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Abstract

To support Model Based Design of Cyber-Physical Systems (CPSs) many simulation based

approaches to System Level Formal Verification (SLFV) have been devised. Basically, these

are Bounded Model Checking approaches (since simulation horizon is of course bounded)

relying on simulators to compute the system dynamics and thereby verify the given system

properties. The main obstacle to simulation based SLFV is the large number of simulation

scenarios to be considered and thus the huge amount of simulation time needed to complete

the verification task. To save on computation time, simulation based SLFV approaches

exploit the capability of simulators to save and restore simulation states. Essentially, such a

time saving is obtained by optimising the simulation script defining the simulation activity

needed to carry out the verification task. Although such approaches aim to (bounded)

formal verification, as a matter of fact, the proof of correctness of the methods to optimise

simulation scripts basically relies on an intuitive semantics for simulation scripting languages.

This hampers the possibility of formally showing that the optimisations introduced to speed

up the simulation activity do not actually omit checking of relevant behaviours for the system

under verification. The aim of this paper is to fill the above gap by presenting an operational

semantics for simulation scripting languages and by proving soundness and completeness

properties for it. This, in turn, enables formal proofs of equivalence between unoptimised

and optimised simulation scripts.

Keywords: Formal Verification, Simulation based Formal Verification, Formal Verification
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of Cyber-Physical Systems, System-Level Formal Verification

1. Introduction

Safety critical system development standards require the use of Formal Methods typically

through a model based approach. For example, the DO-178C [1] by which the certification

authorities approve all commercial software-based aerospace systems, follows the DO-333

Formal Methods supplement (governing usage in airborne and ground-based aviation soft-

ware) and the DO-331 Model-Based Development and Verification Supplement (for avionics

software development).

Model based Verification and Validation (VV) requires two main steps: 1) on the basis of

the system requirements define the system properties to be verified and the set of operational

scenarios to be simulated; 2) carry out the simulation activity. Both such steps are very

time consuming. Furthermore, step 1 requires highly skilled personnel. Not surprisingly a

considerable part of the time and budget needed to complete the design of mission or safety

critical systems goes into the VV activity. In fact, VV easily accounts for more than 50%

of the system design cost/time. This problem is further exacerbated by the ever increasing

complexity and autonomy of many Cyber-Physical Systems (CPSs) such as aerial, terrestrial

or maritime (possibly unmanned) vehicles, spacecrafts, robots, biomedical devices, etc.

One of the most challenging, costly and time consuming VV activity is System Level

Verification (SLV) whose goal is to verify that the whole (i.e., software + hardware) system

meets the given specifications. This motivates research on Model Based Design (MBD)

methods and tools since they hold the promise to decrease time and cost for SLV of complex

CPSs. MBD achieves its goals by first developing a mathematical model of the System Under

Verification (SUV) and then by automatically analysing such a system model in order to

support, among other things, SLV, design space exploration, operator training. This enables

early detection of design errors, well before the system implementation starts. The SUV

model must encompass discrete behaviours (stemming, e.g., from software based subsystems)

as well as continuous ones (stemming, e.g., from physical subsystems). Accordingly, the SUV
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is typically modelled using (see, e.g., [2] and citations thereof) Hybrid Systems (e.g., as in

model checkers like [3, 4, 5, 6, 7, 8]).

While hybrid system model checkers can be used during the preliminary phases of a

system design, because of state explosion, they currently cannot handle SLV of a full fledged

system design, our target here. Accordingly, in the following we will focus on simulation

based system level (formal) verification.

Simulation is currently the main workhorse for SLV and is supported by MBD tools (such

as Simulink [9], VisSim [10]), and Modelica [11] based simulators (such as OpenModelica

[12], JModelica [13] and Dymola [14]). During simulation, the software (the actual one or a

model of it) reads [sends] values from [to] mathematical models (simulation) of the physical

systems (e.g. engines, analog circuits, etc.) it will be interacting with.

For example, within the space domain system, simulation is used to support system ver-

ification within all phases of system design. For example (see [15]), simulation is used in

phase 0 to support requirements validation, in phase A to support system design verification

and mission verification, in phase B to support functional (subsystem) verification, in phase

C to support On-Board Software Verification (OBSW) and Assembly Integration & Verifi-

cation (AIV), in phase D to validate ground segment operations procedures, in phase E to

support team training and, finally, in phase F to investigate system disposal options. Ac-

cordingly, a system model (and its simulator) will have to interact with different subsystems

and users, depending on the system life-cycle phase we are focusing on.

As usual within MBD, we model our SUV as a deterministic system and model nonde-

terministic behaviours (such as faults, user inputs, parameter variations) with disturbances

(uncontrollable events). Accordingly, in our framework, a simulation scenario is just a finite

sequence of disturbances.

A system is expected to withstand all disturbance sequences that may arise in its op-

erational scenarios. Correctness of a system is thus defined with respect to such a set of

admissible disturbance sequences and the goal of the simulation based verification activity is

exactly that of showing that indeed the considered SUV can withstand all admissible distur-

bance sequences. The set of admissible disturbance sequences typically satisfies constraints
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like the following: 1) the number of failures occurring within a certain period of time is less

than a given threshold; 2) the time interval between two consecutive failures is greater than

a given threshold; 3) a failure is repaired within a certain time, etc.

We focus on simulation based Bounded System Level Formal Verification (SLFV) of

safety properties. That is, given a time horizon T and a time step τ (time quantum between

disturbances) our simulation activity returns PASS if there is no admissible disturbance se-

quence of length T and time step τ that violates the property under verification and FAIL,

along with a counterexample, otherwise. In other words, Bounded SLFV is an exhaustive

(with respect to the set of admissible disturbance sequences) simulation. In such a frame-

work, exhaustive simulation works as a black box bounded model checker where the SUV

behaviour is defined by a simulator.

1.1. Motivations

Typically the set of operational scenarios (admissible disturbance sequences) to be simu-

lated in order to complete a SLV activity is defined through a simulation campaign, that is

a simulation script driving the simulation activity.

In our context the number of admissible disturbance sequences is finite since the number

of disturbances is finite and the time horizon as well as the time quantum between distur-

bances are both bounded. Nevertheless the number of operational scenarios to be considered

within a VV activity can be huge (easily many millions). As a result, depending on the sys-

tem considered and on the degree of assurance sought, a simulation campaign may easily

require months of simulation activity since simulating a single scenario can easily require

many seconds of simulation even for a relatively small CPS.

Operational scenarios to be simulated are automatically generated from formal specifi-

cations of the system environment (e.g., as in [16, 17, 18, 19, 20, 21, 22]) or from a database

of operational scenarios (e.g., as in [15, 23, 24]).

A simulation campaign is typically represented using the scripting language of the simu-

lator running the model of the SUV. Beside the syntax (which is not our focus here) all such

scripting languages offer four basic commands: load, run, store, free. Command store(x),
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stores, say in a file with name x, the current simulation state. Command load(x) loads into

the simulator memory the simulation state stored in file x. Command run(λ, τ) sets the

values for the model parameters to λ and advance the simulation of τ seconds. Command

free(x), deletes (the state stored in) file x.

To decrease the time needed to run a simulation campaign many approaches have been

devised. Typically such approaches save simulation time by exploiting the fact that many

operational scenarios have common prefixes (i.e., they share their initial sequence of distur-

bances). By saving (through command store) the simulation state attained at the end of

such common prefixes we can avoid simulating twice the same disturbance sequence by just

loading (through command load) a previously saved simulation state. For example, List-

ing 1 shows a MATLAB script defining a simulation campaign for the Inverted Pendulum

on Cart system from Simulink distribution (further details are in Section 4.1). Listing 2

shows an optimised version of the simulation campaign in Listing 1. Such an optimised ver-

sion is obtained by saving suitably chosen intermediate simulation states in order to avoid

recomputing prefixes of operational scenarios. Comparing Listings 1 and 2 we see that, even

within this tiny example, we save about 13% of computation time (about 3 seconds for the

unoptimised simulation script against 2.6 seconds for the optimised one). This is because

for CPSs simulation is computationally expensive even for relatively small systems.

From the above considerations, we see that optimisation methods for simulation scripts

defining simulation campaigns are at the very heart of simulation based Bounded Model

Checking approaches to SLFV. Of course, in order to formally guarantee correctness of the

optimisation method used, it is essential to show that the unoptimised simulation script and

the optimised one entail the same set of operational scenarios. Unfortunately, even though

such approaches aim at (bounded) formal verification, as a matter of fact, to the best of our

knowledge, the proof of correctness of simulation scripts optimisation methods basically relies

on the intuitive semantics for simulation scripting languages. This hampers the possibility

of formally showing that the optimisations introduced to speed up the simulation activity

do not actually omit checking of relevant behaviours for the SUV (i.e., that we omit to

simulate some of the operational scenarios entailed by the original unoptimised simulation
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Listing 1: An unoptimised simulation

campaign consisting of three operational

scenarios. Commands followed by com-

ment (*) or (-) both lead to state x3.

s_load(’x0’);

s_run(0, 0.04); % (∗)

s_run(1, 0.04); % (∗)

s_run(1, 0.04); % (∗) % x3

5 s_run(1, 0.04);

s_run(1, 0.04);

s_run(1, 0.04);

s_load(’x0’);

s_run(0, 0.04); % (−)

10 s_run(1, 0.04); % (−)

s_run(1, 0.04); % (−) % x3

s_run(0, 0.04);

s_run(0, 0.04);

s_run(1, 0.04);

15 s_load(’x0’);

s_run(1, 0.04);

s_run(0, 0.04);

s_run(2, 0.04);

s_run(1, 0.04);

20 s_run(0, 0.04);

s_run(2, 0.04);

% Elapsed time is 3.020143 seconds

Listing 2: An optimised version of the

simulation campaign in Listing 1. By

storing state x3, we avoid repeating com-

mands with (-) in Listing 1.

s_load(’x0’);

s_run(0, 0.04); % (∗)

s_run(1, 0.04); % (∗)

s_run(1, 0.04); % (∗) % x3

5 s_store(’x3’); % (+) % x3

s_run(1, 0.04);

s_run(1, 0.04);

s_run(1, 0.04);

s_load(’x3’); % (+) % x3

10 s_run(0, 0.04);

s_run(0, 0.04);

s_run(1, 0.04);

s_free(’x3’);

s_load(’x0’);

15 s_run(1, 0.04);

s_run(0, 0.04);

s_run(2, 0.04);

s_run(1, 0.04);

s_run(0, 0.04);

20 s_run(2, 0.04);

% Elapsed time is 2.609006 seconds
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campaign).

