowledge base as a set of global variables. Pseudo-code of the procedures called by the main
loop are reported in Algorithms 2, 3, 4 and 5.

4.1. Utility-Driven Phase

Agent A keeps and dynamically revises two utility thresholds, α and u, which are, respectively, the
responding and the proposing threshold. At each step t such that ag(t) = A, agent A uses:

(a) Threshold α to decide whether to take a now decision (if t > 1), by including, in the proposal Pt
she will propose next, a deal in

⋃
♦NoN (t−1) (possibly accepting one deal in Pt−1) having at least

utility α, and

(b) Threshold u to select the other deals to include in Pt (t ≥ 1).

By generalising [2, 7], α is a function of the agent A utility of the best deal Dnext that would be
chosen in step (b). In particular, α is uA(Dnext) − span · ξ, where span is the absolute difference of the
extreme values of uA in RA and 0 ≤ ξ ≤ 1 is a parameter (possibly varying during the negotiation)
called respond policy. Hence, if ξ = 1, agent A accepts all acceptable deals and takes a now decision
whenever possible, behaving in a non-obstructionist way (Definition 3.7). On the other extreme, if ξ = 0
the agent accepts only incoming dealsD ∈ RA that are not worse than the best proposalDnext that would
be chosen next in step (b), upon rejection of D. Pseudo-code for computing α is outlined as function
alpha() in Algorithm 2. Note that, ultimately, α is a function of u.

16 author / short title

// agent knowledge base
1 global variables

// parameters of agent A
2 RA: feasibility region;
3 uA: utility function;
4 ξ: respond policy;
5 span: abs. difference of extreme values of uA in RA;

// negotiation process status
6 t: current time step;
7 P: sequence P0, . . . ,Pt of proposals exchanged so far;
8 u: proposing threshold;
9 current_phase: current phase of the negotiation process (i.e., utility-driven, non-obstructionist,

terminating, done);

// main agent loop
10 procedure run()
11 P ← empty sequence of exchanged proposals;
12 u← maximum value of utility function uA within RA;
13 current_phase← utility-driven;
14 t← 1;
15 P0 ← ∅;
16 while current_phase 6= done do
17 if ag(t) = B then

// counterpart’s turn
18 recv Pt;
19 if Pt = ⊥ then
20 current_phase← done ; // counterpart opted out
21 else
22 if Pt ∩ Pt−1 = {D} then
23 current_phase← done ; // c’part accepted deal D in my last proposal
24 else

// my turn: build proposal Pt to be sent
25 respond(); // possibly accept an incoming deal or take now decision
26 if current_phase 6= done then

// not accepted any of the last incoming deals
27 propose<current_phase>();
28 send Pt;
29 t++;

Algorithm 1: Our NoN-compliant MC-based strategy for Agent A.

author / short title 17

Our strategy for this phase is decomposed into responding, proposing and conceding sub-strategies
as in [10], after an initialisation phase (see Algorithm 1, line 11) where agent A sets u to the highest
utility of deals in RA (as in the spirit of MC).

4.1.1. Responding

At step t ≥ 2, after that agent A has received proposal Pt−1 6=⊥, proposal Pt is chosen as follows (see
procedure respond() in Algorithm 2). Let RαA = {D ∈ RA | uA(D) ≥ α}.

1. If Pt−1 contains deals inRαA−
⋃
♦Never (t−2), then Pt = {D}, whereD is one such a deal giving

agent A the highest utility (i.e., agent A accepts the best deal D among those acceptable in Pt−1
granting herself at least utility α, see Algorithm 2, line 6).
Otherwise:

2. Pt contains a deal in (
⋃
♦NoN (t−1)∩RαA)−

⋃
♦Never (t−2) if and only if this region is not empty

(now decision taken, see Algorithm 2, line 11).

Given that the closer deals in a set D defining NoN (t− 1) (see Definition 3.4) the more likely they
belong to a single convex sub-region of RB , as for case 2, agent A selects a deal with the highest utility
in a set D having the minimum diameter.

Unless agent A has accepted an incoming deal (case 1), proposal Pt (see Algorithm 1, line 26)
may contain additional deals (as to make |Pt| = k ≥ 2 if possible), chosen according the proposing
sub-strategy.

4.1.2. Proposing

The proposing sub-strategy of the utility-driven phase is outlined as procedure propose<utility-driven>()
in Algorithm 3.

Let RuA = {D ∈ RA | uA(D) ≥ u}. Region RuA is again a union of bounded polyhedra, as uA is
piecewise-linear. Deals to be proposed in Pt are selected among vertices of RuA (some of them can be
vertices of the overall region RA) which do not belong to

⋃
♦Never (t − 2), as agent A needs to comply

with the NoN rule. If t > 1, vertices of RuA to be proposed will be carefully selected by reasoning on the
evidence provided by the past opponent behaviour. The reasoning is as follows.

Let n̂(t) be the minimum number of convex sub-regions that must compose RB −
⋃
♦Never (t − 1),

i.e., the opponent region minus the regions for which the opponent has taken a never decision (and in
which, by the NoN rule, no agreements can be found in the sequel): n̂(t) is the minimum value such that
there exists a n̂(t)-partition {D1, . . . ,Dn̂(t)} of dealsB(t− 1) (i.e., a mapping of each opponent deal to
one sub-region) such that for all 1 ≤ j ≤ n̂(t), conv(Dj) ∩

⋃
♦Never (t− 1) = ∅.

AgentA temporarily focuses on n̂(t), assuming thatRB−
⋃
♦Never (t−1) is the union of exactly n̂(t)

convex sub-regions. We call this assumption Non-obstructionist Opponent Assumption (NOA). Under
NOA, agent A tries to regard the past opponent behaviour as non-obstructionist, hence interprets the
already taken never decisions as an admission that RB ∩

⋃
♦Never (t − 1) = ∅ (Proposition 3.8). Value

n̂(t) is the minimum number of convex sub-regions that must compose RB which is consistent with this
(optimistic) hypothesis.

18 author / short title

1 procedure respond()
2 Pt ← ∅;
3 if t = 1 then return;
4 α← alpha();
5 RαA ← {D ∈ RA | uA(D) ≥ α};
6 if Pt−1 ∩RαA −

⋃
♦Never (t− 2) 6= ∅ then

// accept best acceptable deal in incoming proposal
7 D ← deal in Pt−1 ∩RαA −

⋃
♦Never (t− 2) with highest utility;

8 Pt ← {D};
9 current_phase← done;

10 else
11 if current_phase 6= terminating and (

⋃
♦NoN (t− 1) ∩RαA)−

⋃
♦Never (t− 2) 6= ∅ then

// take now decision
12 D ← deal in NoN (t− 1) ∩RαA −

⋃
♦Never (t− 2) with highest utility, belonging to a set

D ∈ NoN (t− 1) having minimum diameter;
13 Pt ← {D};

14 function alpha()
15 if current_phase = utility-driven then

// invoke propose() in order to discover best deal Dnext that would be chosen
16 (ubkp,Pbkp

t)← (u,Pt); // back up data possibly changed by propose()
17 Pt ← ∅;
18 propose<current_phase>(); // invoke propose(), which populates Pt
19 Dnext ← deal in Pt with highest utility;
20 (u,Pt)← (ubkp,Pbkp

t); // undo changes
21 return uA(Dnext)− span · ξ;
22 else return minimum utility within RA ;

Algorithm 2: Procedure respond() and function alpha() (used in all phases).

author / short title 19

1 procedure propose<utility-driven>()
2 current_phase← utility-driven phase;
3 at_least_one_vertex_chosen← false;
4 while |Pt| < k do
5 RuA ← {D ∈ RA | uA(D) ≥ u};
6 vertices← vertices of RuA not in (

⋃
♦Never (t− 2)) ∪Π(t) ∪ Pt;

7 if vertices = ∅ then
8 if at_least_one_vertex_chosen then

// no more vertices, but at least one vertex has been chosen: Pt ready to be sent
9 break;

10 else
// Pt still with no vertices: try to concede utility

11 conceded← concede();
12 if not conceded then

// cannot concede: move to non-obstr. phase
13 propose<non-obstructionist>();
14 else
15 D ← best vertex under NOA within vertices;
16 Pt ←Pt ∪ {D};
17 at_least_one_vertex_chosen← true;

18 function concede()
19 if u ≤ minD∈RA

(uA(D)) then
// u is already at its minimum

20 return false;
21 else
22 u← u−∆u;
23 return true;

Algorithm 3: Utility-driven phase: procedure propose<utility-driven>() and function concede().

20 author / short title

R

R'X

Y

Figure 5: Projection of region R onto R′ (unbounded grey area), notation proj(R,R′).

Agent A computes the subsets D of the opponent deals that might belong to the same convex sub-
region of RB −

⋃
♦Never (t − 1), provided that NOA is correct. We call these sets of deals Possible

Opponent Clusters (POCs) (Definition 4.1).

Definition 4.1. (Possible Opponent Clusters)
Let π = 〈V, s, k,R〉 be a negotiation process where the NoN rule is enforced. At any time step t such
that ag(t) = A, the set K(t) of Possible Opponent Clusters (POCs) is defined as:

K(t) =

{
D ⊆ dealsB(t− 1)

∣∣∣∣∣ ∃ n̂(t)-partition
{
D1, . . . ,Dn̂(t)

}
of dealsB(t− 1)

s.t. ∀j ∈ [1, n̂(t)] conv(Dj) ∩
⋃
♦Never (t− 1) = ∅

}
(1)

Definition 4.2 recalls the notion of projection from [8].

Definition 4.2. (Projection)
Let R and R′ be two (bounded or unbounded) regions of Rn for some n > 0. The projection of R onto
R′, notation proj(R,R′), is the set of points X for which there exists Y ∈ R such that XY intersects
R′.

