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Abstract. We present an algorithm that given a Discrete Time Linear
Hybrid System H returns a correct-by-construction software implemen-
tation K for a (near time optimal) robust quantized feedback controller
for ‘H along with the set of states on which K is guaranteed to work cor-
rectly (controllable region). Furthermore, K has a Worst Case Ezecution
Time linear in the number of bits of the quantization schema.

1 Introduction

Software generation from models and formal specifications forms the core of
model based design of embedded software [18]. This approach is particularly
interesting for control systems since in such a case system specifications are
much easier to define than the control software behavior itself.

A control system consists of two subsystems (forming the closed loop system):
the controller and the plant. In an endless loop the controller measures outputs
from and sends commands to the plant in order to drive it towards a given
goal. In our setting the controller consists of software implementing the control
law. System requirements are typically given as specifications for the closed loop
system. Control engineering techniques are used to design the control law (i.e.
the functional specifications for the control software) from the closed loop system
specifications. Software engineering techniques are then used to design control
software implementing a given control law.

Unfortunately, when the plant model is a hybrid system [4,1, 3] existence
of a control law is undecidable (e.g. see [17]) even for linear hybrid automata.
This scenario is further complicated by the quantization process always present
in software based control systems. Namely, measures from sensors go through
an AD (analog-to-digital) conversion before being sent to the control software
and commands from the control software go through a DA (digital-to-analog)
conversion before being sent to plant actuators. Furthermore, typically a robust
control is desired, that is, one that meets the given closed loop requirements
notwithstanding (nondeterministic) variations in the plant parameters.

As for hybrid systems, no approach is available for the automatic synthesis
of robust quantized feedback control laws and of their software implementation.
This motivates the focus of our paper.



Our Main Contributions A Discrete Time Linear Hybrid System (DTLHS)
is a discrete time hybrid system whose dynamics is defined as the logical con-
junction of linear constraints on its continuous as well as discrete variables.

We present an effective algorithm that, given a DTLHS model H for the
plant and a quantization schema (i.e. how many bits we use for AD conversion),
returns a pair (K, R), where: K is a correct-by-construction software implemen-
tation (C language in our case) of a (near time optimal) Quantized Feedback
Controller (QFC) for H and R is an OBDD [10] representation of the set of
states (controllable region) on which K is guaranteed to meet the closed loop
requirements. Furthermore, K is robust with respect to nondeterministic varia-
tions in the plant parameters and has a Worst Case Ezecution Time (WCET)
guaranteed to be linear in the number of bits of the quantization schema.

We implemented our algorithm on top of the CUDD package and of the
GLPK Mized Integer Linear Programming (MILP) solver and present experi-
mental results on using our tool to synthesize robust QFCs for a widely used
mixed-mode analog circuit: the buck DC-DC converter (e.g. see [26]).

Analog DC-DC converters are a vital part of many mission (e.g. satellites)
or safety (e.g. aircrafts) critical applications. However the ever increasing de-
mand for energy efficiency and easy reconfigurability makes fully software based
switching converters (e.g., as in [26]) a very attractive alternative to analog ones.
Unfortunately, lack of formal reliability assessment (in order to bound the failure
probability to 10~?) limits the deployment of software based switching convert-
ers in safety critical applications. Reliability analysis for switching converters
using an analog control schema has been studied in [13]. For software based con-
verters, carrying out such a reliability analysis entails formal verification of the
control law as well as of its software implementation. The above considerations
make the buck DC-DC converter a very interesting (and challenging) example
for automatic synthesis of correct-by-construction control software.

Our experimental results show that within about 20 hours of CPU time and
within 200MB of RAM we can synthesize (K, R) as above for a 10 bit quantized
buck DC-DC converter.

Related Work Synthesis of Quantized Feedback Control Laws for linear sys-
tems has been widely studied in control engineering (e.g. see [14]). However, to
the best of our knowledge, no previously published paper addresses synthesis
of Quantized Feedback Control Software for DTLHSs. Indeed, our work differs
from previously published ones in the following aspects: (1) we provide a tool for
automatic synthesis of correct-by-construction control software (rather than de-
sign methodologies for the control law); (2) we synthesize robust control software
(thus encompassing quantization) whereas robust control law design techniques
do not take into account the software implementation; (3) in order to generate
provably correct software, we assume a nondeterministic (malicious) model for
quantization errors rather than a stochastic one, as usually done in control engi-
neering; (4) our synthesis tool also returns the controllable region, that is the set
of states on which the synthesized control software is guaranteed to work cor-
rectly (this is very important for Fault Detection Isolation and Recovery, FDIR,
e.g. see [21]). In the following we discuss some related literature.



Quantization can be seen as a form of abstraction, where the abstract state
space and transitions are defined by the number of bits of AD conversion. Ab-
straction for hybrid systems has been widely studied. For example, see 25,2,
20,19] and citations thereof. Note however that all published literature on ab-
straction focuses on designing abstractions to support verification or control law
design. In our case instead, the abstraction is fully defined by the AD conversion
schema and our focus is on devising techniques to effectively remove abstract
transitions in order to counteract the nondeterminism (information loss) stem-
ming from the quantization process.