The aim of this paper is to fill the above gap by presenting an operational semantics for

simulation scripting languages and by proving soundness and completeness properties for

it. This, in turn, enables formal proofs of equivalence between unoptimised and optimised

simulation scripts. We focus on the four simulation commands mentioned above since they

form the core of the scripting languages for all simulators.

1.2. Main Contributions

Our main contributions can be summarised as follows.

We provide a formal operational semantics for simulation scripting languages focusing

on their core instructions: load, store, run and free. Such an operational semantics allows

us to formally prove if it holds that two simulation scripts entail the same set of operational

scenarios.

We show soundness of our operational semantics by proving that any simulation script

defines a set of (in-silico) experiments that can be carried out on our SUV. In other words,

any simulation script defines a set of operational scenarios.

We show completeness of our operational semantics by proving that any set of (in-silico)

experiments to be carried out on our SUV (i.e., any set of operational scenarios) can be

defined through a simulation script.

1.3. Related Work

This paper is a journal version of the conference paper [25]. The present version extends

[25] as follows. The definition of Discrete event sequence and the related definitions of

Section 3 are revised in order to avoid the use of the no disturbance event, since it does

not belong to the set of simulator commands. Definition 12 of simulator commands and

transition function has been simplified resting on the well-established notion of Labelled

Transition System. Finally, we provide the formal proof of Lemma 1 and Theorems 1 and 2,

that in [25] are just outlined through examples.

Semantics for the modelling language of Simulink has been studied in [26, 27, 28] and

citations thereof. Also, semantics for Modelica modelling language [11], that is supported
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by many open source (e.g., Open Modelica, JModelica) as well as commercial (e.g., Dymola,

Wolfram System Modeler) simulators, has been investigated in [29, 30] and citations thereof.

We note that all such research work focuses on defining a semantics for the simulator mod-

elling language, that is the language used to define the model to be simulated (our SUV),

whereas our paper focuses on defining a semantics for the language (namely, the simulator

scripting language) used to control the simulation process itself.

SLFV of cyber-physical systems via simulation based bounded model checking has been

studied in many contexts. Here are a few examples.

Formal verification of fully general Simulink models has been investigated in [16, 22, 20,

21, 17, 18, 19]. Formal verification of satellite operational procedures using ESA SIMSAT

simulator has been investigated in [31].

Simulation based reachability analysis for large linear continuous time dynamical systems

has been investigated in [32].

A simulation based data-driven approach to verification of hybrid control systems de-

scribed by a combination of a black-box simulator for trajectories and a white-box transition

graph specifying mode switches has been investigated in [33].

Formal verification of discrete time Simulink models (e.g., Stateflow or models restricted

to discrete time operators) with small domain variables has been investigated in [34, 35, 36].

Simulation based falsification of CPS properties has been extensively investigated for

Simulink models. Examples are in: [37, 38, 39, 40, 41].

Simulation based approaches to statistical model checking have been also widely inves-

tigated. Here are just a few examples. Simulink models for CPS have been studied in [42],

mixed-analog circuits have been analyzed in [43]. Smart grid control policies have been

considered in [44, 45, 46], biological models have been studied in [47, 48, 49].

Of course Model Based Testing (e.g., see [50]) has widely considered automatic generation

of test cases from models. In our setting, automatic generation of simulation scenarios (for

Simulink) has been investigated, for example, in [51, 52, 53, 54].

Finally, synergies between simulation and formal methods have been widely investigated

also in digital hardware verification. Examples are in [55, 56, 57, 58] and citations thereof.
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All simulation based verification approaches considered in the literature heavily rely on

optimising the simulation scripts defining the simulation campaign to be carried out to

complete the planned verification activity. However, to the best of our knowledge, none of

them addresses the issue of formally proving the equivalence between the optimised simu-

lation script and the unoptimised one. By providing an operational semantics for the core

commands of simulator scripting languages we aim at filling this gap.

1.4. Outline of the paper

Section 2 shows the impact that errors may have on the verification activity. Section 3 de-

scribes how we model disturbances as uncontrollable inputs (events) to our (cyber-physical)

SUV that, in turn, is modelled as a discrete event system. Section 4 formalises the notion of

simulator, simulation campaign and, finally, operational semantics for simulation scripting

languages. Sections 5 and 6 provide, respectively, soundness and completeness theorems for

our operational semantics for simulation scripting languages.

2. Impact of Errors in Simulation Scripts

In this section, we provide an estimation of the impact errors in simulation scripts may

have on the reliability of the whole verification activity.

A simulation campaign consists of a set of operational scenarios to be simulated. As

discussed in Section 1.1 a typical approach is to optimise simulation of such scenarios by

avoiding simulating twice the same sequence of actions coming from the external environ-

ment. An error in the simulation script driving the simulation campaign may have two main

consequences. First, we may simulate more scenarios than we actually need to. Second, we

may omit simulation of some of the scenarios we are supposed to simulate. The first case

is harmless from a verification standpoint, whereas the second one may lead to accept as

correct a system that is not, because the simulation of all scenarios witnessing the error is

omitted.

Hence, the first kind of script error has no impact on the reliability of the verification

activity, it only decreases its efficiency. On the other hand, the second kind of script error
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invalidates the verification activity, since we may conclude that there is no operational

scenario violating our requirements just because we omitted simulation of all scenarios

witnessing the error.

To quantify the impact of omitting the simulation of scenarios containing an error, let

n be the number of simulation scenarios to be simulated and let p be the fraction of oper-

ational scenarios witnessing a violation in the specifications. This means that there are pn

operational scenarios witnessing an error.

Suppose that our simulation script instead of simulating all n scenarios omits simulation

of a fraction α of them. The probability that we accept as correct a system that has an error

is then the probability OP (n, p, α) that all pn error scenarios are among the αn omitted

scenarios. In our setting we may assume that p is small since typically formal verification

starts when the easy to find errors have already been fixed. Accordingly we assume p ≤ α.

Assuming all distributions are uniform, we can compute the probability OP as follows.

First, there are
(
n
αn

)
ways of selecting the αn scenarios to be omitted. Second, we note

that if a set of omitted scenarios contains the pn error ones, then it will contain αn − pn

= (α − p)n scenarios not leading to a violation in the requirements. Thus the number of

sets of omitted scenarios each of which contains all error scenarios is the number of ways of

selecting (α− p)n scenarios from those not leading to a violation in the requirements, that

is
(

(1−p)n
(α−p)n

)
. Thus OP (n, p, α) is:

OP (n, p, α) =

(
(1−p)n
(α−p)n

)(
n
αn

) (1)

In Figures 1 to 4 we show OP (n, p, α) (y-axis) when n = 106, p ∈ {10−3, 10−4, 10−5,

5 ·10−6} and α (x-axis) is in [0, 1]. From these figures, we see that the harder the verification

task (i.e., the smaller is p), the greater the impact of an error in the simulation script. For

example, from Figure 4 we see that OP (106, 5 ·10−6, 0.3) ≥ 0.001, typically an unacceptably

high value in a setting where formal verification is called for.

The impact of omitting the simulation of scenarios containing an error motivates our

proposal of an operational semantics for simulation scripts.
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Figure 4: Probability of accepting a wrong system (y-

axis) when p = 5 · 10−6 (α on x-axis).

3. Dynamical Systems

In this section we give the formal background on which our approach rests. To this end,

we model the disturbances (Definition 3) acting on our system, formalised in Definition 7,

resting on the notion of dynamical system (see, e.g., [59]). Then, we define the notion of sim-

ulation scenario (Definition 8), that is the sequence of disturbances occurring from a given

system state, and the set of transitions associated to a simulation scenario (Definition 9).

Throughout the paper, we denote with N the set of natural numbers, N+ the set of

positive natural numbers, R+, R0+ and R the sets of positive, non-negative and all real

numbers, respectively. We use R0+ to represent time and R+ to represent non-zero time

durations.
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Figure 5: Two discrete event sequences.

Operational scenario for the SUV can be modelled as uncontrollable inputs (distur-

bances). Examples of disturbances are: noise on sensors, faults, variations in system param-

eters, etc. As in [38] we can finitely parametrize the set of continuous time functions defining

the operational scenarios our SUV is expected to withstand. For example, a sinusoidal noise

with amplitude A and frequency f can be defined by the function A sin 2πft. A set of pairs

(A, f) defines a set of possible sinusoidal disturbances. Indeed, using Fourier series, any

function we may be interested in (finite bandwidth) can be represented, with arbitrary pre-

cision, with a finite set of parameters. In other words, the uncontrollable inputs define the

function parameters whereas function itself are implemented, as in [38], inside the simulator.

This allows us to consider finite the set of values for our disturbances.

A discrete event sequence (Definition 3 and Figure 5), is a function associating to each

(continuous) time instant a disturbance event (such as a fault, a variation in a system

parameter, etc). We consider a bounded time horizon, and accordingly we require that

the number of disturbances is finite, since no system can withstand an infinite number of

disturbances within a finite time.

Notation 1. We denote with H the (Heaviside) function H : R → R defined as follows:
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H(t) = if (t ≥ 0) then 1 else 0.

Definition 1 (Step function). A function u : R0+ → Rn is said to be a step function if

it can be written as: u(t) =
∑k−1

i=0 aiH(t −
∑i

j=0 τj) for some k ∈ N+, ai ∈ Rn, τ0 ∈ R0+

and τi ∈ R+ ∀i > 0. We say that a step function u is in canonical form if: ∀i > 0 [ai 6= 0].