Region proj(R,R′) is an unbounded polyhedron if both R and R′ are polyhedra and proj(R,R′ ∪
R′′) = proj(R,R′) ∪ proj(R,R′′). Figure 5 shows an example of projection of R onto R′ in R2, where
proj(R,R′) is the unbounded grey area.

Provided that NOA is correct, agent A can derive (Proposition 4.3, proof delayed to Appendix B)
that region

Π(t) =
⋂
D∈K(t)

proj(conv(D),
⋃
♦Never (t− 1)) (2)

does not contain agreements that can be still reached.

Proposition 4.3. If, at step t ≥ 3 such that ag(t) = A, NOA is correct, then:

Π(t) ∩ (RB −
⋃
♦Never (t− 1)) = ∅.

Example 4.4. (Alice vs. Bob, continued)
Consider Figure 6. At step 4 Bob sent Alice proposal P4 = {Ba

4}. At step 5 (Alice’s turn), n̂(5) is
3, as it is clear that Ba

2 , Bb
2, and Ba

4 belong to all-different convex sub-regions of RBob −
⋃
♦Never (4).

author / short title 21

9a
m

12
pm 6p

m
1p
m

4p
m

7p
m

3p
m

6p
m

Mon Tue Wed

30'

60'

90'

3p
m

A
1

a

A
1

b

B
2

b

B
2

a
A
3

a

A
3

b

B
4

a

Legend:
⋃
♦Never (4) Π(5)

Figure 6: Alice vs. Bob (end of step 4).

POCs are K(5) = {{Ba
2}, {Bb

2}, {Ba
4}}. Region Π(5) is the area in light-grey: if NOA is correct

(RBob −
⋃
♦Never (4) or, equivalently, RBob if Bob is non-obstructionist, consists of exactly 3 convex

sub-regions), then no X ∈ Π(5) can belong to RBob −
⋃
♦Never (4).

Besides always ignoring vertices in
⋃
♦Never (t− 2) (as to comply with the NoN rule), as a result of

Proposition 4.3 agent A (exploiting NOA) can temporarily ignore vertices of RuA in Π(t) while choosing
deals to propose at step t. By exploiting the fail-first principle, we define the following criterion (best
vertex under NOA, used in Algorithm 3, line 15) to select the next vertices in RuA − Π(t) (and not
in
⋃
♦Never (t − 2)) to propose: those that, if rejected, would make the highest number of vertices be

excluded in the next step, under NOA.

4.1.3. Conceding

When no more vertices in RuA − Π(t) (and not in
⋃
♦Never (t − 2)) can be proposed, agent A reduces

threshold u, if possible, by a given amount ∆u > 0 (see function concede() in Algorithm 3, used in
line 11 and defined from line 18). Value ∆u is the agent concession policy and its value, possibly
varying during time (see, e.g., [6]), depends on the application. Reducing u is in the spirit of MC (where
the agent increases during time the opponent utility of the proposed deals). Differently from MC, here
agentA reduces own utility of the deals she proposes (with the goal of approaching opponent’s demand),
as she has no information about opponent utility.

Given that k (the maximum number of deals in a proposal) is greater than 1, agent A proposes a new
vertex in RuA − Π(t) (and not in

⋃
♦Never (t − 2)) at each step t such that ag(t) = A, independently of

whether she has taken a now decision (point 2 of Section 4.1.1) or not. This ensures that agent A will
always concede utility after a finite number of steps (where no more vertices in RuA − Π(t) and not in⋃
♦Never (t−2) are available), independently of the behaviour of the counterpart (on which now decisions
taken by agent A ultimately depend). On the contrary, if k = 1, agent A could spend an arbitrarily high
number of steps in taking now decisions (if the counterpart always proposes deals satisfying condition of
point 2 of Section 4.1.1), and never concede utility.

Always conceding utility ∆u > 0 (and greater than an arbitrarily small ε > 0) after a finite number

22 author / short title

of steps guarantees that there will be a step T̂ (ag(T̂) = A) in which agent A reduces u and RuA becomes
equal to RA (i.e., u cannot be further reduced). From step T̂ onwards, the strategy of agent A moves to
the non-obstructionist phase.

4.2. Non-Obstructionist Phase

Our strategy for this phase is decomposed into responding and proposing sub-strategies. As utility thresh-
old u has already reached its minimum, in this phase there is no conceding sub-strategy.

4.2.1. Responding

The responding sub-strategy is identical to that of the utility-driven phase (see Section 4.1.1 and proce-
dure respond() in Algorithm 2), but now α (as u) is set to the minimum utility within the agent feasibility
region RA. Hence, in the non-obstructionist phase agent A accepts any incoming acceptable deal and
takes a now decision whenever possible. Thus, the agent is now certainly non-obstructionist, indepen-
dently of the value of her respond policy ξ.

4.2.2. Proposing

As a result of acting in a non-obstructionist way, from step T̂ onwards the following result (Proposi-
tion 4.5) holds. Proof is delayed to Appendix B.

Proposition 4.5. For each step t ≥ T̂ such that ag(t) = A,RA∩
⋃
♦Never (t−2) = RA∩

⋃
♦Never (T̂−2).

Hence, for each step t ≥ T̂ such that ag(t) = A, if agent A has not accepted an incoming deal
by means of the responding sub-strategy, the region in which the additional deals to propose will be
selected (as to make |Pt| = k ≥ 2 whenever possible), i.e., RA −

⋃
♦Never (t − 2), is steadily equal to

RA −
⋃
♦Never (T̂ − 2).

In this phase, agent A aims at proposing vertices of RA −
⋃
♦Never (T̂ − 2) with the goal of even-

tually covering this region with the never set of the opponent, as to reach the termination condition of
Proposition 3.6. Pseudo-code for the proposing sub-strategy of the non-obstructionist phase is shown as
procedure propose<non-obstructionist>() in Algorithm 4.

Unfortunately, as both RA and
⋃
♦Never (T̂ − 2) are unions of polyhedra, their difference might

not be represented as a union of polyhedra. Anyway, it can be always represented as a union of Not
Necessarily Closed (NNC) polyhedra, i.e., polyhedra possibly defined by some strict inequalities, with
some of their faces and vertices not belonging to them. In order to comply with the NoN rule, the agent
must not propose vertices of RA −

⋃
♦Never (T̂ − 2) not belonging to that region, as they would belong

to
⋃
♦Never (T̂ − 2). The problem is solved (see Algorithm 4, line 5) by computing a suitable under-

approximation bRA −
⋃
♦Never (T̂ − 2)c ⊆ RA −

⋃
♦Never (T̂ − 2) which can be defined as a union of

bounded (and closed) polyhedra. Note that such an under-approximation can be computed in order to
make the error

Rerr
A = (RA −

⋃
♦Never (T̂ − 2))− bRA −

⋃
♦Never (T̂ − 2)c

arbitrarily small. As a special case, if agent A was non-obstructionist from the beginning of the negoti-
ation process, RA ∩

⋃
♦Never (T̂ − 2) = ∅ and Rerr

A = ∅.

author / short title 23

1 procedure propose<not-obstructionist>()
2 current_phase← non-obstructionist phase;
3 at_least_one_vertex_chosen← false;
4 while |Pt| < k do
5 vertices← vertices of bRA −

⋃
♦Never (t− 2)c not in Π(t) ∪ Pt;

6 if vertices = ∅ then
7 if at_least_one_vertex_chosen then

// no more vertices, but at least one vertex has been chosen: Pt ready to be sent
8 break;
9 else

10 if Π(t) =
⋃
♦Never (t− 1) then

// NOA cannot be further relaxed: move to terminating phase
11 return propose<terminating>();
12 else relax NOA by artificially increasing n̂(t) by 1 (hence reducing Π(t)) ;
13 else
14 D ← best vertex under NOA within vertices;
15 Pt ←Pt ∪ {D};
16 at_least_one_vertex_chosen← true;

Algorithm 4: Non-Obstructionist phase: procedure propose<non-obstructionist>().

Agent A continues to use both NOA and Π(t) as defined in the utility-driven phase. In particular,
the agent proposes vertices of bRA −

⋃
♦Never (T̂ − 2)c which are not in Π(t). When no more such

vertices can be proposed, NOA is gradually relaxed (i.e., n̂(t) is gradually increased) and the remaining
vertices of bRA−

⋃
♦Never (T̂ −2)c are enabled (see Algorithm 4, line 12). By construction, n̂(t) cannot

grow beyond the number of deals proposed by the opponent so far. If also in that case Π(t) covers
bRA −

⋃
♦Never (T̂ − 2)c, the agent sets Π(t) to

⋃
♦Never (t − 1), hence assumes that RB consists of

at least one convex sub-region not yet disclosed by the opponent (i.e., not containing any of the past
incoming deals).

As it happens in the utility-driven phase, given that multi-deal proposals are allowed (k ≥ 2), all
vertices will be proposed within a finite number of steps independently of the number of now decisions
taken. When all vertices have been proposed and no agreement has been reached, agent A enters the
terminating phase (see Algorithm 4, line 11).

4.3. Terminating Phase

In this phase, agent A continues by sending empty proposals until she receives and accepts an acceptable
deal (see procedure respond() in Algorithm 2) or infers RA −Rerr

A ⊆
⋃
♦Never (t− 1) ∪

⋃
♦Never (t− 2)

(see procedure propose<terminating>() in Algorithm 5). Proposition 4.6 (proof delayed to Appendix B)
states that also this condition will arise in a finite number of steps.

Proposition 4.6. Let π = 〈V, s, k,R〉 be a negotiation process (k ≥ 2) where the NoN rule is enforced.
If any agentA ∈ {0, 1} uses the strategy above, then, within a finite number of steps T ≥ T̂ ≥ 2 such that

24 author / short title

1 procedure propose<terminating>()
2 current_phase← terminating phase;
3 if RA −Rerr

A ⊆
⋃
♦Never (t− 1) ∪

⋃
♦Never (t− 2) then

// termination condition reached
4 Pt ←⊥;
5 current_phase← done;

Algorithm 5: Terminating phase: procedure propose<terminating>().

ag(T) = A, either an agreement is found or condition RA−Rerr
A ⊆

⋃
♦Never (T − 1)∪

⋃
♦Never (T − 2)

is satisfied.