Control synthesis for Timed Automata (TA) [4], Linear Hybrid Automata
(LHA) [1,3] as well as nonlinear hybrid systems has been extensively studied.
Examples are in [22, 11,6, 30,16,28,5,9,8] and citations thereof. We note how-
ever that all above papers address design of control laws and do not take into
account the quantization process, that is, they assume ezact (i.e. real valued)
state measures. Here instead we address design of quantized feedback control
software.

Correct-by-construction software synthesis in a finite state context has been
studied in [7,29,27,12]. The above approaches cannot be directly used in our
context since they do not account for continuous state variables.

2 Background

Unless otherwise stated each variable x ranges on a known bounded interval D,
either of the reals or of the integers (discrete variables). We denote with sup(x)
(inf(x)) the sup (inf) of D,. Boolean variables are discrete variables ranging on
the set B = {0, 1}. We denote with X = [z1,...2,] a finite sequence (list) of
variables, with U list concatenation and with Dx =[],y D, the domain of X.

A waluation X* € Dx over a list of variables X is a function v that maps each
variable 2 € X to a value v(x) in D,. We may use the same notation to denote
a variable (a syntactic object) and one of its valuations. The intended meaning
will be always clear from the context. To clarify that a variable [valuation] z is
real (integer, boolean) valued we may write 2" (29, 2%). Analogously X" (X9,
X") denotes the sequence of real (integer, boolean) variables [valuations| in X.
If « is a boolean variable [valuation] we write z for (1 — x).

A linear expression (over X) is a linear combination with real coefficients of
variables in X. A constraint (over X) is an expression of the form a 1 b where
« is a linear expression over X, < is one of <, >, = and b is a real constant.
A constraint is a predicate on X. If A(X) and B(X) are predicates on X, then
(A(X)AB(X)) and (A(X)V B(X)) are predicates on X. A conjunctive predicate
is just a conjunction of linear constraints. A satisfying assignment to P(X) is
a valuation X* such that P(X*) — 1. Abusing notation we may denote with P
the set of satisfying assignments to P(X). Given a predicate P(X) and a fresh
boolean variable y ¢ X, the if-then predicate y — P(X) [y — P(X)] denotes the
predicate ((y = 0)VP(X)) [((y = 1)VP(X))]. In our setting (bounded variables),
for any predicate P(X) there exists a sequence Z of fresh boolean variables and
a conjunctive predicate Q(Z, X) s.t. VX[P(X) <= 37 Q(Z,X)] (see [23]
for details). Thus, any if-then predicate can be transformed into a conjunctive
predicate. Accordingly, we will regard and use if-then predicates as conjunctive
predicates.



A Mized Integer Linear Programming (MILP) problem with decision vari-
ables X is a tuple (max, J(X), A(X)) where: X is a list of variables, J(X)
(objective function) is a linear expression on X and A(X) (constraints) is a con-
junctive predicate on X. A solution to (max, J(X), A(X)) is a valuation X* s.t.
A(X™) holds and, for any valuation =, (A(5) — (J(&) < J(X*))). We write
(min, J(X), A(X)) for (max,—J(X),A(X)). A feasibility problem is a MILP
problem of the form (max, 0, A(X)). We write also A(X) for (max, 0, A(X)).

A Labeled Transition System (LTS) is a tuple S = (S, A,T) where: S is
a (possibly infinite) set of states, A is a (possibly infinite) set of actions, T :
S x A x § — B is the transition relation of S. Let s € S and a € A. We
denote with: Adm(S, s) the set of actions admissible in s, that is Adm(S,s) =
{a € A | 3T (s,a,s")} and with Img(S, s,a) the set of next states from s via
a, that is Img(S, s,a) = {s' € S| T(s,a,s)}. A run or path for S is a sequence
m = 8(0)a(0)s(1)a(1)s(2)a(2) ... of states s(t) and actions a(t) such that V¢t > 0
T(s(t),a(t),s(t+1)). The length |7| of a run 7 is the number of actions in 7. We
denote with 7(%)(¢) the t-th state element of 7, and with 7(4)(¢) the ¢-th action
element of 7. That is 7(%) () = s(t), and 74 () = a(t).

3 Discrete Time Linear Hybrid Systems
In this section we introduce Discrete Time Linear Hybrid Systems (DTLHS).

Definition 1. A Discrete Time Linear Hybrid System (DTLHS) is a tuple H =
(X, U, Y, N) where:

— X = X"UX4 is a finite sequence of real (X" ) and discrete (X?) present state
variables. We denote with X' the sequence of next state variables obtained
by decorating with ' all variables in X.

— U =U"UU? is a finite sequence of input variables.

— Y =Y "UY" is a finite sequence of auxiliary variables. Auziliary variables
are typically used to model modes (e.g., from switching elements such as
diodes) or uncontrollable inputs (e.g., disturbances).

— N(X,U,Y, X’) is a conjunctive predicate over X UU UY U X' defining the
transition relation (next state) of the system.

Note that in our setting (bounded variables) any predicate can be trans-
formed into a conjunctive predicate (Sect. 2). Accordingly, in Def. 1, without
loss of generality we focused on conjunctive predicates in order to simplify our
exposition.

The dynamics of a DTLHS H = (X, U, Y, N) is defined by LTS(#) = (Dx,
Dy, N) where: N : Dy x Dy x Dx — B is a function s.t. N(s,a,s’) —
Jy € Dy N(s,a,y,s"). A state for H is a state for LTS(H) and a run (or path)
for H is a run for LTS(H) (Sect. 2).