Remark 1 (Uniqueness). The request that ∀i > 0 [ai 6= 0] and the condition that ∀i > 0

[τi ∈ R+] guarantee that the canonical form of a step function is unique.

Definition 2 (Time horizon). We call time horizon of u the value
∑k−1

j=0 τj.

Definition 3 (Discrete event sequence). Let U be a finite subset of Rn. A discrete

event sequence over U is a step function u such that ∀t ∈ R0+ u(t) ∈ U . We denote with

UR≥0
the set of discrete event sequences over U .

Example 1. Let us consider the two discrete event sequences u1 and u2 represented in

Figure 5. The function u1 can be written as: u1(t) = 2H(t − 3)+ H(t − 5)− 2H(t − 10)+

H(t− 13), whereas the function u2 can be written as u2(t) = 3H(t)− 2H(t− 2)− H(t− 5).

An explicit representation of a discrete event sequence, denoted as event list, can be

obtained by listing pairs (τ, e), where e is an event and τ is a time interval. This is formalised

in Definition 4.

Definition 4 (Event list). Let u(t) be as in Definition 1. Then u can be represented

with a finite sequence of pairs, event list, defined as follows: [(τ0, b0), (τ1, b1), (τ2, b2), . . . ,

(τk−1, bk−1)], where bj =
∑j

i=0 ai, and τj is the time elapsed since the event immediately

preceding event bj, j = 0, . . . , k − 1.

Definition 4 is well posed since, given the event list for u, we can compute the coefficients

of u as ai = bi−bi−1, with the convention that b−1 = 0. From now on, we will use the event list

to define a discrete event sequence, and write u = [(τ0, b0), (τ1, b1), (τ2, b2), . . . , (τk−1, bk−1)]

for u(t) =
∑k−1

i=0 (bi − bi−1)H(t−
∑i

j=0 τj).
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Example 2. Let us consider the discrete event sequences u1 and u2 in Example 1, and

shown in Figure 5. The event list representing u1 is: [(3, 2), (2, 3), (5, 1), (3, 2)], whereas

the event list representing u2 is [(0, 3), (2, 1), (3, 0)].

Example 3 shows that a discrete event sequence can be represented by different event

lists.

Example 3. Let us consider the two functions: u = [(0, 0), (0.04, 1), (0.2, 0)] and v = [(0, 0),

(0.04, 1), (0.08, 1), (0.12, 0)]. We have that u = v and u is in canonical form.

The restriction of an event sequence to a finite interval is described in Definition 5.

Definition 5 (Restriction). Let UR≥0
be the set of discrete event sequences over the set U .

Given a discrete event sequence u ∈ UR≥0
and two positive real numbers t1 ≤ t2, we denote

with u |[t1,t2) the restriction of u to the interval [t1, t2), i.e. the function u |[t1,t2): [t1, t2)→ U ,

such that u |[t1,t2) (t) = u(t) for all t ∈ [t1, t2). We denote U [t1,t2) the restriction of UR≥0
to

the domain [t1, t2).

The concatenation of event sequences is described in Definition 6.

Definition 6 (Concatenation). Assume that t1, t2, t3 ∈ R0+ such that t1 < t2 < t3. If

ω ∈ U [t1,t2) and ω′ ∈ U [t2,t3), their concatenation, denoted as ωω′, is the function ω̃ ∈ U [t1,t3)

defined as:

ω̃(t) =

ω(t) if t ∈ [t1, t2)

ω′(t) if t ∈ [t2, t3)

In our setting the system to be verified can be modelled as a continuous time Input-State-

Output deterministic dynamical system (see e.g. [59]) whose input functions are discrete

event sequences, whose state can undertake continuous as well as discrete changes, and

whose output ranges on any combination of discrete and continuous values.

In our setting discrete event systems (Definition 7), model hybrid systems describing

cyber-physical system, as shown in Examples 4 to 6. For this reason, here we denote systems

with H.
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Definition 7 (Discrete Event System). A Discrete Event System, or simply DES, H is

a tuple (X , U , Y , ϕ, ψ), where:

• X , the state space of H, is a non-empty set whose elements denote states;

• U , the input value space of H, is a finite subset of Rn;

• Y, the output value space of H, is a non-empty set whose elements denote outputs;

• ϕ : R+ ×R+ × X × UR≥0 → X is the transition map of H. Function ϕ must satisfy

the following properties:

– semigroup: for each t1, t2, t3 ∈ R0+ such that t1 < t2 < t3, ω ∈ U [t1,t2), ω′ ∈

U [t2,t3), x ∈ X we have that ωω′ ∈ U [t1,t3) is such that ϕ(t3, t1, x, ωω
′) = ϕ(t3, t2,

ϕ(t2, t1, x, ω), ω′);

– consistency: for each u ∈ UR≥0
, x ∈ X , t ∈ R+ we have ϕ(t, t, x, u) = x;

• ψ : R0+ ×X → Y is the observation function of H.

A system is set to be stationary if for all t1, t2, τ, x, u, it holds ϕ(t1 + τ, t1, x, u) = ϕ(t2 +

τ, t2, x, u). In the following we will focus on stationary systems, and we will also write

ϕ(t, x, u) for ϕ(t, 0, x, u).

In the following, unless otherwise specified, H stands for H = (X ,U ,Y , ϕ, ψ).

Note that any simulator driven by its scripting language (consisting of the core functions

outlined in Section 1.1) can be seen as a discrete event system. This is why we focus on

DES.

Remark 2 (Simulator and DES). Let ρ(a, θ, τ, t) be the constant function returning value

a and defined in the interval [θ, θ+τ). Then, the step function u(t) =
∑k−1

i=0 aiH(t−
∑i

j=0 τj)

can be written as the concatenation of ρ functions as follows: u = ρ(c0, θ0, τ0)ρ(c1, θ1, τ1)

ρ(c2, θ2, τ2)ρ(c3, θ3, τ3) . . . ρ(ck−1, θk−1, τk−1)ρ(ck, θk,+∞) =
∏k

i=0 ρ(ci, θi, τi), where: c0 = 0,

θ0 = 0, τk = +∞ and, for j ∈ {1, . . . k}, θj = θj−1 + τj−1 =
∑j−1

i=0 τi, cj = cj−1 + aj−1 =∑j−1
i=0 ai.
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Let H be a DES. Then by the semigroup properties (Definition 7) follows: ϕ(t, 0, x0, u) =

ϕ(t, 0, x0,
∏k

i=0 ρ(ci, θi, τi)) = xk, where: for j ∈ {0, . . . , k − 1}, xj+1 = ϕ(θj + τj, θj, xj,

ρ(cj, θj, τj)).

Note that ϕ(θj + τj, θj, xj, ρ(cj, θj, τj)) computes the state reached by H when starting

from state xj and applying for τj time units the constant input cj. Taking into account that

a simulator for H actually computes ϕ from the system definition (e.g., through Differential

Algebraic Equations (DAEs)) from the above follows that the semigroup property implies

that we can simulate the effect of any step function by running consecutive simulations

with constant input. This is completely independent from the integration algorithm used by

simulator solver. In particular, the simulation length τj defining the time between consecutive

disturbances does not depend on the simulator solver time step. Actually it is the opposite,

the solver time step will have to adapt to the time events triggered by disturbances (e.g., see

[60]).

Our approach can model both the case in which the input is controllable, for example by

control software (Example 4), and the case in which the input is uncontrollable, for example

disturbances such as faults are injected (Examples 5 and 6).

Example 4 (Inverted Pendulum). A simple example of a system is given by the Inverted

Pendulum with Stationary Pivot Point, see e.g. [61, 62, 63]. The system is modelled by

taking the angle θ and the angular velocity θ̇ as state variables. The input of the system

is the torquing force u, that can influence the velocity in both directions. Moreover, the

behaviour of the system depends on the pendulum mass m, the length of the pendulum l

and the gravitational acceleration g. Given such parameters, the motion of the system is

described by the differential equation θ̈ = g
l
sinθ + 1

ml2
u.

Let U be {−1, 0, 1}, and τ = 10−6. Our discrete event systemH is the tuple (X ,U ,Y , ϕ, ψ),

where:

• X = R2 and Y = R2;

• ϕ is solution to the system of differential equations:
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Figure 6: Simulink model of the inverted pendulum (from mathworks.com).

ẋ1 = x2

ẋ2 = g
l
sinx1 + 1

ml2
u

where x1 is the angle θ and x2 is the angular velocity θ̇;

• ψ is given by [x1(t), x2(t)].

In Figure 6 the Simulink model of the inverted pendulum is shown, where we assume the

pendulum mass m = 1 and the length of the pendulum l = 1. Also we assume the function

u is given to the model as a sequence of values in the set {−1, 0, 1}.

Example 5 (Inverted Pendulum on Cart). Another example of a system is given by

the Inverted Pendulum on Cart (IPC). For this system, the control input is the force F

that moves the cart horizontally and the outputs are the angular position of the pendulum

θ and the horizontal position of the cart x. The physical constraint between the cart and

pendulum gives that both the cart and the pendulum have one degree of freedom each (x and

θ, respectively). The controlled system (the plant) consists of the cart and the pendulum,

whereas the controller consists of the control software computing F from the plant outputs

(x and θ). The dynamics of the system is described in the example available in the Simulink
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Figure 7: Main diagram of Inverted Pendulum on Cart of the Simulink distribution (mathworks.com)

modified for accepting events. Variations with respect to the original mathworks.com model are highlighted

with boxes.

distribution. The Simulink model of the IPC and the pendulum model where disturbances

are added, are shown in Figures 7 and 8, respectively.

The system state is a pair (z, w) where z is the state of the control software, and w is

the plant state. Namely, w = [w1, w2, w3, w4], where: w1 is the cart position, w2 is the cart

velocity , w3 is the pendulum angle, w4 is the pendulum angular velocity.