Condition of Proposition 4.6 can be considered the termination condition of Proposition 3.6 in case
agentA had admissible regionRA−Rerr

A . Given that regionRerr
A can be chosen as to be arbitrarily small,

agentA can terminate the negotiation when this condition is reached. Any possible remaining acceptable
deals would be in the (arbitrarily small) region Rerr

A .
We stress again that, in case agent A is non-obstructionist from the beginning, for all t ≥ T̂ such that

ag(t) = A, Rerr
A can be made empty. Hence, as it happens for any acceptable deal in RA ∩

⋃
♦Never (t−

2) = RA ∩
⋃
♦Never (T̂ − 2), any acceptable deal in Rerr

A can be considered as an opportunity (with
arbitrarily small Euclidean distance to RA ∩

⋃
♦Never (T̂ − 2)) that agent A had to sacrifice for having

behaved in an obstructionist way (at most) up to step T̂ − 2.

5. Handling Discrete and Categorical Variables

Discrete variables (e.g., integer and boolean) are very important to model requirements in many sce-
narios. In case all variables have a discrete and finite domain, the number of possible agreements is
obviously finite. However, it would be practically infeasible to consider in turn all of them, given their
huge number.

The NoN rule works also when (some of) the variables are discrete (e.g., integer or categorical), if we
consider the union of the integer hulls [11] of the polyhedra in the NoN and Never sets of Definition 3.4.

Integer Linear Programming results tell us that the integer hull of a polyhedron can still be repre-
sented with linear (plus integrality) constraints. Vertices of this new polyhedron have integer coordinates.
Hence, the NoN rule as well as our NoN-compliant strategy of Section 4 and the underlying projection-
based reasoning can be adapted to prune the space of the possible agreements: only the branches that
deal with now decisions need to be refined (deals in

⋃
♦NoN (t−1) proposed at step t need to have integer

coordinates).
Also, RA −

⋃
♦Never (T̂ − 2) can always be represented by an union of closed polyhedra, hence Rerr

A

can be always made empty.
Categorical variables can be tackled by fixing an ordering of their domain (common to both parties)

and mapping them onto integers.

Example 5.1. (Alice vs. Bob, Categorical Negotiation Variables)
We consider a variation of the Alice vs. Bob example, where negotiation variables are t (start time) and

author / short title 25

��������	

���
�	����	

���

	���	��

������������

�	�����
�����

�������
��
������
��

Figure 7: Alice vs. Bob with categorical variables: Alice’s feasibility region (Example 5.1).

l (location). Both variables are categorical, with t having domain {morning, lunch, early aft., late aft.}
and l having domain {Alice’s office, Bob’s office, Downtown, Headquarters}.

Figure 7 shows Alice’s region. After having fixed a total ordering among the values of the domains
of the two variables (common knowledge between agents), Alice’s region can be regarded as the union
of 3 bounded polyhedra, whose vertices have integer coordinates.

6. Implementation

Our framework has at its core well-studied tasks in computational geometry and (integer) linear pro-
gramming [11]. However, to our knowledge, the exact complexity of the agent’s reasoning is unknown,
as these core tasks must be repeated on sets of exchanged deals. Still, existing libraries of computational
geometry algorithms can manage the size of instances needed for practical scenarios.

We have implemented a Java system that uses the Parma Polyhedra Library (PPL) [12] to compute
polyhedra, convex hulls, and projections, and an all-solutions SAT solver [13] to revise n̂(t) and Possible
Opponent Clusters (POCs).

6.1. Computing Polyhedra, Convex Hulls and Projections

Our system uses the PPL [12] for computing and reasoning on polyhedra, convex hulls and projections.
PPL is a C++ library (with interfaces to other programming languages, among which Java) for the

manipulation of numerical information that can be represented by points in some n-dimensional vector
space. In particular, one of the key domains supported by PPL is that of convex polyhedra.

PPL is able to handle bounded and unbounded polyhedra, closed or not. Polyhedra are represented
in two forms: the implicit representation by means of linear inequalities and the explicit representation
by means of points, closure points (among which vertices), rays and lines. For each polyhedron of
interest (e.g., convex hulls or projections) our system exploits the most efficient representation. Suitable
operations among polyhedra (e.g., intersection) are executed by using the rich API provided by PPL.

6.2. Computing Possible Opponent Clusters

Our system computes and revises POCs by encoding the problem into a SAT instance, and uses Sat4j [13]
to compute all solutions, as typically done in explicit model checking (see, e.g., [14, 15, 16, 17]).

26 author / short title

Sat4j is a Java package for solving Boolean satisfaction and optimisation problems. It can solve SAT,
All-SAT, Max-SAT, Pseudo-Boolean, and Minimally Unsatisfiable Subset problems. Being in Java, of
course Sat4j cannot compete in speed with C/C++ solvers. However, as our All-SAT instances are quite
small, using Sat4j resulted in a good compromise between performance and simplicity of interoperation
with our Java implementation.

Our system implementing an agent (say agent A) computes, in each time point t such that ag(t) =
A, set K(t) (see formula (1)) as follows. First, it incrementally computes and maintains the set of
the ⊆-minimal sets D ⊆ dealsB(t − 1) (where B = 1 − A) whose convex hull conv(D) intersects⋃
♦Never (t − 1). Note that this is a dual representation of what requested by formula (1). Second, it
reduces the problem of computing K(t) into an instance of the Min Hyper-Graph Colouring Problem
(Definition 6.1).

Definition 6.1. ((Min) Hyper-Graph Colouring Problem)
Let H = (V,E) be a hyper-graph, where V is a finite set of nodes and E ⊆ 2V is the set of hyper-edges
(where each hyper-edge is a set of nodes). Let n ∈ N+ be a finite number of colours.

The Hyper-Graph Colouring Problem amounts to assign a colour (among the n available colours) to
each node in V such that, for each hyper-edge E ∈ E , not all nodes in E are assigned the same colour.

The Min Hyper-Graph Colouring Problem amounts to find a colouring to H satisfying the require-
ments above which uses the minimum number of distinct colours.

The reduction works as follows. The set of nodes of the hyper-graph is dealsB(t− 1) and the hyper-
edges are the sets D computed as described above. Intuitively, each such set defines a ⊆-minimal set of
incoming deals that cannot belong to the same POC (see formula (1)).

Note that each set of nodes (i.e., each set of opponent deals) coloured with the same colour in each
solution of the Min Hyper-Graph Colouring Problem defines a POC. The whole set of POCs K(t) is then
the collection of the set of nodes coloured with the same colour in all solutions of the Min Hyper-Graph
Colouring Problem.

At each time point t such that ag(t) = A, our system (implementing agent A) encodes the Min
Hyper-Graph Colouring Problem instance using the available agent knowledge into a SAT instance,
assuming a fixed number of colours n, starting with n = 1. Then, it uses Sat4j to compute all solutions.
If, at some time step t, the SAT instance for a given value of k is unsatisfiable, the system increases n by
1 and repeats the process.

The minimum value of colours which makes the SAT instance satisfiable is exactly the value n̂(t)
used by Non-obstructionist Opponent Assumption (NOA). Note that, the minimum needed number of
colours n̂(t) to colour the hyper-graph is a non-decreasing function of t. Hence, it is enough for the
agent, in her next turn (at step t+ 2), to start the computation of K(t+ 2) setting n = n̂(t).

For any given n (number of colours), the encoded SAT instance is defined on the following proposi-
tional letters:

L = {cv,i | v ∈ V, 1 ≤ i ≤ n} .

The assignment cv,i = true in a model of the formula has the meaning that node v is coloured with colour
i. The SAT instance is composed by the logical and of all clauses in all the following sets (along the
lines of [18]):

At Least One Colour. Each node v ∈ V is assigned at least one colour. This yields the following

author / short title 27

set of |V| clauses (one n-ary clause per node):

{(cv,1 ∨ · · · ∨ cv,n) | v ∈ V} .

At Most One Colour. Each node v ∈ V is assigned at most one colour. This yields the following
set of |V| × n(n−1)

2 clauses (a binary clause for each node and each pair of ordered distinct colours):

{(¬cv,i ∨ ¬cv,j) | v ∈ V, 1 ≤ i < j ≤ n} .

Good Colouring. For each hyper-edge E ∈ E , the nodes belonging to E are not all assigned to the
same colour. This yields the following set of n|E| clauses (a |E|-ary clause for each hyper-edge E and
for each colour):

{(¬cv1,i ∨ · · · ∨ ¬cve,i) | E = {v1, . . . , ve} ∈ E, 1 ≤ i ≤ n} .

Additional care is devoted in speeding-up the search of all solutions by Sat4j and in minimising
RAM usage to store the set of all POCs. In particular, reformulation techniques on the SAT problem
specification along the lines of [19, 20, 21, 22, 23, 24] have been employed to, e.g., perform symmetry
breaking, and only the⊆-minimal POCs are kept in RAM, as the others are not needed to compute region
Π(t) (formula (2)), given that, for all regions R,R′ and R′′ such that R′′ ⊆ R, it holds proj(R′′, R′) ⊆
proj(R,R′).

7. Experiments

In this section we present an empirical evaluation of the computational feasibility of the approach.
We evaluated our implementation on both random and structured negotiation scenarios using a single

computer (a PC with a dual-core AMD Opteron 3GHz and 8GB RAM) for both agents. At each step,
agents can exchange contracts of at most k = 2 deals.

Note that negotiations have been performed between two identical agents, although with different
parameters. As a matter of facts, as our approach requires agents to comply with the NoN rule, it cannot
be evaluated against other negotiators.