Ezample 1. Let H = ({z},{u}, o, N) with D, = [-2.5,2.5], D,, = {0,1}, and
N(z,u,2') = [u = 2/ = az] A [u = 2’ = Bz] with a = 3 and 8 = 2. When
Y = & (as here) for the sake of simplicity we omit it from N arguments.

Adding nondeterminism to H allows us to synthesize robust controllers. For
example, variations in the parameter o can be modelled with a tolerance p € [0, 1]
(e.g., p = 0.5) for a. This replaces N with: N* = [u — 2/ < (1 + p)ax] A
[ — 2" > (1 —p)az] A [u — 2’ = pz]. Suitable control synthesis on H? =
({z}, {u}, o, N?) will yield a robust (up to p) controller for H.



Ezample 2. The buck DC-DC converter (right part of Fig. 1) is a mixed-mode
analog circuit converting the DC input voltage (V; in Fig. 1) to a desired DC
output voltage (vo in Fig. 1). The typical software based approach (e.g. see [26])
is to control the switch u in Fig. 1 (typically implemented with a MOSFET)
with a microcontroller. Designing the software to run on the microcontroller to
properly actuate the switch is the control design problem for the buck DC-DC
converter in our context. The circuit in Fig. 1 can be modeled as a DTLHS
H=(X,U,Y, N) with: X = X" = [ip,vo], U =U%=[u,Y =Y uY?
with Y" = [iy, vu, ip, vp] and Y9 = [q]. H auxiliary variables Y stem from
the constitutive equations of the switching elements (i.e. the switch u and the
diode D in Fig. 1). The transition relation N(X,U,Y,X’) for H is shown in
Fig. 1 (left) where we use a discrete time model with sampling time 7' (writing
a’ for z(t + 1)) and model a tolerance p = 0.25 (25%) on V; values. In Fig. 1
(left), constants a; ;,b; ; depend on the circuit parameters R,ry,rc, L, C and
algebraic constraints (i.e. constraints not involving next state variables) stem
from the constitutive equations of the switching elements (see [23] for details).

]\f()(7 U7 Y, X’) = ((’iLl = (1+Ta171)i[‘ +Ta1,2vo+Tb1711;D)+vu
A (’Uol =Taz 111 + (1 + Tagyg)vo + TbgylvD) u
Ae—vp < (L4PV) An—p > (- VD) [ 7o
/\(iD:iLfiu)/\(q%szo)/\(q%iDEO) |

A (@~ vp <0) A (§— vp = Rogyin) T M
A (4= vy =0) A (T — vu = Rofriu))

Fig. 1. Buck DC-DC converter

4 Quantized Feedback Control Problem for DTLHS

We define the Feedback Control Problem for LTSs (Def. 2) and for DTLHSs
(Def. 4). On such a base we define the Quantized Feedback Control Problem for
DTLHSs (Def. 6).

We begin by extending to (possibly infinite) LTSs the definitions in [29, 12]
for finite LTSs. In what follows, let S = (S, A,T) be an LTS, I, G C S be,
respectively, the initial and goal sets of S.

Definition 2. A controller for S is a function K : Sx A — B s.t. Vs € S, Va €
A, if K(s,a) then 3s' T(s,a,s’). Dom(K) denotes the set of states for which at
least a control action is enabled. Formally, Dom(K) = {s € S | 3a K(s,a)}. S
denotes the closed loop system, that is the LTS (S, A, TU)), where T (s, a, s')
=T(s,a,s') N K(s,a). A control problem for S is a triple (S,I,QG).

A controller for S (Def. 2) is used to restrict S behavior so that all states in
the initial region (I) will reach in one or more steps the goal region (G). In the
following, we formalize such a concept by defining strong and weak solutions to
an LTS control problem.

We call a path 7 fullpath [7] if either it is infinite or its last state 709 (|x|)
has no successors. We denote with Path(s) the set of fullpaths starting in state
s, i.e. the set of fullpaths 7 such that 7(%)(0) = s. Observe that Path(s) is never
empty, since it contains at least the path of length 0 containing only state s.

Given a path 7 in S, J(S, 7, G) denotes the unique n > 0, if it exists, s.t.
[ (n) € GIAV 0 < i < n.w®) (i) € G], +00 otherwise. We require n > 0 since
our systems are nonterminating and each controllable state (including a goal



state) must have a path of positive length to a goal state. The worst case dis-
tance (pessimistic view) of a state s from the goal region G is Jsirong(S, G, s) =
sup{J(S,m,G) | m € Path(s)}. The best case distance (optimistic view) of a state
s from the goal region G is Jyear (S, G, s) = inf{J(S, 7, G) | = € Path(s)}.

Definition 3. A strong [weak] solution to a control problem P = (S, I, G)
is a controller K for S, such that I C Dom(K) and for all s € Dom(K),
Tstrong (ST G, 8) [Juwear (ST, G, 5)] is finite.

Ezample 3. Let Sy [S1] be the LTS which transition relation consists of the
continuous [all] arrows in Fig. 2 (left). Let I = {—1,0,1} and G = {0}. Then,
K(3,4) =[5 # 0 = @ = 0] is a strong solution to the control problem (S, I, G)
and a weak solution to (Sy, I, G).