We model irregularities in the cart rail injecting disturbances on the cart weight with

respect to its nominal value 0.455 kg. We assume that U = {0, 1, 2} is our set of disturbances

(see Definition 3) and model a change in the cart rail giving the cart weight as (d+ 0.455),

with d ∈ U . The Simulink block containing such a disturbance is highlighted in red box of

Figure 7. Disturbance on cart mass is then passed as an input to pendulum block, modified

with respect to the original version to accept this extra parameter d. Modified pendulum block

is highlighted in dashed blue box and is shown in Figure 8.

We will use the inverted pendulum on cart (Example 5) as running example throughout

the paper.

Example 6 (Fuel Control System). The Fuel Control System (FCS) model in the Sim-

ulink distribution (see Figure 9) has been studied in [42] using statistical model checking
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Figure 8: Pendulum block of Inverted Pendulum on Cart of the Simulink distribution (mathworks.com)

modified for accepting events. Differently from original mathworks.com model, this version has one more

parameter (d) which is used inside functions of Fcn blocks (u[4]).

Figure 9: The Simulink Fuel Control System (from mathworks.com).
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techniques, whereas the formal verification has been discussed in [16, 18]. The model is

equipped with four sensors: throttle angle, speed, oxygen in exhaust gas (EGO) and man-

ifold absolute pressure (MAP). For this model, the elements of the tuple (X ,U ,Y , ϕ, ψ),

representing the discrete event system, are defined as follows:

• X is the set of plant (i.e., the engine) states along with the control software states;

• Y is the set of plant outputs monitored by the control software;

• U is the set of disturbance sequences that may be obtained assuming that only sen-

sors EGO and MAP can fail, giving rise to disturbances d1 and d2, respectively; the

minimum time between consecutive faults is one second and all faults are transient,

that is disturbance d1 models a fault on sensor EGO, followed by a repair within one

second, and disturbance d2 models a fault on sensor MAP, followed by a repair within

one second;

• ϕ computes the dynamics of the system states;

• ψ(t) computes the system output from the present system state.

Example 7 (Apollo Digital Autopilot). An example where disturbances are continuous

is the Apollo Digital Autopilot (ADAP) model (Figures 10 and 11). The Simulink ADAP

(Figure 10) is equipped with three sensors (i.e., yaw, roll, and pitch jets) and two actuators

(i.e., yaw, PR–pitch and roll jets). In order to inject continuous disturbances to a sensor s,

we modify s output through a novel noise block (Figure 11) which perturbs the sensor signal as

follows. Parameters of a noise block bs (s ∈ {yaw, roll, pitch}) are amplitude and frequency

of two sinusoidal signals, one representing noise of communication channel (ampl. an,s,

freq. fn,s) and another one representing the disturbance itself (ampl. ad,s, freq. fd,s). As a

consequence, for each sensor s ∈ {yaw, roll, pitch}, given the sensor measure at time t,

denoted is(t), the sensor measure output disturbed by block bs at time t, denoted os(t), is

given by the expression: os(t) = is(t) + an,s sin(fn,st+ π/2) + ad,s sin(fd,st+ π/2).

Similarly to Fuel Control System (FCS), for this model the elements of the tuple (X ,U ,

Y , ϕ, ψ), representing the discrete event system, are defined as follows:
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• X is the set of plant (i.e., yaw, roll and pitch) states along with the control software

states;

• Y is the set of plant outputs monitored by the control software;

• U is the set of disturbance sequences that may be obtained assuming that all sensors

can fail. For example, disturbances d1, . . . , d6 may correspond, respectively, to set noise

block disturbance amplitude as follows: ad,yaw = 0.01, ad,yaw = 0.02, ad,yaw = 0.03,

ad,roll = 0.02, ad,pitch = 0.01, ad,pitch = 0.02). The minimum time between consecutive

faults is one second and all faults are transient, that is each fault is followed by a repair

within one second;

• ϕ computes the dynamics of the system states;

• ψ(t) computes the system output from the present system state.

In the following we define the notion of simulation scenario, that is the sequence of

disturbances received by our system starting from a given initial state, and we give an

example.

Definition 8 (Simulation scenario). A simulation scenario for H is a pair (x, u) where

x ∈ X and u ∈ UR≥0
.

Example 8 (Simulation scenario). Let H be the IPC system described in Example 5.

Let u be the discrete event sequence defined as: u = [(0.04, 1), (0.08, 0)] and let the initial

state be x0 = (z0, [0, 0, 0, 0]), where z0 is the control software initial state. Then, a simulation

scenario for H is (x0, u).

Definitions 9 and 10 give the definition of sequence of transitions and set of transitions

explored by a SUV under a given simulation scenario, respectively.

Definition 9 (Trace of a simulation scenario). Let us consider a DES H, a state x ∈

X , and a discrete event sequence u = [(τ0, b0), (τ1, b1), (τ2, b2), . . . , (τk−1, bk−1)] ∈ UR≥0
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Figure 10: The Simulink Apollo Digital Autopilot (ADAP) (mathworks.com) modified to accept continuous

noise. Variation with respect to the original model are the novel noise blocks, highlighted with the red box

on the left side.

22



Figure 11: Noise block used in the Apollo Digital Autopilot (ADAP) of Figure 10 for disturbing signals

related to yaw, roll, and pitch sensors.

giving a simulation scenario (x, u) for H, and let [(τ0, b0), (τ1, b1), (τ2, b2), . . . , (τk−1, bk−1)]

be the event list representing u(t). The trace of the simulation scenario (x, u), denoted

Tr(x, u), is the finite sequence of transitions Tr(x, u) = [(x0, 0, τ0, x1), (x1, b0, τ1, x2), . . . ,

(xk−1, bk−2, τk−1, xk)] such that x0 = x and xi+1 = ϕ(τi, xi, bi−1H(t)).

Example 9 (Trace of a simulation scenario). Let H be the IPC system described in

Example 5, and let (x0, u) be the simulation scenario of Example 8.

The trace of (x0, u) is Tr(x0, u) = [(x0, 0, 0.4, x1), (x1, 1, 0.08, x2)], where x0 = (z,

[0, 0, 0, 0]), and the xi values, i = 1, 2 are obtained by running the simulation with the

Simulink model shown in Example 5, that are: x1 = (z1, [−0.017,−0.881, 0.057, 2.914]) and

x2 = (z2, [−0.072,−0, 431, 0.253, 1.878]).

Definition 10 (Set of transitions of a simulation scenario). The set of transitions as-

sociated to a simulation scenario (x, u) is the set:

T(x,u) = {(z, b, τ, z′)|(z, b, τ, z′) ∈ Tr(x, u)}
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Example 10 (Set of transitions of a simulation scenario). Let us consider systemH,

simulation scenario (x0, u), and trace Tr(x0, u) as in Example 8. The set of transitions as-

sociated to (x0, u) is simply the set T(x,u) = {(x0, 0, 0.04, x1), (x1, 1, 0.08, x2)}, where x1 and

x2 assume the values given in Example 8.

4. Simulators and Simulation Campaigns

In this section, we formalise the notion of discrete event system simulator (Definition 11

and Definition 12), of simulation campaign (Definition 13) and of set of transitions of a

simulation campaign (Definition 15).

In many cases, it is necessary to consider a huge number of simulation scenarios to obtain

an exhaustive simulation. The overall number of simulation steps can be prohibitively large

if each scenario is simulated from the initial state of the (SUV) simulator. The definition of

the set of transitions of a simulation campaign (Definition 15) formalises the above concepts.

Let R be a relation on sets A and B, i.e. R ⊆ A×B. We denote with Dom(R) (domain

of R) the set Dom(R) = {x ∈ A | ∃ y ∈ B (x, y) ∈ R}.

Definition 11 (Discrete Event System Simulator). A Discrete Event System (DES)

simulator S is a tuple (H,W ), where H = (X ,U ,Y , ϕ, ψ) is a DES and W is a finite set

whose elements are called simulator states. Each w ∈ W is a pair (z,M), where z ∈ X , and

M , modelling the content of the simulator memory, is a finite set of pairs (id, x) with x ∈ X

state of H, and id an identifier in Dom(M), i.e. a state name, such that [(id, x), (id, x′) ∈

M ] =⇒ x = x′.

Note that, at the beginning of the simulation, the simulator memory contains at least

the pair (id, x0), where x0 is the initial state of H.

Unless otherwise stated, in the following S is a simulator for the DES H as in Defini-

tion 11.

The semantics of simulator commands we use to execute our simulation scenarios and

the transition function ξ are given in Definition 12.
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Definition 12 (Simulator commands and transition function). Let S be a DES sim-

ulator.

• The commands for S are: load(id), store(id), free(id), run(b, τ), where id is an iden-

tifier of H, t ∈ R+ is a time duration, and b ∈ U is an event (id, t, b are command

arguments). The set of commands is denoted by Λ.

• The transition function ξ of S defines how the internal state of the simulator S changes

upon the execution of a command. Namely: ξ(x,M, cmd(args)) = (x′,M ′) when

the simulator S moves from internal state (x,M) to state (x′,M ′) upon processing

command cmd with arguments args.

For each x ∈ X , function ξ is defined as follows:

– if (id, x′) ∈M , then ξ(x,M, load(id)) = (x′,M)

– if (id, x′) ∈M , then ξ(x,M, free(id)) = (x, M \ {(id, x′)})

– if id /∈ Dom(M), then ξ(x,M, store(id)) = (x, M ∪ {(id, x)})

– ξ(x,M, run(b, τ)) = (x′,M), where x′ = ϕ(τ, x, bH(t)).

Note that ξ is defined only when its preconditions are satisfied.

• An LTS (Labelled Transition System) for S is a tuple (W,Λ,→) such that: W is the

set of simulator states, Λ is the set of simulator commands, → is a set of labelled

transitions (i.e., a subset of W × Λ×W ).