7.1. Random Negotiation Scenarios

In this section we describe our experimental results concerning random negotiation scenarios. In Sec-
tion 7.1.1 we outline our random negotiation scenario generator. In Section 7.1.2 we describe the chosen
experimental setting, in terms of the parameters we used to run our generator and of properties of the
resulting random scenarios. Finally, in Section 7.1.3 we present our experimental results.

7.1.1. Generation of Random Negotiation Scenarios

In our framework a negotiation scenario consists of the following items: (a) The number of negotiation
variables n ∈ N+; (b) Feasibility regions of the two agents; (c) Utility functions of the two agents;
(d) Values ∆u0 and ∆u1 (positive reals), defining the concession policies of the two agents; (e) Values

28 author / short title

ξ0 and ξ1 (reals between 0 and 1), defining the respond policies of the two agents. In turn, the feasibility
region of each agent is the union of a finite number of bound polyhedra in Rn and its utility function is
piece-wise linear.

Our random scenario generator takes as input the following parameters:

• A positive integer n, the number of negotiation variables;

• Two positive reals radius_region0 and radius_region1, defining the n-dimensional spheres in which
the centres of all polyhedra of R0 and R1 will lie, respectively;

• Two positive reals radius_poly0 and radius_poly1, defining the maximum radius of each polyhe-
dron of R0 and R1;

• Two bounded ranges n_polys0 and n_polys1 of N+, defining the minimum and maximum number
of polyhedra defining R0 and R1, respectively;

• Two positive integers max_vtx0 and max_vtx1, defining the maximum number of vertices of each
polyhedron in R0 and R1, respectively;

• The requested expected ratio of satisfiable scenarios sat_ratio (between 0 and 1), plus tolerance (a
percentage value);

• Two bounded ranges conc0 and conc1 of N+, used to define the concession policy of agent 0 and
1, respectively.

Our generator does not take as input agents respond policies ξ0 and ξ1, as we aim at evaluating how
the negotiation strategy of Section 4 behaves when changing values ξ0 and/or ξ1.

Our approach to random scenario generation consists of two main components: the feasibility region
and the utility function (plus concession policy) generators.

7.1.1.1. Generation of Random Feasibility Regions In the literature, several models for random
bounded polyhedra generation have been defined (see, e.g., [25] for a survey). We chose to adopt one
of the simplest approaches, based on computing the convex hull of a given number of points randomly
generated uniformly in a n-sphere of a given radius [26].

In details, for any agent A ∈ {0, 1} our random polyhedra generator generates a number of poly-
hedra randomly chosen in interval n_polysA. Each such polyhedron P is computed by first randomly
generating a point cP in the n-sphere centred in the origin and having radius radius_regionA. Polyhedron
P is then computed by randomly generating max_vtxA n-dimensional points in the n-sphere centred in
cP and having radius radius_polyA. Polyhedron P is defined as the convex hull of such random points.
Each random point is generated by producing a random unit vector in Rn (to guess a direction) and a ran-
dom length from 0 to radius_polyA. Of course, the generated polyhedron will have a number of vertices
not greater than max_vtxA. It usually has less vertices, since some of them do not belong to the frontier
of the computed convex hull. The generation of the feasibility region for each agent also avoids that two
polyhedra overlap.

Finally, in order to control the ratio between satisfiable and unsatisfiable instances (i.e., with overlap-
ping and non-overlapping regions), the feasibility region of one agent (agent 1, without loss of generality)
is moved in order to be centred in a point having random coordinates ranging between 0 and max_move.

author / short title 29

The choice of the value to assign to max_move is experimentally found by the generator itself during a
preliminary self-tuning stage, given the requested ratio sat_ratio (plus tolerance) of satisfiable scenarios.
In particular, during the self-tuning stage, the generator searches for a suitable value for max_move in
a dichotomic fashion, each time generating a burst of scenarios, and measuring the ratio of satisfiable
ones.

7.1.1.2. Generation of Random Utility Functions and Concession Policies For each agent A ∈
{0, 1} and for each polyhedron P in RA, we generate a random linear utility function uPA by computing
a unit vector and the coefficients of the hyper-plane orthogonal to this. The utility function of agent A,
uA, is then the linear piece-wise function defined by uPA for each polyhedron P of RA.

As for the concession policy ∆u of each agent A, we first randomly choose the number of conces-
sions ci ∈ concA to allow, and then compute ∆u in such a way that the utility value could be decreased
from its maximum exactly ci times, i.e.,

∆u = span/ci,

where span is the absolute difference of the extreme values of uA in RA.

7.1.2. Experimental Setting

We generated 100 random negotiation scenarios over 3 variables. Feasibility regions for both agents are
unions of exactly 3 random polyhedra (i.e., polys0 = polys1 = [3, 3]), each with at most max_vtx0 =
max_vtx1 = 10 vertices. Both regions lie within spheres having radius radius0 = radius1 = 100. As
we aimed at generating both satisfiable and unsatisfiable scenarios, we set sat_ratio = 50% (tolerance
±10%). We set conc0 = conc1 = [5, 5], as to force the concession policy of both agents to ∆u = span/5.

In about 44% of the resulting instances we have R0 ∩R1 6= ∅, i.e., an agreement does actually exist.
The average volume of the intersection is 2.19% of the volume of each agent’s region (standard deviation
is 4.5%).

We set up a negotiation process for each random negotiation scenario described in Section 7.1.2 and
for each combination of the agents respond policies ξ0 and ξ1, each one taking value in set {0, 0.2, 0.4, 0.6, 0.8, 1}.
In this way we were able to evaluate how the negotiation strategy of Section 4 behaves when changing
values ξ0 and/or ξ1.

Overall, we defined and ran 3600 negotiation processes over the generated 100 random negotiation
scenarios.

7.1.3. Experimental Results

All negotiation processes terminate in 20–30 steps. Even when agents were obstructionist (i.e., their
respond policy ξ is lower than 1), agreements were actually found in > 95% of the scenarios for which
R0 ∩R1 6= ∅ (i.e., when agreements do actually exist).

Figure 8 shows average time, success rate (i.e., number of negotiations closed successfully divided
by the number of negotiations such that R0 ∩ R1 6= ∅), and average quality of the agreement found for
each agent as a function of the respond policies used (ξ0 and ξ1). The quality of an agreement D for
agent a ∈ {0, 1} is defined as:

ua(D)− La
Ha − La

30 author / short title

where Ha and La are, respectively, the highest and lowest values of agent a utility in R0 ∩ R1. Hence,
the quality of the agreement for agent a ranges from 0 to 1, and is 0 (respectively 1) if it yields her the
lowest (respectively highest) utility among all existing agreements (i.e., deals in R0 ∩R1).

From Figure 8b it can be seen that moderate respond policies (intermediate values of ξ) lead to
very high probabilities (> 97%) of finding an agreement if one exists. Moreover, the quality of such
agreements (Figure 8c) for the two agents is similar if their respond policies are similar (fairness).
Conversely, if agents use very different values for ξ, the more conceding agent unsurprisingly gets lower
utility with the agreement, but negotiations are more often aborted by the other, more demanding, agent.
Finally, Figure 8a shows that negotiation time is always < 5 minutes.

7.2. Structured Negotiation Scenarios

We evaluated our system on multiple scenarios of three case-studies, as described in Section 7.2.1. Over-
all, we experimented with 6 structured negotiation processes.

7.2.1. Experimental Setting

Table 1 shows some relevant properties of these negotiation scenarios. Column “vars” gives the number
of negotiation variables. Columns “polys” and “con” give, respectively, the number of polyhedra and
the overall number of linear constraints defining each agent feasibility region, R0 and R1. The two last
columns give the ratio of the volume of R0 ∩ R1 (i.e., the volume of the space of the agreements) with
respect to the volume of the feasibility region of each agent (“–” means that R0 ∩R1 is empty, hence no
agreement is possible).

The following sections give more details on the structured negotiation problems and scenarios on
which we ran our experiments. A full description of such scenarios is available in [27].

7.2.1.1. Alice vs. Bob This negotiation problem (over two negotiation variables: start day/time and
duration) has already been introduced in Example 2.2 and used as a running example throughout the
paper. We consider two negotiation scenarios (named AB1 and AB2), with different desiderata and
requirements for the two agents.

From Table 1 we see that in scenario AB1 there is space for possible agreements (i.e., R0 ∩R1 6= ∅)
although the volume of this intersection is extremely small with respect to the volume of the feasibility
regions of the two agents (i.e., < 10−8%). In scenario AB2 instead, there is no possibility to find an
agreement, as R0 ∩R1 = ∅.

7.2.1.2. Summer House In this negotiation problem, agent Tenant is negotiating with agent Owner
in order to rent a summer house. Negotiation processes are over 3 variables: the start day of the rental
period, the rental duration (in days), the rental price per day.

We consider two scenarios of the Summer House problem (named SU1 and SU2), in which the
Tenant has different preferences on the rental period (e.g., early June vs. late July), on the minimum and
maximum rental duration, and different constraints about how much he/she is willing to accept to pay
per day. The Owner has his/her own desiderata and constraints.

author / short title 31

Avg. Negotiation time

 0 0.2 0.4 0.6 0.8 1

Respond policy for agent 0

 0 0.2 0.4 0.6 0.8 1Respond policy for agent 1

 160

 180

 200

 220

 240

 260

 280

 300

(a) Time (sec)

Success ratio

 0 0.2 0.4 0.6 0.8 1

Respond policy for agent 0
 0 0.2 0.4 0.6 0.8 1

Respond policy for agent 1

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

(b) Success rate

Avg. agr. quality for agent 0
Avg. agr. quality for agent 1

 0 0.2 0.4 0.6 0.8 1

Respond policy for agent 0 0 0.2 0.4 0.6 0.8 1

Respond policy for agent 1

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

(c) Average agreement quality

Figure 8: Random negotiation scenarios: results.