Remark 1. Note that if K is a strong solution to (S, I, G) and G C I (as it is
usually the case in control problems) then all paths starting from Dom(K') (C I)
will touch G infinitely often (stability).

A DTLHS control problem is a triple (H,I,G) where H is a DTLHS and
(LTS(H), I, G) is an LTS control problem. For DTLHSs we restrict ourselves to
control problems where I and G can be represented as conjunctive predicates.
From [17] it is easy to show that DTLHS control problems are undecidable
[23]. For DTLHS control problems usually robust controllers are desired. That
is, controllers that, notwithstanding nondeterminism in the plant (e.g. due to
parameter variations), drive the plant state to the goal region. For this reason,
and to counteract the nondeterminism stemming from the quantization process,
we focus on strong solutions. Furthermore, to accommodate quantization errors,
always present in software based controllers, it is useful to relax the notion of
control solution by tolerating an (arbitrarily small) error € on the continuous
variables. This leads to the definition of e-solution. Let € be a nonnegative real
number, W" = [[_, W C Dy, We =T[2, W C D} and W = W™ x W C
D% x D The e-relazation of W is the set (ball of radius €) B.(W)= {(z1, . .- 2n,
Q- Gm) | (@1, qm) € Whand Vi€ {1,...n} Ja; € W sit. |25 — 2] < e}

Definition 4. Let (H,I,G) be a DTLHS control problem and € be a nonnegative
real number. An e-solution to (H,I,G) is a strong solution to the LTS control
problem (LTS(H),I,B:(Q)).

Ezample 4. Let P = (H,I,G), Hasin Ex. 1, = D, and G = {0} (represented
by conjunctive predicate x = 0). Control problem P has no solution (because
of the Zeno phenomenon), but for all € > 0 it has the e-solution K s.t. Va €
I. K(z,0)=1.

Example 5. The typical goal of a controller for the buck DC-DC converter in
Ex. 2 is keeping the output voltage vo close enough to a given reference value
Vres- This leads to the control problem P = (#, I, G) where: H is defined in
Ex. 2, T = (lit]| <2) A (0<vo <6.5), G = (lvo—Vies] <O) A (Jir] <2)and
0 = 0.01 is the desired converter precision.

In order to define quantized feedback control problems for DTLHSs (Def. 6)

we introduce quantizations (Def. 5). Let x be a real valued variable ranging on
a bounded interval of reals D, = [a,b:]. A quantization for z is a function ~



from D, to a bounded interval of integers v(D,) = [d,b,]. For ease of nota-
tion we extend quantizations to integer variables ranging on a bounded interval
of integers by stipulating that the only quantization v for such variables is the
identity function (i.e. y(z) = ). The width ||[y~'(v)|| of v € ¥(Ds) in 7 is de-
fined as follows: ||y~ (v)|| = sup{ |w — 2| | w,z € Dy A y(w) =~v(2) =v}. The
quantization step ||| is defined as follows: ||v|| = max { ||y~ (v)| | v € ¥(Da)}-

Definition 5. Let H = (X,U,Y,N) be a DTLHS. A quantization I" for H is
a set of maps I' = {~vu | 7w 1S a quantization for w € X UU}. Let W =
[wi,...w;] € XUU and v = [v1,...v5] € Dw. We write I'(v) for the tuple
[Yaoy (V1)s -« - Yaop, (V)] and I'(Dw) for the set of tuples {I"(v) | v € Dy }. Finally,
the quantization step || I'|| for I' is defined as: ||I'|| = max{ ||| | v € I'}.

A control problem admits a quantized solution if control decisions can be
made by just looking at quantized values. This enables a software implementation
for a controller.

Definition 6. Let H = (X,U,Y,N) be a DTLHS, I be a quantization for H
and P = (H,I,G) be a control problem. A I' Quantized Feedback Control (QFC)

solution to P is a || I'||-solution K (x,u) to P such that K (x,u) = K(I'(z), I'(u))
where K : I'(Dx) x I'(Dy) — B.

:"'Q."l/ 0 (l) 1 -'_'..Q..'}/ 0 (l) 1 (9)
O — O
SRES | B9 &0

Fig. 2. I" control abstraction for DTLHSs in Exs. 3 and 8 (left) and Ex. 9 (right)
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Ezample 6. Let P be as in Ex. 4, I'(z) = round(z/2) (where round(z) = |z +
|2(x — |])] is the usual rounding function) and K as in Ex. 3. Then, ||I'|| = 2
and K (z,u) — K(I'(z),I'(u)) is a I" QFC solution to P.

5 Control Abstraction

The AD process maps intervals of state values into discrete state values. As a re-
sult the control software sees the controlled system (plant) as a nondeterministic
finite automaton. Of course we want our control software to work notwithstand-
ing such a nondeterminism (strong solution, Def. 3). To this end we should try
to limit such a nondeterminism as much as possible. This leads to the notion of
control abstraction (Def. 8), the main focus of this section.

Since QFC (Def. 6) rests on AD conversion we must be careful not to drive
the plant outside the bounds in which AD conversion works correctly. This leads
to the definition of safe action (Def. 7). Intuitively, an action is safe in a state if
it never drives the system outside of its state bounds.

Definition 7. Let H = (X,U,Y,N) be a DTLHS and I be a quantization.