If ξ(x,M, cmd(args)) = (x′,M ′) then→ is defined as (x,M)
cmd(args)−−−−−→)(x′,M ′). Namely,

for each x ∈ X , → is defined as follows:

– if (id, x′) ∈M , then (x,M)
load(id)−−−−→ (x′,M)

– if (id, x′) ∈M , then (x,M)
free(id)−−−−→ (x,M \ {(id, x′)})

– if id /∈ Dom(M), then (x,M)
store(id)−−−−→ (x,M ∪ {(id, x)})

– (x,M)
run(b,τ)−−−−→ (x′,M), where x′ = ϕ(τ, x, bH(t)).
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Given a sequence of simulation scenarios, we can build a sequence of commands, simula-

tion campaign, driving the simulator through such scenarios. We define the simulator output

sequence as the sequence of the SUV outputs associated to the simulator states traversed

by a simulation campaign. Conversely, given a simulation campaign, we can compute the

sequence of scenarios simulated by it. These concepts are formalised in Definition 13.

Definition 13 (Simulation campaign and sequence of simulator states). Let S be

a simulator and let ξ be its transition function.

• A simulation campaign for S is a triple Ξ = (x,M, χ) , where x ∈ X , M ⊂ X and χ is

a sequence (possibly empty or infinite) of commands along with their arguments, χ =

cmd0(args0), cmd1(args1), . . .. A simulation campaign consisting of a finite sequence of

commands is a finite simulation campaign or a simulation campaign of finite length.

• The sequence of simulator states of S with respect to a simulation campaign Ξ =

(x0,M0, χ) is the sequence (x0,M0), (x1,M1), . . ., where for all j, (xj, Mj)
cmdj(argsj)
−−−−−−→

(xj+1,Mj+1).

We denote with χ(x0,M0, j) the j-th element of the simulator state sequence, that is

χ(x0,M0, j) = (xj,Mj). In other words χ(x0,M0, j) is the simulator state after the

execution of the j-th command.

• The set of simulator states with respect to a simulation campaign χ is denoted χ(x0,M0),

that is χ(x0,M0) = {χ(x0,M0, j) | j = 0, 1, . . . , |χ| − 1}.

Example 11 (Simulation campaign). Let H be the IPC considered in Example 5 and let

(x0, u) be the simulation scenario considered in Example 8, where u(t) = [(0.04, 1), (0.08, 0)].

The simulation campaign Ξ obtained by using this simulation scenario is the triple Ξ =

(x0, {x0}, χ), where χ is the sequence of commands χ = (run(0, 0.04), run(1, 0.08)).

The sequence of simulator states with respect to Ξ is: (x0, {(id, x0)}) run(0,0.04)−−−−−−→

(x1, {(id, x0)}) run(1,0.08)−−−−−−→ (x3, {(id, x0)}).

State values can be obtained by running the simulation.
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Figure 12: A graphical representation of simulation campaign Ξ1 (Example 11).

An example of a more complex simulation campaign, Ξ1, can be obtained by considering

the sequence of simulation scenarios ((x0, u), (x3, u1), (x0, u2)), where:

• u(t) = [(0.04, 1), (0.04, 1), (0.04, 1), (0.04, 1), (0.04, 1)]

• u1(t) = [(0.04, 0), (0.04, 1)]

• u2(t) = [(0, 1), (0.04, 0), (0.04, 2), (0.04, 1), (0.04, 0), (0.04, 2)].

A graphical representation of simulation campaign Ξ1 is shown in Figure 12, where we can

see that, according to the considered sequence of simulator states, the discrete event sequences

u(t) and u2(t) are applied from state x0, and sequence u1 is applied from state x3. Notice

that where dashed line represents the event sequence u(t).

The simulation campaign Ξ1 obtained by using the sequence of simulation scenarios above

is the triple Ξ1 = (x0, {x0}, χ1) , where χ1 is given by the following command sequence:

χ1 = (run(0, 0.04), run(1, 0.04), run(1, 0.04), store(x3), run(1, 0.04), run(1, 0.04), run(1,

0.04), load(x3), run(0, 0.04), run(0, 0.04), run(1, 0.04), free(x3), load(x0), run(1, 0.04),

run(0, 0.04), run(2, 0.04), run(1, 0.04), run(0, 0.04), run(2, 0.04)).

The sequence of simulator states with respect to Ξ1 is: (x0, {(id, x0)}) run(0,0.04)−−−−−−→ (x1,

{(id, x0)}) run(1,0.04)−−−−−−→ (x2, {(id, x0)}) run(1,0.04)−−−−−−→ (x3, {(id, x0)}) store(id’)−−−−−→ (x3, {(id, x0), (id′,

x3)}) run(1,0.04)−−−−−−→ (x4, {(id, x0), (id′, x3)}) run(1,0.04)−−−−−−→ (x5, {(id, x0), (id′, x3)}) run(1,0.04)−−−−−−→ (x6,

{(id, x0), (id′, x3)}) load(id′)−−−−−→ (x3, {(id , x0), (id′, x3)}) run(0,0.04)−−−−−−→ (x7, {(id , x0), (id′, x3)})
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Figure 13: A graphical representation of the normal simulation campaign Ξ2 (Example 12).

run(0,0.04)−−−−−−→ (x8, {(id, x0), (id′, x3)}) run(1,0.04)−−−−−−→ (x9, {(id, x0), (id′, x3)}) free(id′)−−−−→ (x9, {(id

, x0)}) load(id)−−−−→ (x0, {(id, x0)}) run(1,0.04)−−−−−−→ (x10, {(id, x0)}) run(0,0.04)−−−−−−→ (x11, {(id, x0)}) run(2,0.04)−−−−−−→

(x12, {(id, x0)}) run(1,0.04)−−−−−−→ (x13, {(id, x0)}) run(0,0.04)−−−−−−→ (x14, {(id, x0)}) run(2,0.04)−−−−−−→ (x15, {(id,

x0)}).

Definition 14 gives the notion of normal simulation campaign, that is a simulation cam-

paign for which every simulation scenario starts from an initial state.

Definition 14 (Normal Simulation Campaign). A simulation campaign is in normal

form if it consists only of commands load and run.

Example 12 (Normal Simulation Campaign). An example of simulation campaign in

normal form is Ξ2 = (x0, {x0}, χ2), where χ2 is given by the following command sequence:

χ2 = ()run(0, 0.04), run(1, 0.04), run(1, 0.04), run(1, 0.04), run(1, 0.04), run(1, 0.04),

load(x0), run(0, 0.04), run(1, 0.04), run(1, 0.04), run(0,, 0.04), run(0, 0.04), run(1, 0.04),

load(x0), run(1, 0.04), run(0, 0.04), run(2, 0.04), run(1, 0.04), run(0, 0.04), run(2, 0.04)).

This simulation campaign is obtained considering the sequence of simulation scenarios

((x0, u), (x0, u
′), (x0, u2)), where u and u2 are defined as in Example 11 and u′ is defined

as u′(t) = [(0.04, 1), (0.04, 1), (0.04, 0), (0.04, 0), (0.04, 1)] (where the first three steps are

the same as u(t)).
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A graphical representation of Ξ2 is shown in Figure 13, where the dashed line represents

the event sequence u(t).

Note that, since a normal simulation campaign has no store commands, a command load

can only load an initial state.

Definition 15, resting on Definition 13, defines the set of transitions of a simulation

campaign. Definition 16 gives the notion of equivalent simulation campaigns.

Definition 15 (Set of transitions of a Simulation Campaign). We denote with TΞ the

set of transitions of S explored by Ξ, that is TΞ = {(x, b, τ, x′) | ∃ M,M ′ [(x,M), (x′,M ′)

are simulator states of S ∧ ξ(x, M, run(b, τ)) = (x′, M ′)]}.

Definition 16 (Equivalent simulation campaigns). We say that the simulation cam-

paign Ξ is equivalent to Ξ′ and we write Ξ ∼ Ξ′ if TΞ = TΞ′.

Example 13 (Equivalent simulation campaigns). The simulation campaign Ξ1 in Ex-

ample 11 and the normal simulation campaign Ξ2 in Example 12 are equivalent.

In fact the set of transitions explored by Ξ1 and Ξ2 is: TΞ1 = TΞ2 = { (x0, 0, 0.04,

x1), (x1, 1, 0.04, x2), (x2, 1, 0.04, x3), (x3, 1, 0.04, x4), (x4, 1, 0.04, x5), (x5, 1, 0.04, x6),

(x3, 0, 0.04, x7), (x7, 0, 0.04, x8), (x8, 1, 0.04, x9), (x0, 1, 0.04, x10), (x10, 0, 0.04, x11), (x11, 2,

0.04, x12), (x12, 1, 0.04, x13), (x13, 0, 0.04, x14), (x14, 2, 0.04, x15)}.

This can also be seen looking at the set of edges (transitions) in Figures 12 and 13.

Given a simulation campaign, we can obtain an equivalent simulation campaign in which

each simulation scenario starts from an initial state. This is formalised in Lemma 1, whose

proof idea is given in Example 14.

Lemma 1. Given a simulation campaign Ξ for a simulator S, there exists a simulation

campaign Ξ′ such that:

• Ξ′ is in normal form

• Ξ′ ∼ Ξ
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Proof. We show that, given a simulation campaign Ξ, it is always possible to obtain a

simulation campaign Ξ′ in normal form equivalent to Ξ. A simulation campaign in normal

form consists of load and run commands only. Then, to transform a simulation campaign

in normal form we have to eliminate free commands and store commands. free commands

are eliminated as follows. First, we refresh all identifiers in Ξ so that each identifier used

in a store command does not occur in any of the commands preceding such a store in the

simulation campaign. After that we remove all free commands. This does not modify the

execution of the simulation campaign, it just uses more memory. So from now on we assume

that Ξ does not contain any free command.

To eliminate a store command, we need to substitute every load command (loading

the state whose store is eliminated) occurring in the rest of the command sequence, by

the sequence of commands providing the stored state. We prove that this is possible by

induction on the number of store commands.

Base case: There is no store command in the command sequence of the simulation

campaign Ξ.

In this case simulation campaign Ξ is already in normal form, hence Ξ′ = Ξ.

Inductive step: Assume, by inductive hypothesis, that given the simulation campaign Ξ

containing n store commands (and no commands free), there exists an equivalent simulation

campaign Ξ′ in normal form.

We show that if the simulation campaign Ξ contains n + 1 store commands (and no

commands free), then there exists an equivalent simulation campaign Ξ′ in normal form.