32 author / short title

From Table 1 we see that in scenario SU1 there is space for possible agreements (i.e., R0 ∩R1 6= ∅)
and the volume of this intersection is 1.5% − 2.0% with respect to the volume of the feasibility regions
of the two agents. In scenario SU2 instead, there is no possibility to find an agreement, as R0 ∩R1 = ∅.

7.2.1.3. England vs. Zimbabwe In [28] a problem is described where England and Zimbabwe nego-
tiate in order to reach an agreement evolving from the World Health Organisation Framework Convention
on Tobacco Control.

There, the two parties want to find an agreement about four issues:

1. The total amount that England has to deposit into the Global Tobacco Fund to aid Zimbabwe to
get rid of economic dependence on tobacco production;

2. The impact of the amount of the previous point to other aid programmes to Zimbabwe funded by
England;

3. The possible changes to any trade barriers to incentivise or dis-incentivise import/export from/to
the other country;

4. The possible creation of a forum to explore comparable arrangements for other long-term health
issues (this could motivate Zimbabwe to follow the same approach to other global health agree-
ments, turning out to be very costly to England).

We adapted this problem to our domain (real variables and no known bounds for their domains).
Resulting negotiation processes are over 4 variables: the fund amount, other England-to-Zimbabwe aid
reduction, increment of taxes on import by Zimbabwe government, increment of England import from
Zimbabwe. We consider two negotiation scenarios (named EZ1 and EZ2), with different desiderata and
requirements for the two agents.

From Table 1 we see that in both scenarios there are possible agreements (i.e.,R0∩R1 6= ∅), although
the volume of this intersection is very small when compared to the volume of the feasibility regions of
the two agents (namely: 0.04%− 0.15%).

7.2.2. Experimental Results

Table 2 shows results of negotiation processes carried out on the above scenarios, under different values
of the respond policies of each agent (ξ0 and ξ1). All processes have been run with k (the maximum
number of deals in a proposal) equal to 2.

For each instance, column “agreement found” tells whether an agreement has been found (an agree-
ment exists if and only if R0 ∩ R1 6= ∅, see Table 1), column “steps” gives the number of negotiation
steps needed to conclude the negotiation process, column “overall time (sec)” gives the overall negoti-
ation time in seconds, and column “polys” gives the overall number of polyhedra computed by Parma
Polyhedra Library (PPL) during the process. For each negotiation instance, the number of All-SAT
instances solved to compute POCs (see formula (1)) is equal to the number of negotiation steps.

Table 2 reports results for particularly meaningful values of ξ0 and ξ1, each one taking a value in
set {0, 0.2, 0.4, 0.6, 0.8, 1}. In particular, for scenarios in which an agreement exists, Table 2 reports a
negotiation process where agents respond policies (ξ0 and ξ1) were set to the lowest values for which

author / short title 33

Scenario vars
R0 R1 vol(R0∩R1)

vol(R0)
vol(R0∩R1)
vol(R1)

polys con. polys con.

AB1 2 3 12 3 12 < 10−8% < 10−8%

AB2 2 3 12 5 20 – –
SU1 3 3 12 4 16 1.5% 2.0%
SU2 3 3 12 4 16 – –
EZ1 4 2 8 2 8 0.10% 0.05%
EZ2 4 2 8 2 8 0.15% 0.04%

Table 1: Properties of structured negotiation scenarios.

an agreement was actually found. In case either ξ0 or ξ1 is different from 0, Table 2 reports a second
(unsuccessful) process for that scenario, run by further (minimally) decreasing one between ξ0 and ξ1
and by setting the other to 1 (non-ostructionist agent). For example, as for scenario AB1 (for which an
agreement exists, see Table 1),Table 2 reports configuration ξ0 = 0, ξ1 = 0.6 for which an agreement
was found. By further reducing ξ1 to 0.4, no agreement was found even when maximally relaxing
ξ0 to 1 (i.e., making agent 1 non-obstructionist). Analogously, as for scenario SU1, Table 2 reports
configurations ξ0 = 0.4, ξ1 = 0 (agreement found) and ξ0 = 0.2, ξ1 = 1 (agreement not found).

As for negotiation scenarios for which no agreement exists (namely: AB2 and SU2, see Table 1),
Table 2 reports configuration ξ0 = 1, ξ1 = 1, where both agents are non-obstructionist (most favourable
configuration).

7.3. Discussion

Our results on both random and structured negotiation scenarios show that enforcing NoN is computa-
tionally feasible. Negotiation processes with hundreds of interaction steps could be performed in min-
utes, even when NoN enforcement and agents reasoning require the computation of millions of polyhedra
and the resolution of hundreds of All-SAT instances.

In particular, All-SAT instances are always trivial to encode and to solve, as overall the time needed
to encode them, to run Sat4j and to loop across and to decode all returned models is always less than
15% of the overall time.

The most computationally intensive part of our negotiator is in using PPL (which takes, on average,
more than 50% time for each negotiation step).

Although the number of sets in K(t), NoN and Never collections can grow exponentially, by keep-
ing only their ⊆-minimal (as for K(t), see Section 6.1) and their ⊆-maximal (as for NoN and Never)
members (which is enough to enforce the NoN rule and to perform the needed reasoning), the over-
all memory requirements become, in the considered scenarios, compatible with the amount of RAM
available on an ordinary PC.

34 author / short title

Scenario ξ0 ξ1
agreement

steps
overall

polys
found time (sec)

AB1 0 0.6 Y 20 1.09 321

AB1 1 0.4 N 24 1.25 450

AB2 1 1 N 20 1.33 466

SU1 0.4 0 Y 347 15.22 5679

SU1 0.2 1 N 417 38.44 20 413

SU2 1 1 N 513 63.12 29 148

EZ1 0 0 Y 80 1237 3 115 508

EZ2 0 0 Y 92 2836 8 057 011

Table 2: Structured negotiation scenarios: results.

8. Related Work

Various protocols and algorithms for negotiation have been proposed in the literature, to handle the
different needs of several application domains, as, e.g., resource allocation [29], scheduling [30], e-
business [31], smart grids [32, 33, 34]. Available approaches to negotiation can be classified according
to several factors, as the negotiation objects, the agents’ decision making models, the degree of coop-
eration among the agents, the level of privacy about constraints and preferences of each agent, or the
communication and computation costs (see, e.g., [4, 35, 36, 37] and citations thereof).

At the top level, existing approaches to automated negotiation can be classified depending on whether
they make or do not make use of a central authority, called mediator, which is trusted by the negotiating
parties. While mediator-assisted negotiation approaches (see, e.g., [38, 39]) can ensure a higher effi-
ciency in the process, they are unsuitable in a setting as ours, where agents have strong privacy concerns
and lack trust about their counterpart and any mediator.

The papers closest to ours are [8, 7, 9], where a computational geometry based approach to bilateral
unmediated negotiation was investigated. However, in order to guarantee completeness and termination,
such approaches make strong assumptions on the properties of the two agents. In particular, [8, 9] require
that the feasibility region of both agents is a single convex bounded polyhedron and that agents are non-
obstructionists. Convexity is partially relaxed in [7], where the concept of safe lie is defined: agents can
lie by rejecting acceptable incoming proposals, but they must continue to appear (to their counterpart) as
having a convex region for the approach to terminate. The Now or Never (NoN) protocol rule relaxes all
such limitations and allows each single agent to employ a terminating strategy in a very hostile setting,
where no hypothesis about the shape of the feasibility region and the willingness to collaborate and to
be efficient can be made about the counterpart. Such terminating strategies for an agent (as the one
presented in Section 4) do exist under very mild assumptions about her own feasibility region and utility,
which are applicable to most practical circumstances.

The possibility of agents to lie has been explored also in [40], where negotiations involve agents ex-

author / short title 35

changing knowledge beyond proposals. In that context, agents may deliberately send to their counterpart
false knowledge (hence dishonest proposals), with the goal to deceive the reasoning of their opponent.
The NoN protocol rule requires only a minimal negotiation framework (see Definition 2.1), where ex-
changed proposals contain only deals (and not additional information or knowledge). Although the NoN
rule can be enforced in more sophisticated negotiation frameworks (see discussion in Sections 1 and 2),
the only dishonest proposals which are strictly of interest for NoN are those including deals that the
proposing agent is not really willing to accept. However, this is not a problem, as additional mechanisms
(e.g., penalties) can be easily introduced in order to cope with situations where an agent accepts a deal
proposed by the counterpart who then refuses to honour the agreement. On the other hand, the NoN
protocol rule allows agents to lie when receiving a proposals, in that the receiving agent is not forced to
accept an acceptable incoming deal or to take a now decision whenever possible. Hence, the NoN rule
leaves the agents free to behave in an obstructionist way (see Definition 3.7), but at the same time injects
a minimum amount of efficiency in the process in order to avoid infinite negotiations.

Game-theoretic approaches (see, e.g., [4, 41, 42, 43, 44, 45, 46]) typically assume that agents have
complete or probabilistic information about their counterpart, and often focus on split-the-pie games, in
order to ensure desirable properties of the agreements (maximum social welfare, envy-freeness, Pareto-
optimality, etc.) For these reasons, although such methods are precious in several negotiation domains,
they cannot be applied in a setting as ours, where the agents have zero knowledge and no trust about their
counterpart.

Argumentation-based approaches emphasise the importance of exchanging information and expla-
nations between negotiating agents during the process, in order to mutually influence their behaviours
[47, 48]. Integrating argumentation theory in negotiation could of course supply additional information
and help agents to convince each other by adequate arguments. However, such approach cannot be ex-
ploited in our context, where agents do not trust each other, hence would not believe in their arguments.