1. We say that action u € Dy is safe for s € Dx (in H) if for all s, [Ty €
Dy N(s,u,y,s') implies s’ € Dx].



2. We say that action @ € I'(Dy) is I'-safe in state § € I'(Dx) if for all
s € I'"Y8), ue I'"Y(a), u is safe for s in H.
Note that, in general, not all actions u € Dy are safe in ‘H since Def. 1 only
asks IV to be a conjunctive predicate.
Example 7. Let ‘H be as in Ex. 1. Then action u = 1 is not safe in state s = 2
since we have N(2,1,3), and s’ = 3 is outside H state bounds.
A control abstraction (Def. 8) is a finite state automaton modelling how a
DTLHS is seen from the control software because of AD conversion.

Definition 8. Let H = (X,U,Y,N) be a DTLHS and I" be a quantization for
H. We say that the LTS H = (I'(Dx ), I'(Dy), N) is a I" control abstraction of
H if its transition relation N satisfies the following conditions.

1. Each abstract transition stems from a concrete transition. Formally: for all
3,8 € I'(Dx), @ € I'(Dy), if N(8,4,8) then there exist s € I'"1(3), u €
r—i(a), s e r-4(&), y € Dy s.t. N(s,u,y,s).

2. If an abstract action is safe then all its possible concrete effects (besides
self-loops) are faithfully represented in the abstract system. Formally: for all
8 € I'(Dx), @ I'-safe in 3, s € I'"1(3), u € I'"Y(a), s € Dx, if [Fy €
Dy N(s,u,y,s")] and I'(s) # I'(s') then N(I'(s), I'(u), I'(s)).

3. If there is no upper bound to the length of concrete paths inside the counter-
image of an abstract state then there is an (abstract) self-loop. Formally:
for all 3 € I'(Dx), 4 € I'(Dy), if Vk 3x(0),...x(k + 1) € I'"(3)
u(0), ... u(k) € I-1(a) 3y(0),...y(k) € Dy [Ny N(w(t),ult), y(t), x(t +
1))] then N(8,4,38).

We say that # is a control abstraction of H if # is a I" control abstraction
of H for some quantization I'. Finally, we denote with Ap(H) the set of all I’
control abstractions on H.

Note that any abstraction (e.g. see [2]) is also a control abstraction. However,
the converse is false since some concrete transition (e.g. a self loop or an unsafe
action) may have no abstract image. Let S = (S, 4, T1) and S = (5, A, T»)
be LTSs. We say that S; refines Sy (notation S C Ss) iff for each s,s" € S,
a € A, Ti(s,a,s') implies Ty(s,a,s’). The binary relation C is a partial order.
Moreover, the poset (Ar(H),C) is a lattice. Furthermore, since Apr(#) is a finite
set, the poset (Ap(H),C) has unique mazimum and unique minimum elements.
Ezample 8. Let H be asin Ex. 1 and I" be as in Ex. 6. Each I" control abstraction
of H has the form H = ({—1,0,1},{0,1}, N), where the set of transitions in N
is any subset, containing all continuous arrows, of the set of transitions of the
automaton depicted in Fig. 2 (left). In particular, a control abstraction may
omit some self loops (namely, those with dotted arrows in Fig. 2). Transitions
N(0,0,0) and N(O, 1,0) must belong to all I" control abstractions, because of
condition 3 in Def. 8. In fact all paths starting in 0 will remain in 0 forever. The
transition relation defined in Fig. 2 (left) by continuous arrows is the minimum
I" control abstraction 7:me of H whereas the transition relation defined by all
arrows is the maximum [ control abstraction H,yas of H. Note that there is
no controller (strongly) driving all states of H,nae to state 0. In fact, because
of self-loops, action 0 from state 1 may lead to state 0 as well as to state 1
(self-loop). On the other hand the controller K enabling only action 0 in any
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state will (weakly) drive all states of Homax to 0 since each state in H,nq. has at
least a 0-labelled transition leading to state 0. Controller K will also (strongly
and thus weakly) drive all states of H,,, (including 0) to state 0.

Remark 2. Example 8 suggests that we should focus on minimum control ab-
stractions in order to increase our chances of finding a strong controller. Cor-
rectness of such an intuition will be shown in Theor. 1. As for computing the
minimum control abstraction we note that this entails deciding if a given self-
loop can be eliminated according to condition 3 in Def. 8. Unfortunately it is
easy to show that such a problem comes down to solve a reachability problem on
linear hybrid systems, that, by [17], is undecidable. Thus, self-loop eliminability
is undecidable too in our context. As a result, in general, we cannot hope to
compute ezactly the minimum control abstraction.

6 Synthesis of Quantized Feedback Control Software

We outline our synthesis algorithm QKS (Quantized feedback Kontrol Synthesis)
and give its properties (Theor. 1). Details are in [23]. QKS takes as input a tuple
(', H, I, G), where: H = (X, U, Y, N) is a DTLHS, I' is a quantization for
H and (M, I, G) is a control problem. QKS returns a tuple (i, D, K), where:
1 € {Sor,NoSoL, UNK}, K (z,u) = K(I'(z),['(u)) is a I' QFC solution for H
(Def. 6), D = Dom(K) and D = I'"'(D) = Dom(K) is K controllable region.