Let store(id) be the first store command occurring in the simulation campaign. Then

there exists a unique pair (id, x̃) in the simulator memory M .

In the sequence of commands following the command store(id) there will be zero, one or

more commands load(id). Then, to make the elimination of store(id) possible, we must first

replace all commands load(id) with a sequence of commands leading to the state x̃ loaded

by load(id).

We use the sequence of commands that certainly produces the state x̃, denoted by seq(x̃),

that is the sequence of run commands ending immediately before the store(id) command and
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starting from the first load command we encounter going back from the store(id) command.

Namely, seq(x̃) is the sequence seq(x̃) = load(îd), run(b0, τ1), run(b1, τ2), ..., run(bh−1, τh)

preceding store(id), where (îd, x̂) ∈ M . Note that, at the beginning of the simulation the

pair (îd, x̂) is stored in the simulator memory M since store(id) is the first store command in

the simulation campaign Ξ. We can substitute all commands load(id) by seq(x̃), and then

eliminate the store(id) command, thus obtaining the normal form simulation campaign Ξ′.

The obtained simulation campaign Ξ′ is equivalent to the original simulation campaign

Ξ, that is Tr(Ξ) = {(x, b, τ, x∗) | ∃M,M∗ [(x,M), (x∗,M∗) are simulator states of S ∧

ξ(x,M, run(b, τ)) = (x∗,M∗)]} = Tr(Ξ′).

In fact, the set of run commands in Ξ is the same as the set of run commands in Ξ′.

Accondingly, the set Tr(Ξ′) of transitions of S explored by Ξ′ is exactly the same as the

set Tr(Ξ) of transitions of S explored by Ξ, since Ξ′ is obtained from Ξ by executing the

commands of seq(x̃) instead of the load(id) command, thus repeating the execution of run

commands (giving the transitions) already executed, hence no new transition is produced.

Remark 3. Using Lemma 1 we can check equivalence between two simulation campaigns

Ξ1 and Ξ2. In fact, by Lemma 1, Ξ1 ∼ Ξ2 are equivalent if and only if their normal forms,

respectively Ξ′1 and Ξ′2 are equivalent, i.e., Ξ′1 ∼ Ξ′2. The latter can be easily verified by

checking that Ξ′1 and Ξ′2 define the same set of simulation scenarios, an easy task on normal

forms.

Example 14 clarifies the proof of Lemma 1.

Example 14 (Lemma 1). Consider the simulation campaign Ξ1 in Example 11. Ξ1 is not

in normal form. However, by modifying it so that all simulation scenarios (paths on the

tree of Figure 12) start from the initial state, we get the normal simulation campaign Ξ2

illustrated in Example 12. Further, it follows from Example 12 that Ξ1 ∼ Ξ2.

4.1. Simulation Campaigns and MATLAB Simulink

Tables 1 and 2 show the sequence of simulation campaign commands of Example 11 (resp.

Example 12) on the left, and MATLAB results on the right (for the sake of completeness, a

complete MATLAB implementation to obtain such results is shown in Appendix A).
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Table 1: Execution of Example 12 (file example11.m, left column) with output (right column). The corre-

sponding graphical representation is in Figure 13.

s_load(’x0’);

s_run(0, 0.04);

s_run(1, 0.04);

s_run(1, 0.04);

5 s_run(1, 0.04);

s_run(1, 0.04);

s_run(1, 0.04);

s_load(’x0’);

s_run(0, 0.04);

10 s_run(1, 0.04);

s_run(1, 0.04);

s_run(0, 0.04);

s_run(0, 0.04);

s_run(1, 0.04);

15 s_load(’x0’);

s_run(1, 0.04);

s_run(0, 0.04);

s_run(2, 0.04);

s_run(1, 0.04);

20 s_run(0, 0.04);

s_run(2, 0.04);

% Elapsed time

CurSnapTime: 0.00, State: Sf51dcdc73387f49a04d3197ee7e2922

% x0

CurSnapTime: 0.04, State: aea17f51af5abed4f0c1eb8672af5095

CurSnapTime: 0.08, State: d101ecd41137346849f016300aad2e47

CurSnapTime: 0.12, State:

s4026ca9fcd64c22334a565e1185823b % x3

5 CurSnapTime: 0.16, State: 6373410 d983ba0419365944b5a34e2c4

CurSnapTime: 0.20, State: 3c27414a30e81becf83e2369bc782324

CurSnapTime: 0.24, State: 01 d6278d0be8e3cfecb7bdab07db4605

CurSnapTime: 0.00, State: Sf51dcdc73387f49a04d3197ee7e2922

% x0

CurSnapTime: 0.04, State: aea17f51af5abed4f0c1eb8672af5095

10 CurSnapTime: 0.08, State: d101ecd41137346849f016300aad2e47

CurSnapTime: 0.12, State:

s4026ca9fcd64c22334a565e1185823b % x3

CurSnapTime: 0.16, State: d4856d2fe92abad92ed46b41cf35aa63

CurSnapTime: 0.20, State: 0bbe28164a01e5618a3530d00aab2991

CurSnapTime: 0.24, State: a0c9d33816228df2541b943f1ce4b8ec

15 CurSnapTime: 0.00, State: Sf51dcdc73387f49a04d3197ee7e2922

% x0

CurSnapTime: 0.04, State: 4a0140db9d4664a67bb888cdc046f297

CurSnapTime: 0.08, State: e79acee86fe25505617a2d054305371f

CurSnapTime: 0.12, State: 1b6ca061850702b18342984ad61de140

CurSnapTime: 0.16, State: a24a9314ef723f933c1d9c0892e96703

20 CurSnapTime: 0.20, State: d4036cd46ce6d858c7f263c89c5f3b8a

CurSnapTime: 0.24, State: 3770506 f3a4ba798aa91c532111f6e1c

Elapsed time is 3.020143 seconds.
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Table 2: Execution of Example 11 (file example10.m, left column) with output (right column). The corre-

sponding graphical representation is in Figure 12.

s_load(’x0’);

s_run(0, 0.04);

s_run(1, 0.04);

s_run(1, 0.04);

5 s_store(’x3’);

s_run(1, 0.04);

s_run(1, 0.04);

s_run(1, 0.04);

s_load(’x3’);

10 s_run(0, 0.04);

s_run(0, 0.04);

s_run(1, 0.04);

s_free(’x3’);

s_load(’x0’);

15 s_run(1, 0.04);

s_run(0, 0.04);

s_run(2, 0.04);

s_run(1, 0.04);

s_run(0, 0.04);

20 s_run(2, 0.04);

% Elapsed time

CurSnapTime: 0.00, State: Sf51dcdc73387f49a04d3197ee7e2922

% x0

CurSnapTime: 0.04, State: aea17f51af5abed4f0c1eb8672af5095

CurSnapTime: 0.08, State: d101ecd41137346849f016300aad2e47

CurSnapTime: 0.12, State:

s4026ca9fcd64c22334a565e1185823b % x3

5 CurSnapTime: 0.12, State:

s4026ca9fcd64c22334a565e1185823b % x3

CurSnapTime: 0.16, State: 6373410 d983ba0419365944b5a34e2c4

CurSnapTime: 0.20, State: 3c27414a30e81becf83e2369bc782324

CurSnapTime: 0.24, State: 01 d6278d0be8e3cfecb7bdab07db4605

CurSnapTime: 0.12, State:

s4026ca9fcd64c22334a565e1185823b % x3

10 CurSnapTime: 0.16, State: d4856d2fe92abad92ed46b41cf35aa63

CurSnapTime: 0.20, State: 0bbe28164a01e5618a3530d00aab2991

CurSnapTime: 0.24, State: a0c9d33816228df2541b943f1ce4b8ec

CurSnapTime: 0.24, State: a0c9d33816228df2541b943f1ce4b8ec

CurSnapTime: 0.00, State: Sf51dcdc73387f49a04d3197ee7e2922

% x0

15 CurSnapTime: 0.04, State: 4a0140db9d4664a67bb888cdc046f297

CurSnapTime: 0.08, State: e79acee86fe25505617a2d054305371f

CurSnapTime: 0.12, State: 1b6ca061850702b18342984ad61de140

CurSnapTime: 0.16, State: a24a9314ef723f933c1d9c0892e96703

CurSnapTime: 0.20, State: d4036cd46ce6d858c7f263c89c5f3b8a

20 CurSnapTime: 0.24, State: 3770506 f3a4ba798aa91c532111f6e1c

Elapsed time is 2.609006 seconds.
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The SUV taken in consideration is the Inverted Pendulum on Cart (Example 5) shown

in Figure 7. Disturbances on cart mass (modelling irregularities in the cart rail) are injected

simply modifying the value of Simulink block Disturbance to Cart Mass to 0, 1 or 2.

Simulation campaign commands run, store, load, and free are implemented through

MATLAB functions s run, s store, s load, and s free (left columns of Tables 1 and 2).

In order to trace how the simulation proceeds, the right columns of Tables 1 and 2 show,

for each function call, the execution time and a hash value of the current simulator state.

Note that equal states will yield the same hash values, whereas different states will (very

likely) yield different hash values. For the sake of clarity, states are highlighted in right

columns of Tables 1 and 2. In particular, state x0 hash value is highlighted in blue. Occur-

rences of the common prefix are underlined and highlighted in red in Tables 1 and 2. Storing

the final state x3 reached by such a common prefix, we avoid repeating the computation

entailed by the prefix second occurrence.

We see that the unoptimised simulation campaign (Table 1) takes about 3 seconds of

computation time whereas the optimised one (Table 2), that saves intermediate states (i.e.,

the result of simulating common disturbance prefixes), takes about 2.6 seconds, thereby

saving about 13% of computation time.

5. Soundness

In this section we show the soundness of our operational semantics for simulation script-

ing languages. That is, we show that any simulation campaign (simulation script) stems

from a set of simulation scenarios. This guarantees that any simulation campaign has indeed

a physical (computational) meaning.

Theorem 1 (Soundness). Given a simulation campaign Ξ for S there exists a set A =

{(x0, u0), (x1, u1), . . . , (xk−1, uk−1)} of simulation scenarios such that TΞ =
⋃
{T(xl,ul)|

l = 0, . . . , k − 1}.