Heuristic approaches (see, e.g., [37, 2, 3, 49, 50]) tackle cases where agents have lack of informa-
tion about their counterpart. However, they are intrinsically incomplete (i.e., they may fail to find an
agreement if one exist) and are not guaranteed to terminate in a finite number of steps, without mak-
ing assumptions on the two agents. On the other hand, in negotiation processes where the NoN rule is
enforced, any single agent may exploit a terminating strategy, despite the properties and willingness to
terminate of the counterpart. It also guarantees completeness (i.e., an agreement will be found if one
exists) in case the negotiation process is carried our by non-obstructionist agents (Proposition 3.8). In
case the agents are obstructionist, the approach is of course incomplete (as an obstructionist counterpart
does not do her best to reach an agreement, e.g., she can reject acceptable offers, see Definition 3.7), but
makes the responsibility of each agent about the negotiation failure explicit. In particular, Proposition 3.6
shows that, in case the negotiation process fails, for each existing mutually acceptable agreementD there
was a negotiation step t in which the agent in charge of making a proposal during step t deliberately took
a never decision on a NoN region containing D. Note that, even in presence of an obstructionist coun-
terpart, the NoN rule makes the agent able to employ a terminating strategy.

9. Conclusions

In this paper we defined a new protocol rule, Now or Never (NoN), for bilateral unmediated negotiation
processes which allows self-motivated competitive agents to efficiently carry out multi-variable negoti-

36 author / short title

ations with remote untrusted parties, where privacy is a major concern and agents know nothing about
their opponent. NoN has been explicitly designed as to ensure a continuous progress of the negotiation,
thus neutralising malicious or inefficient opponents. The protocol rule (whose fulfilment can be assessed
independently by each party using only local information) forces the agents to never reconsider already
taken decisions, thus injecting a minimum, but sufficient amount of efficiency in the process. In particu-
lar, NoN allows each agent to independently infer, during the negotiation, that there is no hope to find an
agreement (Proposition 3.6). When such a termination condition arises, the agent can safely opt-out.

The NoN protocol rule is non-invasive, in that it leaves maximum freedom to agents to exploit their
(private) strategy. In particular, it does allow agents to behave in an obstructionist way (e.g., agents are
free to reject acceptable deals if they are, e.g., currently aiming at higher utility). We also defined the
notion of non-obstructionist agents. Although they are not necessarily collaborative, non-obstructionist
agents genuinely aim at closing the negotiation efficiently, by also sacrificing their preferences among
deals they are willing to accept. Proposition 3.8 shows that, in case both agents are non-obstructionist,
then the NoN rule guarantees completeness: when the termination condition arises, not only agents know
that no mutually acceptable agreement can still be found; agents have also a proof that no mutually
acceptable agreement actually exists.

The enforcement of the NoN protocol rule in a negotiation process also allows each agent to exploit
terminating strategies, i.e., strategies that are guaranteed to yield the termination condition after a finite
number of steps. We have also presented one such NoN-compliant terminating strategy inspired to the
well-known Monotonic Concessions (MC) approach. Our strategy, under mild assumptions on the agent
feasibility region, allows the agent to derive, in a finite number of steps and independently of the be-
haviour of the opponent, that there is no hope to find an agreement. Our multi-phase NoN compliant
agent strategy supports the presence of a private utility function. Also, the strategy includes a sophisti-
cated reasoning activity of the agent (based on the evidence provided by the behaviour of her counterpart)
in order to effectively prune the space of possible agreements.

We have presented a Java implementation of an agent employing our NoN-compliant strategy. Our
implementation jointly exploits a computational geometry package (Parma Polyhedra Library (PPL) [12])
and an all-solutions SAT solver (Sat4j [13]) to implement the required reasoning.

We finally evaluated the computational feasibility of the overall approach on both random and struc-
tured instances of practical size. Experiments show that each agent can efficiently evaluate the compli-
ancy of the opponent to the NoN protocol rule in real-world negotiation scenarios.

Acknowledgements

This research was founded by the EU 7th Framework Programme under grant agreements n. 317761
(SmartHG) and n. 600773 (PAEON). The author wishes to thank the anonymous reviewers for their
useful comments and suggestions, which improved the quality of this paper.

References

[1] Mancini T. Now or Never: Negotiating Efficiently with Unknown Counterparts. In: Proceedings of 22nd
RCRA International Workshop on Experimental Evaluation of Algorithms for Solving Problems with Com-
binatorial Explosion (RCRA 2015). vol. 1451. CEUR Workshop Proceedings; 2015. p. 47–61.

author / short title 37

[2] Faratin P, Sierra C, Jennings NR. Using Similarity Criteria to Make Issue Trade-Offs in Automated Negotia-
tions. Artificial Intelligence. 2002;142(2):205–237.

[3] Lin R, Kraus S, Wilkenfeld J, Barry J. Negotiating with Bounded Rational Agents in Environments with
Incomplete Information using an Automated Agent. Artificial Intelligence. 2008;172(6–7):823–851.

[4] Rosenschein JS, Zlotkin G. Rules of Encounter: Designing Conventions for Automated Negotiations Among
Computers. MIT Press; 1994.

[5] Rubinstein A. Perfect Equilibrium in a Bargaining Model. Econometrica. 1982;50(1):97–109.
doi:10.2307/1912531.

[6] Faratin P, Sierra C, Jennings NR. Negotiation Decision Functions for Autonomous Agents. Robotics and
Autonomous Systems. 1998;24(3–4):159–182.

[7] Mancini T. Negotiation Exploiting Reasoning by Projections. In: Proceedings of 7th International Confer-
ence on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009). Advances in Intelligent
Systems and Computing. Springer; 2009. p. 329–338.

[8] Cadoli M. Proposal-based negotiation in convex regions. In: Proceedings of 7th International Workshop
on Cooperative Information Agents (CIA 2003). vol. 2782 of Lecture Notes in Computer Science. Springer;
2003. p. 93–108.

[9] Costantini S, De Gasperis G, Provetti A, Tsintza P. A Heuristic Approach to Proposal-Based Negotia-
tion: with Applications in Fashion Supply Chain Management. Mathematical Problems in Engineering.
2013;doi:10.1155/2013/896312.

[10] Lai G, Sycara K. A Generic Framework for Automated Multi-Attribute Negotiation. Group Decision and
Negotiation. 2009;18(2):169–187. doi:10.1007/s10726-008-9119-9.

[11] Schrijver A. Theory of Linear and Integer Programming. John Wiley & Sons; 1998.

[12] Bagnara R, Hill PM, Zaffanella E. The Parma Polyhedra Library: Toward a Complete Set of Numerical
Abstractions for the Analysis and Verification of Hardware and Software Systems. Science of Computer
Programming. 2008;72(1–2):3–21.

[13] Le Berre D, Parrain A. The Sat4j Library, Release 2.2. Journal on Satisfiability, Boolean Modeling and
Computation. 2010;7:59–64.

[14] Della Penna G, Intrigila B, Melatti I, Minichino M, Ciancamerla E, Parisse A, et al. Automatic Verification
of a Turbogas Control System with the Murphi Verifier. In: Proceedings of 6th International Workshop on
Hybrid Systems: Computation and Control (HSCC 2003). vol. 2623 of Lecture Notes in Computer Science.
Springer; 2003. p. 141–155.

[15] Cesta A, Finzi A, Fratini S, Orlandini A, Tronci E. Validation and Verification Issues in a Timeline-Based
Planning System. Knowledge Engineering Review. 2010;25(3):299–318. doi:10.1017/S0269888910000160.

[16] Mancini T, Mari F, Massini A, Melatti I, Tronci E. System Level Formal Verification via Distributed
Multi-Core Hardware in the Loop Simulation. In: Proceedings of 22nd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing (PDP 2014). IEEE; 2014. p. 734–742.
doi:10.1109/PDP.2014.32.

[17] Mancini T, Mari F, Massini A, Melatti I, Tronci E. Anytime System Level Verification via Random Exhaus-
tive Hardware In The Loop Simulation. In: Proceedings of 17th Euromicro Conference on Digital System
Design (DSD 2014). IEEE; 2014. p. 236–245.

[18] Cadoli M, Mancini T, Patrizi F. SAT as an Effective Solving Technology for Constraint Problems. In:
Proceedings of 16th International Symposium on Foundations of Intelligent Systems (ISMIS 2006). vol.
4203 of Lecture Notes in Computer Science. Springer; 2006. p. 540–549.

38 author / short title

[19] Mancini T, Cadoli M. Detecting and Breaking Symmetries by Reasoning on Problem Specifications. In: Pro-
ceedings of 6th International Symposium on Abstraction, Reformulation and Approximation (SARA 2005).
vol. 3607 of Lecture Notes in Computer Science. Springer; 2005. p. 165–181.

[20] Cadoli M, Mancini T. Automated Reformulation of Specifications by Safe Delay of Constraints. Artificial
Intelligence. 2006;170(8–9):779–801.

[21] Cadoli M, Mancini T. Using a Theorem Prover for Reasoning on Constraint Problems. Applied Artificial
Intelligence. 2007;21(4&5):383–404. doi:10.1080/08839510701252650.

[22] Mancini T, Cadoli M, Micaletto D, Patrizi F. Evaluating ASP and Commercial Solvers on the CSPLib.
Constraints. 2008;13(4):407–436.

[23] Bordeaux L, Cadoli M, Mancini T. A Unifying Framework for Structural Properties of CSPs:
Definitions, Complexity, Tractability. Journal of Artificial Intelligence Research. 2008;32:607–629.
doi:10.1613/jair.2538.

[24] Mancini T, Cadoli M. Exploiting Functional Dependencies in Declarative Problem Specifications. Artificial
Intelligence. 2007;171(16–17):985–1010.

[25] Molchanov IS, Stoyan D. Statistical Models of Random Polyhedra. CWI, Amsterdam, The Netherlands;
1995. BS-R9510.

[26] Stoyan D, Stoyan H. Fractals, Random Shapes and Point Fields. John Wiley & Sons; 1994.