We compute QKS output as follows. As a first step we compute a I" control
abstraction @ = (I'(Dx ), I'(Dy), N) of H as close as we can (see Remark 2) to
the minimum one. Sect. 6.1 (function minCtrAbs in Alg. 1) outlines how Q can be
computed. Let I = I'(I), G = I'(G) and K be the most general optimal (mgo)
strong solution to the (LTS) control problem (Q, @, G). Intuitively, the mgo
strong solution K to a control problem (Q, @, () is the unique strong solution
that, disallowing as few actions as possible, drives as many states as possible to
a state in G along a shortest path. We compute (the OBDD representation for)
K by implementing a suitable variant of the algorithm in [12]. Finally, we define:
K(z,u) = K(I'(z),['(v)), D = Dom(K), and D — I'"*(D) = Dom(K).

If I C D then QKS returns p = SoL. Note that in such a case, from the
construction in [12], K is time optimal for the control problem (Q, I, ), thus
K will typically move along a shortest path to G (i.e., K is near time-optimal). If
I ¢ D then we compute the maximum I” control abstraction VAY of H and use the
algorithm in [29] to check if there exists a weak solution to (W, I, G). If that is
the case QKS returns p = UNK, otherwise QKS returns u = NoSoL. Note that
the maximum control abstraction may contain also (possibly) unsafe transitions
(condition 2 of Def. 8). Thus a weak solution for W may exist even when no
weak solution for Q exists. Using the above notations Theor. 1 summarizes the
main properties of QKS.

Theorem 1. Let H be a DTLHS, I' be a quantization and (H, I, G) be a
control problem. Then QKS(I', H, I, G) returns a triple (u, D, K) s.t.: u €

{Sor,NoSor, UNK}, D = Dom(K), D = I'"Y(D) and K = K(I'(x), I'(u)) is
a I' QFC solution to the control problem (H,D,G). Furthermore, the following
holds.
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1. If yw = Sou then I C D and K is a I' QFC solution to the control problem
(H,I,G).

2. If pn = NoSoL then there is no I' QFC solution to the control problem
(1, 1,G).

3. If p = UNK then QKS is inconclusive, that is (H,I,G) may or may not have
a I' QFC solution.

Note that the AD conversion hardware is modelled by I" and that from the
OBDD for K above we get a C program (Section 6.2). Thus K as described
above defines indeed the control software we are looking for. Finally, note that
case 3 in Theor. 1 stems from undecidability of the QFC problem [17].

Ezample 9. Let P = (H, I, G) be as in Ex. 4 and I" be as in Ex. 8. For all
I' control abstractions # (and thus for the minimum one shown in Ex. 8) not,
containing the self loops N(—l,O, —1) and N(l,O, 1), K as in Ex. 3 is the mgo
strong solution to (%, @, I'(GQ)). Thus, K (s,u) as in Ex. 6 is a I" QFC solution
to P. Weak solutions to (#, I'(I), I'(G)) exist for all I" control abstractions .
Note that existence of a I" QFC solution to a control problem depends on I". Let
us consider the quantization I'(x)=|x/2]| for H. Then the maximum I control
abstraction of H is £L — ({—2,-1,0,1}, {0, 1}, N), where the transition N is
depicted in Fig. 2 (right). Clearly (£, I''(I), I"(G)) has no weak solution since
there is no path to the goal I''(G) = {0} from any of the states —2, —1. Thus P
has no I QFC solution.

6.1 Computing Control Abstractions

Function minCtrAbs in Alg. 1 computes a close to minimum I control abstraction
(Def. 8) Q = (I'(Dx), I'(Dy), N) of H = (X,U,Y, N)as well as I = I'(I) and
G =T(G).

Line 6 initializes (the OBDDs for) N, I, G to @ (i.e. the boolean function
identically 0). Line 2 loops through all |I'(Dx)| states § of . Line 3 [line 4] add
state 4 to I [G]if 4 is the image of a concrete state in I [G]. Line 5 loops through
all |I"(Dy)| actions @ of . Line 13 checks if action @ is I-safe in § (see Def. 7.2
and Def. 8.2). Function SelfLoop in line 7 returns 0 when, accordingly to Def.
8.3 a self-loop need not to be in N. An exact check is undecidable (Remark 2),
however our gradient based SelfLoop function typically turns out (Tab. 1 in Sect.
7) to be a quite tight overapproximation of the sets of (strictly needed) self-loops.
We compute SelfLoop(s, @) as follows. For each real valued state component x;,
let w;[Wi]= (minmax], 2} — z;, N(X,U, Y, X)ANI'(X) = § ANI'(U) = u). If for
some i [w; # 0 A W; # 0 A (w; and W; have the same sign)] then SelfLoop
returns 0 (since any long enough sequence of concrete actions in I'1() will
drive state component x; outside of I'~1(3)), otherwise SelfLoop returns 1. Lines
9, 10, 11 compute a quite tight overapproximation (Over Img) of the set of
states reachable in one step from §. Line 12 loops on all |Over Img| abstract
next states §' that may be reachable with the abstract outgoing transition (8, 4)
under consideration. Line 13 checks if there exists a concrete transition realizing
the abstract transition (8, @, §') when § # § (no self-loop) and if so adds the
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abstract transition (8, @, §) to N (line 14). Finally, line 15 returns the (transition
relation for) the control abstraction along with I and G.