Proof. Given a simulation campaign Ξ for a simulator S, there exists a simulation cam-

paign Ξ′ in normal form, that is consisting of load and run commands only, equivalent to Ξ
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(see Lemma 1).

This means that we consider only commands producing new states xi.

Then, to our simulation campaign corresponds the sequence of commands χ: load(id0)

run(b0
0, τ

0
0 ) . . . run(b0

h0
, τ 0

h0
) load(id1) run(b1

0, τ
1
0 ) . . . run(b1

h1
, τ 1

h1
) . . . load(idk−1) run(bk−1

0 ,

τ k−1
0 ) . . . run(bk−1

hk−1
, τ k−1

hk−1
).

Let ul(t), l = 0, . . . , k − 1, be defined as in Definition 1, namely u(t) =
∑k−1

i=0 aiH(t −∑i
j=0 τj).

Note that the set of transitions associated to the sequence of commands load(idl)run(bl0, τ
l
0)

. . . run(blhl , τ
l
hl

), representing the simulation scenario (xl, ul) is: T(xl,ul) = {(xl0, bl0, τl, xl1), . . . ,

(xlhl−1, b
l
hl−1, τl, x

l
hl

)}.

Hence, the set of transition associated to the simulation campaign Ξ is:

TΞ =
⋃
{T(xl,ul)| l = 0, . . . , k − 1}.

Taking A = {(xl, ul) | l = 0, . . . , k − 1} completes the proof.

We illustrate the proof by using an example.

Example 15 (Soundness). Consider the simulation campaign Ξ1 in Example 11. The set

of transitions of Ξ1, TΞ1, is shown in Example 13.

Now, let us consider the simulation scenarios (x0, u), (x3, u1) and (x0, u2), defined in

Example 11. Let A be the set A = {(x0, u), (x3, u1), (x0, u2)}

The sets of transitions for simulation scenario (x0, u) is shown in Example 10, and the

sets of transitions associated to the other two simulation scenarios are, respectively:

• T1 = T(x3,u1) = {(x3, 0, 0.04, x7), (x7, 0, 0.04, x8), (x8, 1, 0.04, x9)}

• T2 = T(x0,u2) ={(x0, 1, 0.04, x10), (x10, 0, 0.04, x11), (x11, 2, 0.04, x12), (x12, 1, 0.04,

x13), (x13, 0, 0.04, x14), (x14, 2, 0.04, x15)}.

It is easy to see that TΞ1 = T0 ∪ T1 ∪ T2.

6. Completeness

In this section we show the completeness of our semantics for simulation scripting lan-

guages. That is, we show that any set of simulation scenarios can be defined through a
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simulation campaign (simulation script). This guarantees that any set of physical experi-

ments can be defined by a suitable simulation campaign.

Theorem 2. Let A = {(x0, u0), (x1, u1), . . . , (xk−1, uk−1)} be a set of simulation scenarios

of H. Then there exists a simulation campaign Ξ for S such that TΞ =
⋃
{T(xl,ul)| l =

1, . . . , k − 1}.

Proof. Let us consider a simulation scenario (xl, ul) ∈ A starting from a state xl, and

let ul ∈ UR≥0
be defined as in Definition 1, that is as a step function in the form u(t) =∑k−1

i=0 aiH(t−
∑i

j=0 τj).

To such a simulation scenario (xl, ul) corresponds the sequence of commands: χl =

load(idl) run(bl0, τ
l
0) . . . run(blhl , τ

l
hl

). Also, (xl, ul) defines the set of transitions: T(xl,ul) =

{(xl0, bl0, τl, xl1), . . . , (xlhl−1, b
l
hl−1, τl, x

l
hl

)}.

By concatenating the sequences of commands χl for l = 0, . . . , k − 1, corresponding to

the simulation scenarios in A, we obtain the whole sequence of commands describing the

simulation campaign Ξ.

Hence we obtain that the union of sets of transitions of simulation scenarios in A is equal

to the set of transitions of the simulation campaign Ξ, that is⋃
{T(xl,ul)| i = 0, . . . , k − 1} = TΞ.

Also for this theorem, we illustrate the proof by using an example.

Example 16 (Completeness). Let us consider the set A consisting of simulation scenar-

ios (x0, u), (x3, u1) and (x0, u2), defined in Example 11.

The sets of transitions associated to these simulation scenarios, T0 = T(x0,u), T1 = T(x3,u1)

and T2 = T(x0,u2), are shown in Example 15. Let T̄ be the set obtained as union of the sets

of transitions above, that is T̄ = T0 ∪ T1 ∪ T2.

Now, let us consider the simulation campaign Ξ1 in Example 11 and the set of transitions

of Ξ1, TΞ1, shown in Example 13.

It is easy to see that T̄ = TΞ1.
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7. Conclusions

We provided a formal notion of simulator, of simulation campaign, and a formal opera-

tional semantics for simulation scripting languages through which simulation campaigns are

defined on actual simulators.

Furthermore, we showed soundness and completeness of our operational semantics by

proving that any simulation campaign defines a set of operational scenarios (soundness)

and, conversely, that any set of operational scenarios can be defined through a simulation

campaign (completeness).

Our operational semantics enables construction of formal proofs showing equivalence

of two simulation scripts. This, in turn, enables formal proofs of correctness of the many

simulation scripts optimisations used within simulation based formal verification approaches.

Finally, we point out that availability of an operational semantics for simulation scripts

enables investigation of more aggressive approaches to the optimisation of the simulation

scripts driving simulation based SLFV.

Acknowledgments. This research has been partially supported by the following projects: EC

FP7 grant SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Au-

tomation (317761), EC FP7 grant PAEON: Model Driven Computation of Treatments for

Infertility Related Endocrinological Diseases (600773), and MIUR grant Excellence Depart-

ments 2018-2022 to Sapienza University of Rome Computer Science Department, SCAPR

(POR FESR 2014-2020, Aerospazio e sicurezza), INdAM “GNCS Project 2019”, Sapienza

University 2018 project RG11816436BD4F21.

References

[1] RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification (December

2011).

[2] R. Alur, Formal verification of hybrid systems, in: EMSOFT 2011, ACM, 2011. doi:10.1145/2038642.

2038685.

37

https://doi.org/10.1145/2038642.2038685
https://doi.org/10.1145/2038642.2038685


[3] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, UPPAAL — a tool suite for automatic

verification of real-time systems, in: Hybrid Systems III, Vol. 1066 of LNCS, Springer, 1996. doi:

10.1007/BFb0020949.

[4] T. Henzinger, P.-H. Ho, H. Wong-toi, HyTech: A model checker for hybrid systems, STTT 1 (1997).

[5] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, M. Venturini Zilli, Exploiting transition local-

ity in automatic verification of finite state concurrent systems, STTT 6 (4) (2004). doi:10.1007/

s10009-004-0149-6.

[6] G. Frehse, PHAVer: Algorithmic verification of hybrid systems past hytech, STTT 10 (3) (2008).

doi:10.1007/s10009-007-0062-x.

[7] A. Cimatti, M. Roveri, A. Susi, S. Tonetta, Validation of requirements for hybrid systems: A formal

approach, ACM TOSEM 21 (4) (2013). doi:10.1145/2377656.2377659.

[8] S. Kong, S. Gao, W. Chen, E. Clarke, dreach: δ-reachability analysis for hybrid systems, in:

TACAS 2015, Vol. 9035 of LNCS, Springer, 2015. doi:10.1007/978-3-662-46681-0_15.

[9] Simulink.

URL http://www.mathworks.com

[10] VisSim.

URL http://www.vissim.com

[11] Modelica.

URL http://www.modelica.org

[12] OpenModelica.

URL http://www.openmodelica.org

[13] JModelica.

URL http://www.jmodelica.org

[14] Dymola.

URL http://www.claytex.com/products/dymola/

[15] E. C. for Space Standardization (ECSS), System modelling and simulation, ESA Requirements and

Standards Division, ECSS-E-TM-10-21A (2010).

[16] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, E. Tronci, System level formal verification via

model checking driven simulation, in: CAV 2013, Vol. 8044 of LNCS, Springer, 2013. doi:10.1007/

978-3-642-39799-8_21.

[17] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, Anytime system level verification via random

exhaustive hardware in the loop simulation, in: DSD 2014, IEEE, 2014.

[18] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, System level formal verification via distributed

multi-core hardware in the loop simulation, in: PDP 2014, IEEE, 2014. doi:10.1109/PDP.2014.32.

38

https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/s10009-004-0149-6
https://doi.org/10.1007/s10009-004-0149-6
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1145/2377656.2377659
https://doi.org/10.1007/978-3-662-46681-0_15
http://www.mathworks.com
http://www.mathworks.com
http://www.vissim.com
http://www.vissim.com
http://www.modelica.org
http://www.modelica.org
http://www.openmodelica.org
http://www.openmodelica.org
http://www.jmodelica.org
http://www.jmodelica.org
http://www.claytex.com/products/dymola/
http://www.claytex.com/products/dymola/
https://doi.org/10.1007/978-3-642-39799-8_21
https://doi.org/10.1007/978-3-642-39799-8_21
https://doi.org/10.1109/PDP.2014.32


[19] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, SyLVaaS: System level formal verification as a

service, in: PDP 2015, IEEE, 2015.

[20] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, Anytime system level verification via parallel

random exhaustive hardware in the loop simulation, Microprocessors and Microsystems 41 (2016).

doi:10.1016/j.micpro.2015.10.010.

[21] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, SyLVaaS: System level formal verification as a

service, Fundam. Inform. 1–2 (2016). doi:10.3233/FI-2016-1444.

[22] T. Mancini, F. Mari, A. Massini, I. Melatti, I. Salvo, E. Tronci, On minimising the maximum expected

verification time, Inf. Proc. Lett. 122 (2017). doi:10.1016/j.ipl.2017.02.001.

[23] Database of relevant traffic scenarios for highly automated vehicles.