[27] Mancini T. Now or Never: Negotiating Efficiently with Unknown or Untrusted Counterparts (Appendix);
2016. Available from: http://tmancini.di.uniroma1.it.

[28] Lin R, Kraus S, Baarslag T, Tykhonov D, Hindriks KV, Jonker CM. Genius: an Integrated Environment for
Supporting the Design of Generic Automated Negotiators. Computational Intelligence. 2014;30(1):48–70.
doi:10.1111/j.1467-8640.2012.00463.x.

[29] Conry SE, Kuwabara K, Lesser RA V R Meyer. Multistage Negotiation for Distributed Constraint Satisfac-
tion. IEEE Transactions on Systems, Man and Cybernetics. 1991;21(6):462–477.

[30] Sycara KP, Roth S, Sadeh N, Fox M. Distributed Constrained Heuristic Search. IEEE Transactions on
Systems, Man and Cybernetics. 1991;21(6):446–461.

[31] Jennings NR, Norman TJ, Faratin P, O’Brien P, Odgers B. Autonomous Agents for Business Process Man-
agement. Applied Artificial Intelligence. 2000;14(2):145–189.

[32] Wang Z, Wang L. Adaptive Negotiation Agent for Facilitating Bi-Directional Energy Trading Be-
tween Smart Building and Utility Grid. IEEE Transactions on Smart Grid. 2013;4(2):702–710.
doi:10.1109/TSG.2013.2237794.

[33] Vrba P, Marik V, Siano P, Leitao P, Zhabelova G, Vyatkin V, et al. A Review of Agent and Service-
Oriented Concepts Applied to Intelligent Energy Systems. IEEE Transactions on Industrial Informatics.
2014;10(3):1890–1903. doi:10.1109/TII.2014.2326411.

[34] Mancini T, Mari F, Melatti I, Salvo I, Tronci E, Gruber J, et al. Demand-Aware Price Policy Synthesis and
Verification Services for Smart Grids. In: Proceedings of 2014 IEEE International Conference on Smart Grid
Communications (SmartGridComm 2014). IEEE; 2014. p. 794–799.

[35] Kraus S. Negotiation and Cooperation in Multi-Agent Environments. Artificial Intelligence. 1997;94(1–
2):79–98.

[36] Yokoo M, Katsutoshi H. Algorithms for Distributed Constraint Satisfaction: A Review. Autonomous Agents
and Multi-Agents Systems. 2000;3(2):185–207.

http://tmancini.di.uniroma1.it

author / short title 39

[37] Jennings NR, Faratin P, Lomuscio AR, Parsons S, Wooldridge M, Sierra C. Automated Negotiation,
Prospects, Methods and Challenges. Group Decision and Negotiation. 2001;10:199–215.

[38] Hemaissia M, El Fallah-Seghrouchni A, Labreuche C, Mattioli J. A multilateral Multi-Issue Negotiation
Protocol. In: Proceedings of 6th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2007). IFAAMAS; 2007. p. 155. doi:10.1145/1329125.1329314.

[39] Ito T, Klein M, Hattori H. A Multi-Issue Negotiation Protocol among Agents with Nonlinear Utility Func-
tions. Multiagent and Grid Systems. 2008;4(1):67–83. Available from: http://content.iospress.com/articles/
multiagent-and-grid-systems/mgs00092.

[40] Son TC, Pontelli E, Nguyen NH, Sakama C. Formalizing Negotiations Using Logic Programming. ACM
Transactions on Computational Logic. 2014;15(2):12:1–12:30. doi:10.1145/2526270.

[41] Zlotkin G, Rosenschein JS. Mechanism Design for Automated Negotiation, and its Application to Task
Oriented Domains. Artificial Intelligence. 1996;86(2):195–244. doi:10.1016/0004-3702(95)00104-2.

[42] Zlotkin G, Rosenschein JS. Mechanisms for Automated Negotiation in State Oriented Domains. Journal of
Artificial Intelligence Research. 1996;5:163–238.

[43] Fatima SS, Wooldridge M, Jennings NR. Multi-Issue Negotiation with Deadlines. Journal of Artificial
Intelligence Research. 2006;27:381–417. doi:10.1613/jair.2056.

[44] Gottlob G, Greco G, Mancini T. Complexity of Pure Equilibria in Bayesian Games. In: Proceedings of 20th
International Joint Conference on Artificial Intelligence (IJCAI 2007); 2007. p. 1294–1299.

[45] Chevaleyre Y, Endriss U, Estivie S, Maudet N. Reaching Envy-Free States in Distributed Negotiation Set-
tings. In: Proceedings of 20th International Joint Conference on Artificial Intelligence (IJCAI 2007); 2007.
p. 1239–1244. Available from: http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-200.pdf.

[46] Saha S, Sen S. An Efficient Protocol for Negotiation over Multiple Indivisible Resources. In: Proceedings of
20th International Joint Conference on Artificial Intelligence (IJCAI 2007); 2007. p. 1494–1499. Available
from: http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-241.pdf.

[47] Kraus S, Sycara K, Evenchik A. Reaching Agreements through Argumentation: a Logical Model and Imple-
mentation. Artificial Intelligence. 1998;104:1–69.

[48] Amgoud L, Dimopoulos Y, Moraitis P. A Unified and General Framework for Argumentation-based Negoti-
ation. In: Proceedings of 6th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2007). IFAAMAS; 2007. p. 967–974.

[49] López-Carmona MA, Marsá-Maestre I, de la Hoz E, Velasco JR. A Region-Based Multi-Issue Ne-
gotiation Protocol for Nonmonotonic Utility Spaces. Computational Intelligence. 2011;27(2):166–217.
doi:10.1111/j.1467-8640.2011.00377.x.

[50] Williams CR, Robu V, Gerding EH, Jennings NR. Negotiating Concurrently with Unknown Opponents in
Complex, Real-Time Domains. In: Proceedings of 20th European Conference on Artificial Intelligence
(ECAI 2012). vol. 242 of Frontiers in Artificial Intelligence and Applications. IOS Press; 2012. p. 834–839.
doi:10.3233/978-1-61499-098-7-834.

http://content.iospress.com/articles/multiagent-and-grid-systems/mgs00092
http://content.iospress.com/articles/multiagent-and-grid-systems/mgs00092
http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-200.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-241.pdf

40 author / short title

A. List of Acronyms

MC Monotonic Concessions . 36

NNC Not Necessarily Closed . 22

NOA Non-obstructionist Opponent Assumption . 41

NoN Now or Never . 40

POC Possible Opponent Cluster .25

PPL Parma Polyhedra Library . 36

B. Proof of Results

In this section we give proofs of our results.

Proposition 3.6. (Termination Condition)
Let π = 〈V, s, k,R〉 be a negotiation process where the Now or Never (NoN) rule is enforced and let
~P = P1,P2, . . .PT be the status of π at step T ≥ 2.

If Rag(T) ⊆
⋃
♦Never (T − 1) ∪

⋃
♦Never (T − 2) and PT is not a singleton {D} ⊆ PT−1, then:

(a) There exists no extension ~P ′ = P1,P2, . . . , PT−1, PT , . . . , PT ′ of ~P to step T ′ > T such that
PT ′ = {D} ⊆ PT ′−1

(b) For all D ∈ R0 ∩R1, there exists 1 < tD < T such that D ∈
⋃
♦NoN (tD − 1) ∩

⋃
♦Never (tD).

Proof:
Proof of (a) builds on the observation that, from Definition 3.4,

⋃
♦Never (t) ⊇

⋃
♦Never (t − 2) for all

t ≥ 2. Assume, for the sake of contradiction, that there exists step T ′ > T such thatPT ′ = {D} ⊆ PT ′−1
(i.e., agreement D ∈ R0 ∩R1 is accepted at step T ′ > T).

As D ∈ R0 ∩R1 ⊆ Rag(T) ⊆
⋃
♦Never (T − 1) ∪

⋃
♦Never (T − 2), we have that:

1. If T ′ and T have the same parity (i.e., T ′ = T + 2n for some integer n ≥ 1):

1.1. ifD ∈
⋃
♦Never (T−2) =

⋃
♦Never (T ′−2−2n) ⊆

⋃
♦Never (T ′−2), then, by Definition 3.5,

D cannot be part of PT ′
1.2. otherwise (D ∈

⋃
♦Never (T−1)−

⋃
♦Never (T−2) =

⋃
♦Never (T ′−1−2n)−

⋃
♦Never (T−

2) ⊆
⋃
♦Never (T ′ − 3)), by Definition 3.5, D cannot be part of PT ′−1.

author / short title 41

2. Otherwise (T ′ and T have different parity, i.e., T ′ = T − 1 + 2n for some integer n ≥ 1):

2.1. ifD ∈
⋃
♦Never (T−2) =

⋃
♦Never (T ′−1−2n) ⊆

⋃
♦Never (T ′−3), then, by Definition 3.5,

D cannot be part of PT ′−1
2.2. otherwise (D ∈

⋃
♦Never (T−1)−

⋃
♦Never (T−2) =

⋃
♦Never (T ′−2n)−

⋃
♦Never (T−2) ⊆⋃

♦Never (T ′ − 2)), by Definition 3.5, D cannot be part of PT ′ .

Hence, a contradiction arises and point (a) follows.
As for point (b), we know by hypothesis that, for all D ∈ R0 ∩ R1, D ∈ Rag(T) ⊆

⋃
♦Never (T −

1) ∪
⋃
♦Never (T − 2). Let tD be the smallest step such that D ∈

⋃
♦Never (tD). From Definition 3.4 we

have that tD > 1. As D 6∈
⋃
♦Never (tD − 2), Definition 3.4 also ensures that D ∈

⋃
♦NoN (tD − 1).

ut

Proposition 3.8. (Completeness)
Let π = 〈V, s, k,R〉 be a negotiation process between two non-obstructionist agents where the NoN rule
is enforced.