Remark 3. From the loops in lines 2, 5, 12 we see that the worst case runtime
for Alg. 1is O(|I'(Dx)|*|I"(Dy)|). However, thanks to the heuristic in lines 9—
11, Alg. 1 typical runtime is about O(|I'(Dx)||I'(Dy)]) as confirmed by our
experimental results (Sect. 7, Fig. 3(b)).

Remark 4. Alg. 1 is explicit in the (abstract) states and actions of # and sym-
bolic with respect to the auxiliary variables (modes) in the transition relation
N of H. As a result our approach will work well with systems with just a few
state variables and many modes, our target here.

Algorithm 1 Building control abstractions

Input: A quantization I, a DTLHS H = (X,U,Y, N), a control problem (H, I, G).

function minCtrAbs(I", H, I, G):

1. N2, 1+ 2,G+@,let X =[z1,...,z,], X' = [z},...,20]

2. for all § € I'(Dx) do

3. if (MILP (min, 0, I[(X) A I'(X) = 5) is feasible) then I+ U {5}

4. if (MILP (min, 0, G(X) A I'(X) = ) is feasible) then G« G U {3}

5. for all 4 € I'(Dy) do

6. if (MILP (min, 0, N(X,U,Y,X') AT(X) = s AT(U) = 0 A X' ¢ Dx) is
feasible) then continue

7. if SelfLoop(3, @) then N «+ N U{(3,4,3)}

8. for alli=1,...n do

9. m; < x;F, where X'* = [z7",... 2/7] is a solution to the MILP (min, z7,
N(X,U,Y,X')ANT(X) =3 AT(U) = a)

10. M, + =i, where X"* = [z7",...,2)7] is a solution to the MILP (max, z},
N(X,U,Y,X')AT(X) =3 AT(U) = )

11. let Over_Img(s,4) = [T, [ve, (mi), v, (M;)]

12. for all & € Over_Img(3,4) do

13. if § £ § A (MILP (min, 0, N(X,U,Y, X')AT(X) = $AT(U) = aAD(X') =
') is feasible) then

14. N« NU{(3,1,3)}

15. return (N,f, G)

6.2 Control Software With a Guaranteed WCET

From controller & computed by QKS (see Sect. 6) we generate our correct-
by-construction control software (obdd2c(K)). This is done (function obdd2c)
by translating the OBDD representing K into C code along the lines of [29].
From such a construction we can easily compute the Worst Case Ezecution
Time (WCET) for our controller. We have: WCET = nrTpg, where r [n] is the
number of bits used to represent plant actions [states| and T's is the time needed
to execute the C instructions modelling the if-then-else semantics of OBDD
nodes as well as edge complementation (since we use the CUDD package).

Let T be the chosen sampling time. Then it must be: WCET < T. That
is, nrTp < T. This equation allows us to know, before hand, the realizability
(e.g. with respect to schedulability constraints) of the (to be designed) control
software. For example, let Tz = 10~ "secs, n = 10 and r = 1. Then, the for the
system sampling time we have: T > 10~6 = WCET.
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7 Experimental Results

We implemented QKS (Sect. 6) in C, using GLPK to solve MILP problems and
the CUDD package for OBDD based computations. .
Our experiments aim at evaluating effectiveness of: control abstraction (Q,

Sect. 6.1) generation, synthesis of OBDD representation of control law (K,

Sect. 6), control software (obdd2c(K), Sect. 6.2) size and guaranteed opera-
tional ranges (i.e. controllable region). Note that control software reaction time
(WCET) is known a priori from Sect. 6.2 and its robustness to parameter vari-
ations in the controlled system (#) as well as enforcement of safety bounds on
state variables are an input to our synthesis algorithm (e.g. see Ex. 1, 2).

We present experimental results obtained by using QKS on the buck DC-DC
converter described in Ex. 2. We denote with H the DTLHS modeling such a
converter. We set the parameters of H as follows: 7' = 1076 secs, L = 2 - 10~*
Hor,=01Qrc=01Q R=5+2%Q,C=5-10°F, V, =15+ 25% V
and require our controller to be robust to foreseen variations (25%) in the load
(R) and in the power supply (V;).

The model in Ex. 2 already accounts for variations in the power supply.
Variations in the load R can be taken into account along the same lines, how-
ever much more work is needed (along the lines of [15]) since H dynamics is
not linear in R. This adds 11 auxiliary boolean variables to the model in Ex.
2. Details are in [23]. For converters, safety (as well as physical) considerations
set requirements on admissible values for state variables. We set: D;, = [—4,4],
Dy, = [—1,7]. Note that robustness requires that, notwithstanding nondetermin-
istic variations (within the given tolerances) for power supply and load, the syn-
thesized controller always keeps state variables within their admissible regions.
We use the following bounds for auxiliary variables: D;, = D;, = [~10%,10%]
and D,, = D,, = [-107,107]. The initial region I and goal region G are as in
Ex. 5. Finally, the DTLHS control problem we consider is P = (H, I, G). Note
that no (formally proved) robust control software is available for buck DC-DC
converters.

Table 1. Buck DC-DC converter (Sect. 3): control abstraction and controller synthesis
results. Experiments run on an Intel 3.0 GHz Dual Core Linux PC with 4 GB of RAM.