URL http://www.pegasusprojekt.de/files/tmpl/pdf/AVT%20Symposium%202017%20Database%

20traffic%20scenarios Folien.pdf

[24] Flames: a powerful scenario database management system.

URL http://www.ternion.com/scenario-database

[25] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, Simulator semantics for system level formal

verification, EPTCS 193 (2015).

[26] G. Hamon, J. Rushby, An operational semantics for stateflow, in: M. Wermelinger, T. Margaria-

Steffen (Eds.), Fundamental Approaches to Software Engineering, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2004, pp. 229–243.

[27] O. Bouissou, A. Chapoutot, An operational semantics for simulink’s simulation engine, in: Proc. 13th

ACM SIGPLAN/SIGBED Int. Conf. Languages, Compilers, Tools and Theory for Embedded Systems,

LCTES ’12, ACM, New York, NY, USA, 2012, pp. 129–138. doi:10.1145/2248418.2248437.

URL http://doi.acm.org/10.1145/2248418.2248437

[28] O. Bouissou, A. Chapoutot, An operational semantics for simulink’s simulation engine, SIGPLAN Not.

47 (5) (2012) 129–138. doi:10.1145/2345141.2248437.

URL http://doi.acm.org/10.1145/2345141.2248437

[29] D. K̊agedal, P. Fritzson, Generating a modelica compiler from natural semantics specifications, in: In

Proceedings of the Summer Computer Simulation Conference, 1998.

[30] S. Foster, B. Thiele, A. Cavalcanti, J. Woodcock, Towards a utp semantics for modelica, in: J. Bowen,

H. Zhu (Eds.), Unifying Theories of Programming, Springer International Publishing, Cham, 2017, pp.

44–64.

[31] G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei, I. Salvo, Y. Yushtein, E. Tronci, Model checking

driven simulation of sat procedures, in: SpaceOps 2012, 2012. doi:10.2514/6.2012-1275611.

[32] S. Bak, P. Duggirala, Simulation-equivalent reachability of large linear systems with inputs, in:

39

https://doi.org/10.1016/j.micpro.2015.10.010
https://doi.org/10.3233/FI-2016-1444
https://doi.org/10.1016/j.ipl.2017.02.001
http://www.pegasusprojekt.de/files/tmpl/pdf/AVT%20Symposium%202017%20Database%20traffic%20scenarios_Folien.pdf
http://www.pegasusprojekt.de/files/tmpl/pdf/AVT%20Symposium%202017%20Database%20traffic%20scenarios_Folien.pdf
http://www.pegasusprojekt.de/files/tmpl/pdf/AVT%20Symposium%202017%20Database%20traffic%20scenarios_Folien.pdf
http://www.ternion.com/scenario-database
http://www.ternion.com/scenario-database
http://doi.acm.org/10.1145/2248418.2248437
https://doi.org/10.1145/2248418.2248437
http://doi.acm.org/10.1145/2248418.2248437
http://doi.acm.org/10.1145/2345141.2248437
https://doi.org/10.1145/2345141.2248437
http://doi.acm.org/10.1145/2345141.2248437
https://doi.org/10.2514/6.2012-1275611


CAV 2017, Vol. 10426 of LNCS, Springer, 2017. doi:10.1007/978-3-319-63387-9_20.

[33] C. Fan, B. Qi, S. Mitra, M. Viswanathan, DryVR: Data-driven verification and compositional rea-

soning for automotive systems, in: CAV 2017, Vol. 10426 of LNCS, Springer, 2017. doi:10.1007/

978-3-319-63387-9_22.

[34] S. Tripakis, C. Sofronis, P. Caspi, A. Curic, Translating discrete-time Simulink to Lustre, ACM TECS

4 (4) (2005). doi:10.1145/1113830.1113834.

[35] B. Meenakshi, A. Bhatnagar, S. Roy, Tool for translating Simulink models into input language of a

model checker, in: ICFEM 2006, Springer, 2006. doi:10.1007/11901433_33.

[36] M. Whalen, D. Cofer, S. Miller, B. Krogh, W. Storm, Integration of formal analysis into a model-

based software development process, in: FMICS 2007, Vol. 4916 of LNCS, Springer, 2007. doi:

10.1007/978-3-540-79707-4_7.

[37] Y. Annpureddy, C. Liu, G. E. Fainekos, S. Sankaranarayanan, S-TaLiRo: A tool for temporal logic

falsification for hybrid systems, in: TACAS 2011, Vol. 6605 of LNCS, Springer, 2011. doi:10.1007/

978-3-642-19835-9_21.

[38] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, A. Gupta, Probabilistic temporal logic falsi-
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Appendix A. Simulation Campaigns and MATLAB Simulink Program

In this Appendix, we illustrate the MATLAB implementation used to obtain the results

shown in Tables 1 and 2 of Section 4.1

Listings 3 to 9 show the MATLAB program for Examples 11 and 12, described at a higher

level in Section 4.1. Listing 3 is the MATLAB script for simulating command sequences of

Examples 11 and 12 on the Inverted Pendulum on Cart (Example 5), named penddemoDist

and shown in Figures 7 and 8. Line 11 of Listing 3 invokes script example10 of left column

of Table 2 (resp. example11 of left column of Table 1) containing the sequence of simulation

campaign commands of Example 11 (resp. Example 12).

Simulation campaign commands run, store, load, and free are realised in corresponding

MATLAB functions s run, s store, s load, and s free of Listings 4 to 7.

In order to follow simulation steps, at the end of such functions current time and hashing

of current state vector are printed by invoking function display state hash (Listing 8).

Notice that a numerical vector is identified by its hash value, thus no two different states

have the same hashing and two states with the same hashing are indeed the same state.

Programmatic simulations in MATLAB are performed through the sim command (line 5

of Listing 4). Besides the name of system to be simulated, sim takes as input a set of

simulation parameters1. In our case, simulation parameters are in global variable SimParam

defined in lines 5–9 of Listing 3 in order to meet the following behaviour.

1https://it.mathworks.com/help/simulink/ug/using-the-sim-command.html
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To stop and restore simulations, we first need to save the complete simulation state

xFinal (containing values of system variables such as, e.g., integrators) and then to consider

xFinal as the initial state of a new simulation (xInitial). Such an assignment to simulation

parameters is used in function s run (line 6 of Listing 4), where global variable xInitial

is assigned to the current value of xFinal. The first state of simulation is an exception,

since there is no prior xFinal to be read. For this reason, SimParam.LoadInitialState is

initially set to off (Listing 3) and then assigned to on each time a simulation ends (Listing 4).

Output of sim command is kept in global variable simOut.

Global variables–among which there are output of sim (simOut), current simulation

time (CurSnapTime) and initial state of next simulation (xInitial)–are saved by command

s store (Listing 5) in a file named after the state name with suffix .mat. Command s load

restores previously saved global variables, thus allowing the simulation behaviour described

above. Command s free physically deletes file created with command s store according

to its input (Listing 7).

To programmatically control simulations in Simulink, it is possible to associate callback

functions to particular event such as, e.g., starting of a simulation (https://it.mathworks.

com/help/simulink/slref/model-parameters.html). This feature can be exploited in order to

inject events in a simulation campaign. At line 3 of Listing 4, function penddemo inject

(Listing 9) is assigned to starting of simulation (StartFcn). Consequently, when a simulation

starts with s run(e,t), Simulink first calls function penddemo inject(e) and then runs

simulation for t seconds. When invoked, function penddemo inject(e) changes value of

block Mcart Dist to the given input e (line 3 of Listing 9), thus triggering an event as

required.

Listing 3: MATLAB main script executetrace.m

global FcnSetEvent System CurSnapTime SimParam xInitial simOut;

FcnSetEvent = ’penddemo_inject ’;

System = ’penddemoDist ’;

CurSnapTime = 0.0;

5 SimParam.SaveFinalState = ’on’;

SimParam.SaveCompleteFinalSimState = ’on’;
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SimParam.FinalStateName = ’xFinal ’;

SimParam.LoadInitialState = ’off’;

SimParam.InitialState = ’xInitial ’;

10 load_system(System);

tic; example11; toc; % or: tic; example11; toc;

close_system(System , 0);

Listing 4: Function run (s run.m)

function s_run(event , time)

global FcnSetEvent System CurSnapTime SimParam xInitial simOut;

set_param(System , ’StartFcn ’, sprintf(’%s(%d)’, FcnSetEvent , event));

SimParam.StopTime = sprintf(’%g’, CurSnapTime + time);

5 simOut = sim(System , SimParam);

xInitial = simOut.get(’xFinal ’);

CurSnapTime = simOut.get(’xFinal ’).snapshotTime;

SimParam.LoadInitialState = ’on’;

display_state_hash ();

10 end

Listing 5: Function store (s store.m)

function s_store(st)

global FcnSetEvent System CurSnapTime SimParam xInitial simOut;

save(st);

display_state_hash ();

5 end

Listing 6: Function load (s load.m)

function s_load(st)

global FcnSetEvent System CurSnapTime SimParam xInitial simOut;

load(st);

display_state_hash ();

5 end

Listing 7: Function free (s free.m)

function s_free(st)

delete(strcat(st, ’.mat’));

display_state_hash ();

end
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Listing 8: Function to print current time and hash value of current state vector

(display state hash.m)

function display_state_hash ()

global xInitial CurSnapTime;

res = sprintf(’CurSnapTime: %.2f’, CurSnapTime);

if (CurSnapTime > 0)

5 y = xInitial.loggedStates;

else

x0 = Simulink.BlockDiagram.getInitialState(’penddemoDist ’);

y = x0.signals;

end

10 v = zeros(length(y));

for i = 1: length(y)

for j = 1: length(y(i).values)

v(i) = y(i).values(j);

end

15 end

fprintf(’%s, State Hash: %s\n’, res , DataHash(v));

end

Listing 9: Function for event injection (penddemo inject.m)

function penddemo_inject(mass)

assert(mass == 0 || mass == 1 || mass == 2);

set_param(’penddemoDist/Mcart Dist’, ’value’, sprintf(’%d’, mass));

end
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