If π reaches, at step T − 1 ≥ 2, status ~P = P1,P2, . . .PT−1 s.t. Rag(T) ⊆
⋃
♦Never (T − 1) ∪⋃

♦Never (T − 2), then R0 ∩R1 = ∅.

Proof:
As agents ag(T − 1) and ag(T) = ag(T − 2) = 1− ag(T − 1) are non-obstructionist, we have:

(i) Rag(T−1) ∩
⋃
♦Never (T − 1) = ∅ and

(ii) Rag(T) ∩
⋃
♦Never (T − 2) = ∅.

To see why, assume, for the sake of contradiction that, e.g., (ii) does not hold, i.e., there exists D ∈
Rag(T) ∩

⋃
♦Never (T − 2) (case (i) can be proved similarly). By Definition 3.4, there exists a step

1 < tD ≤ T − 2 such that:

(a) ag(tD) = ag(T − 2), and

(b) D ∈
⋃
♦NoN (tD − 1)−

⋃
♦Never (tD − 2) and D ∈

⋃
♦Never (tD).

Agent ag(tD), by not proposing in
⋃
♦NoN (tD − 1) containing D ∈ Rag(tD) at step tD, did not satisfy

requirement (2) of Definition 3.7.
Now, as for the main proof, assume, for the sake of contradiction, that exists a deal D ∈ R0 ∩ R1.

As R0 ∩ R1 = Rag(T) ∩ R1−ag(T) ⊆ Rag(T) ⊆
⋃
♦Never (T − 1) ∪

⋃
♦Never (T − 2), we must have

D ∈
⋃
♦Never (T − 1) ∪

⋃
♦Never (T − 2). A contradiction arises by (i) and (ii). ut

Proposition 4.3. If, at step t ≥ 3 such that ag(t) = A, Non-obstructionist Opponent Assumption (NOA)
is correct, then:

Π(t) ∩ (RB −
⋃
♦Never (t− 1)) = ∅.

42 author / short title

Proof:
Assume that, at step t ≥ 3, NOA is correct. As n̂(t) is the minimum number of convex sub-regions of
RB−

⋃
♦Never (t−1) (whereB = 1−A), each such sub-region contains at least one deal already offered

by the opponent (i.e., one of dealsB(t− 1)). Intuitively, this means that the opponent (agent B = 1−A)
has proposed at least one deal within each of the n̂(t) convex sub-regions of RB .

As, by construction, members of K(t) are all and the only subsets of dealsB(t− 1) that may belong
to the same convex sub-region of RB −

⋃
♦Never (t− 1) (as NOA is assumed to be correct), we have that

for any D ⊆ dealsB(t− 1) such that conv(D) ⊆ RB −
⋃
♦Never (t− 1) (i.e., for any set of the opponent

deals that really belong to one such a convex sub-region), D is in K(t).
Assume now, for the sake of contradiction, that there exists point X ∈ Π(t) such that X ∈ RB −⋃

♦Never (t− 1). We have that:

1. As X ∈ Π(t), then we must have X ∈ proj(conv(D),
⋃
♦Never (t − 1)) for each D ∈ K(t). In

particular, this holds for those POCs D for which conv(D) ⊆ RB −
⋃
♦Never (t − 1) (i.e., those whose

points really belong to a single convex sub-region of RB −
⋃
♦Never (t− 1)).

2. This implies (see Definition 4.2) that for eachD ∈ K(t) such that conv(D) ⊆ RB−
⋃
♦Never (t−

1) there exists a point X ′ ∈ conv(D) and Y ∈
⋃
♦Never (t− 1) such that Y ∈ XX ′.

3. As conv(D∪{X}), containing Y ∈
⋃
♦Never (t−1), does not entirely belong toRB−

⋃
♦Never (t−

1), deal X cannot belong to the same convex sub-region of RB −
⋃
♦Never (t− 1) as D.

4. As this holds for allD ∈ K(t) such that conv(D) ⊆ RB−
⋃
♦Never (t−1), a contradiction arises.

ut

Proposition 4.5. For each step t ≥ T̂ such that ag(t) = A,RA∩
⋃
♦Never (t−2) = RA∩

⋃
♦Never (T̂−2).

Proof:
By contradiction. Let t̂ ≥ T̂+2j (j ∈ N+) be the first step (ag(t̂) = A) such thatRA∩

⋃
♦Never (t̂−2) 6=

RA ∩
⋃
♦Never (t̂− 4) = RA ∩

⋃
♦Never (T̂ − 2).

As Never (t̂− 2) ⊇ Never (t̂− 4) (by Definition 3.4), this means that we have:

Never (t̂− 2) ⊃ Never (t̂− 4)

and
RA ∩

⋃
♦Never (t̂− 2) ⊃ RA ∩

⋃
♦Never (t̂− 4).

This implies that ⋃
♦
(
Never (t̂− 2)−Never (t̂− 4)

)
∩RA 6= ∅.

From Definition 3.4, we have that one of the two cases below holds:

(a) Never (t̂− 2)−Never (t̂− 4) ⊆ NoN (t̂− 3) (if agent A did not propose in step t̂− 2 any deal
in
⋃
♦NoN (t̂− 3))

(b) Never (t̂− 2)−Never (t̂− 4) ⊆ {{D} | D ∈ NoN (t̂− 3)} (otherwise).

author / short title 43

Case (a) would imply that
⋃
♦NoN (t̂ − 3) ∩ RA 6= ∅ and would lead to contradiction, as agent A is

certainly non-obstructionist from step T̂ onwards, hence would have proposed in
⋃
♦NoN (t̂ − 3) at step

t̂− 2.
Case (b) would imply that {{D} |D ∈ NoN (t̂−3)}∩RA 6= ∅ and would lead again to contradiction,

as agent A (non-obstructionist from step T̂) would have accepted one of the acceptable deals D ∈
NoN (t̂− 3) at step t̂− 2. ut

Proposition 4.6. Let π = 〈V, s, k,R〉 be a negotiation process (k ≥ 2) where the NoN rule is enforced.
If any agentA ∈ {0, 1} uses the strategy above, then, within a finite number of steps T ≥ T̂ ≥ 2 such that
ag(T) = A, either an agreement is found or condition RA−Rerr

A ⊆
⋃
♦Never (T − 1)∪

⋃
♦Never (T − 2)

is satisfied.

Proof:
We first prove that, within a finite number of steps T ≥ T̂ ≥ 2, either an agreement is found or the
following condition is satisfied:

bRA −
⋃
♦Never (T̂ − 2)c ⊆

⋃
♦Never (t− 1) ∪

⋃
♦Never (t− 2). (3)

Let TV ≥ 1 be the negotiation step (ag(TV) = A) in which agent A sent out proposalPTV containing
the last vertex of bRA−

⋃
♦Never (T̂ − 2)c. In case agent B = 1−A accepts one of the deals in PTV , an

agreement is found at step TV + 1 ≥ 2 and the thesis follows.
Otherwise, from step TV +2 onwards, agentAwill send out only empty proposals, unless she decides

to accept an acceptable deal (in which case, the thesis again follows).
For all steps t ≥ TV + 2, we have:

bRA −
⋃
♦Never (T̂ − 2)c ⊆

⋃
♦NoN (t) ∪

⋃
♦Never (t− 1) ∪

⋃
♦Never (t− 2)

as no new point in bRA −
⋃
♦Never (T̂ − 2)c is disclosed.

At each step t > TV such that ag(t) = B, three cases may arise:

1. Agent B proposes an acceptable deal and the negotiation terminates successfully. The thesis
follows.

2. Agent B sends a proposal Pt with no deal in
⋃
♦NoN (t− 1) and no acceptable deals: NoN (t− 1)

is added to Never (t). At step t + 1, agent A sends out an empty proposal again, and NoN (t + 1) = ∅,
as dealsA(t+ 1) = dealsA(t). Condition (3) is now satisfied.

3. Agent B sends a proposal Pt with at least one deal in
⋃
♦NoN (t− 1) and no acceptable deals. As

agent A replies with Pt = ∅, NoN (t) will shrink by at least one element, and condition (3) is one step
closer to be satisfied.

Condition (3) can be equivalently rewritten as:

(RA −Rerr
A)−

⋃
♦Never (T̂ − 2) ⊆

⋃
♦Never (T − 1) ∪

⋃
♦Never (T − 2).

The formula can be rewritten again into:

RA −Rerr
A ⊆

⋃
♦Never (T − 1) ∪

⋃
♦Never (T − 2)

as, being T ≥ T̂ , Definition 3.4 guarantees that either
⋃
♦Never (T̂ − 2) ⊆

⋃
♦Never (T − 2) (when

T = T̂ + 2j, j ≥ 0) or
⋃
♦Never (T̂ − 2) ⊆

⋃
♦Never (T − 1) (when T = T̂ + 2j + 1, j ≥ 0). The thesis

follows. ut

	Introduction
	Preliminaries and Negotiation Framework
	Now or Never
	An Introductory Example
	Rationale and Impact of the NoN Protocol Rule
	Formalisation of the NoN Protocol Rule
	Main Results

	A Terminating Strategy Based on Monotonic Concessions
	Utility-Driven Phase
	Responding
	Proposing
	Conceding

	Non-Obstructionist Phase
	Responding
	Proposing

	Terminating Phase

	Handling Discrete and Categorical Variables
	Implementation
	Computing Polyhedra, Convex Hulls and Projections
	Computing Possible Opponent Clusters

	Experiments
	Random Negotiation Scenarios
	Generation of Random Negotiation Scenarios
	Generation of Random Feasibility Regions
	Generation of Random Utility Functions and Concession Policies

	Experimental Setting
	Experimental Results

	Structured Negotiation Scenarios
	Experimental Setting
	Alice vs. Bob
	Summer House
	England vs. Zimbabwe

	Experimental Results

	Discussion

	Related Work
	Conclusions
	List of Acronyms
	Proof of Results