Control Abstraction Controller Synthesis Total
b CPU Arcs  MaxLoops LoopFrac CPU OBDD CPU

8  2.50e+03 1.35e+06 2.54e+04  0.00323  0.00e+00 1.07e+02 2.50e+03
9 1.13e+04 7.72e+06 1.87e+04 0.00440 1.00e+02 1.24e+03 1.14e+04
10 6.94e+04 5.14e+07 2.09e+04  0.00781  7.00e+02 2.75e+03 7.0le+04
11 4.08e+05 4.24e+08 2.29e+04  0.01417  5.00e+03 7.00e+03 4.13e+05

We use a uniform quantization dividing the domain of each state variable
(ir,vo) into 2° equal intervals, where b is the number of bits used by AD con-
versbion. We call the resulting quantization I,. The quantization step is ||| =
2370,

For each value of interest for b, following Sect. 6, we compute: (1) a (close to
minimum) I} control abstraction H® for #, (2) the mgo strong solution K? for
Pb = (H, @, I(@)), (3) K controllable region D = Dom(K?), (4) a I}, QFC
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solution K°(s,u) = K°(I}(s), [1(u)) to the control problem P¥ = (#, I} *(DV),
G). Note that, since we have two quantized variables (ir,vo) each one with b
bits, the number of states in the control abstraction is exactly 22°.

Tab. 1 shows our experimental results. Columns in Tab. 1 have the following
meaning. Column b shows the number of AD bits. Columns labelled Control
Abstraction show performances for Alg. 1. Column CPU shows Alg. 1 time (in
secs) to compute H’. Column Arcs shows the number of transitions in #°. In
order to assess effectiveness of function SelfLoop (Sect. 6.1) column MaxzLoops
shows the number of loops in the maximum I, control abstraction for H, while
column LoopFrac shows the fraction of such loops in H°. Columns labelled Con-
troller Synthesis show the computation time in secs (CPU) for the generation
of K?, and the size of its OBDD representation (OBDD). The latter is also the
size (number of lines) of the C code for our synthesized implementation of K
(obdd2¢(K?)). Finally, column Total shows the total computation time in secs
(CPU) for the whole process (i.e., control abstraction plus controller source code
generation). All computations were completed using no more than 200MB. As
for the value of u (see Theor. 1), we have that 4 =UNK for b = 8, and p =SoL
in all other cases.

From Tab. 1 we see that computing control abstractions (i.e. Alg. 1) is the
most expensive operation in QKS (see Sect. 6) and that thanks to function
SelfLoop K contains no more than 2% of the loops in the maximum I}, control
abstraction for H.

For each MILP problem in Alg. 1, Fig. 3(b) shows (as a function of b) the
number of MILP instances solved while Fig. 3(a) shows (as a function of b) the
average CPU time (in seconds) spent solving a single MILP problem instance.
CPU time standard deviation is always less than 0.003. The correspondence
between the curves in Figs. 3(b), 3(a) and Alg. 1 is the following. MILP1 refers
to line 3 (and represents also the data for the twin MILP in line 4). MILP2
refers to MILP problems in function SelfLoop (line 7). MILP3 refers to line 9
(and represents also the data for the twin MILP in line 10). MILP4 refers to line
13 and MILPS5 refers to line 6.

From Fig.3(a) we see that the average time spent solving each MILP in-
stance is small. The lower [upper| bound to the number of times MILP4 (i.e.
the most called MILP in Alg. 1) is called (#MILP4) is |I'(Dx)||I'(Dy)| = 220+!
[|[[(Dx)|?|T(Dy)| = 24+ (see Remark 3). From Fig. 3(b) we see that #MILP4
is quite close to |[I'(Dx)||I'(Dy)| = 220+, This shows effectiveness of our heuris-
tic to tightly overapproximate Over Img (lines 9-11 of Alg. 1).

One of the most important features of our approach is that it returns the
guaranteed operational range (precondition) of the synthesized software (Theor.
1). This is the controllable region D returned by QKS in Sect. 6. Fig. 3(c)
shows the controllable region D for K'° along with some trajectories (with time
increasing counterclockwise) for the closed loop system. Since for b = 10 we have
p = SoL, we have that I C D (see also Fig. 3(c)). Thus we know (on a formal
ground) that 10 bit AD (|| 0| = 277) conversion suffices for our purposes. The
controllable region for K turns out to be only slightly larger than the one for
K10,
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Fig. 3. QKS performance

8 Conclusion

We presented an effective algorithm that given a DTLHS #H and a quantization
schema returns a correct-by-construction robust control software K for H along
with the controllable region R for K. Furthermore, our control software has
a WCET linear in the number of bits of the quantization schema. We have
implemented our algorithm and shown feasibility of our approach by presenting
experimental results on using it to synthesize C controllers for the buck DC-
DC converter. Our approach is explicit in the quantized state variables and
symbolic in the system modes. Accordingly, it works well with systems with a
small number of (continuous) state variables and possibly many modes. Many
hybrid systems fall in this category.

Future research may investigate fully symbolic approaches, e.g., based on
Fourier-Motzkin (FM) variable elimination, to compute control abstractions.
Since FM tools typically work on rational numbers this would also have the
effect of avoiding possible numerical errors of MILP solvers [24].
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