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t. We present an algorithm that given a Dis
rete Time LinearHybrid System H returns a 
orre
t-by-
onstru
tion software implemen-tation K for a (near time optimal) robust quantized feedba
k 
ontrollerfor H along with the set of states on whi
h K is guaranteed to work 
or-re
tly (
ontrollable region). Furthermore, K has a Worst Case Exe
utionTime linear in the number of bits of the quantization s
hema.1 Introdu
tionSoftware generation from models and formal spe
i�
ations forms the 
ore ofmodel based design of embedded software [18℄. This approa
h is parti
ularlyinteresting for 
ontrol systems sin
e in su
h a 
ase system spe
i�
ations aremu
h easier to de�ne than the 
ontrol software behavior itself.A 
ontrol system 
onsists of two subsystems (forming the 
losed loop system):the 
ontroller and the plant. In an endless loop the 
ontroller measures outputsfrom and sends 
ommands to the plant in order to drive it towards a givengoal. In our setting the 
ontroller 
onsists of software implementing the 
ontrollaw. System requirements are typi
ally given as spe
i�
ations for the 
losed loopsystem. Control engineering te
hniques are used to design the 
ontrol law (i.e.the fun
tional spe
i�
ations for the 
ontrol software) from the 
losed loop systemspe
i�
ations. Software engineering te
hniques are then used to design 
ontrolsoftware implementing a given 
ontrol law.Unfortunately, when the plant model is a hybrid system [4, 1, 3℄ existen
eof a 
ontrol law is unde
idable (e.g. see [17℄) even for linear hybrid automata.This s
enario is further 
ompli
ated by the quantization pro
ess always presentin software based 
ontrol systems. Namely, measures from sensors go throughan AD (analog-to-digital) 
onversion before being sent to the 
ontrol softwareand 
ommands from the 
ontrol software go through a DA (digital-to-analog)
onversion before being sent to plant a
tuators. Furthermore, typi
ally a robust
ontrol is desired, that is, one that meets the given 
losed loop requirementsnotwithstanding (nondeterministi
) variations in the plant parameters.As for hybrid systems, no approa
h is available for the automati
 synthesisof robust quantized feedba
k 
ontrol laws and of their software implementation.This motivates the fo
us of our paper.



2Our Main Contributions A Dis
rete Time Linear Hybrid System (DTLHS)is a dis
rete time hybrid system whose dynami
s is de�ned as the logi
al 
on-jun
tion of linear 
onstraints on its 
ontinuous as well as dis
rete variables.We present an e�e
tive algorithm that, given a DTLHS model H for theplant and a quantization s
hema (i.e. how many bits we use for AD 
onversion),returns a pair (K, R), where: K is a 
orre
t-by-
onstru
tion software implemen-tation (C language in our 
ase) of a (near time optimal) Quantized Feedba
kController (QFC) for H and R is an OBDD [10℄ representation of the set ofstates (
ontrollable region) on whi
h K is guaranteed to meet the 
losed looprequirements. Furthermore, K is robust with respe
t to nondeterministi
 varia-tions in the plant parameters and has a Worst Case Exe
ution Time (WCET)guaranteed to be linear in the number of bits of the quantization s
hema.We implemented our algorithm on top of the CUDD pa
kage and of theGLPK Mixed Integer Linear Programming (MILP) solver and present experi-mental results on using our tool to synthesize robust QFCs for a widely usedmixed-mode analog 
ir
uit: the bu
k DC-DC 
onverter (e.g. see [26℄).Analog DC-DC 
onverters are a vital part of many mission (e.g. satellites)or safety (e.g. air
rafts) 
riti
al appli
ations. However the ever in
reasing de-mand for energy e�
ien
y and easy re
on�gurability makes fully software basedswit
hing 
onverters (e.g., as in [26℄) a very attra
tive alternative to analog ones.Unfortunately, la
k of formal reliability assessment (in order to bound the failureprobability to 10−9) limits the deployment of software based swit
hing 
onvert-ers in safety 
riti
al appli
ations. Reliability analysis for swit
hing 
onvertersusing an analog 
ontrol s
hema has been studied in [13℄. For software based 
on-verters, 
arrying out su
h a reliability analysis entails formal veri�
ation of the
ontrol law as well as of its software implementation. The above 
onsiderationsmake the bu
k DC-DC 
onverter a very interesting (and 
hallenging) examplefor automati
 synthesis of 
orre
t-by-
onstru
tion 
ontrol software.Our experimental results show that within about 20 hours of CPU time andwithin 200MB of RAM we 
an synthesize (K, R) as above for a 10 bit quantizedbu
k DC-DC 
onverter.Related Work Synthesis of Quantized Feedba
k Control Laws for linear sys-tems has been widely studied in 
ontrol engineering (e.g. see [14℄). However, tothe best of our knowledge, no previously published paper addresses synthesisof Quantized Feedba
k Control Software for DTLHSs. Indeed, our work di�ersfrom previously published ones in the following aspe
ts: (1) we provide a tool forautomati
 synthesis of 
orre
t-by-
onstru
tion 
ontrol software (rather than de-sign methodologies for the 
ontrol law); (2) we synthesize robust 
ontrol software(thus en
ompassing quantization) whereas robust 
ontrol law design te
hniquesdo not take into a

ount the software implementation; (3) in order to generateprovably 
orre
t software, we assume a nondeterministi
 (mali
ious) model forquantization errors rather than a sto
hasti
 one, as usually done in 
ontrol engi-neering; (4) our synthesis tool also returns the 
ontrollable region, that is the setof states on whi
h the synthesized 
ontrol software is guaranteed to work 
or-re
tly (this is very important for Fault Dete
tion Isolation and Re
overy, FDIR,e.g. see [21℄). In the following we dis
uss some related literature.



3Quantization 
an be seen as a form of abstra
tion, where the abstra
t statespa
e and transitions are de�ned by the number of bits of AD 
onversion. Ab-stra
tion for hybrid systems has been widely studied. For example, see [25, 2,20, 19℄ and 
itations thereof. Note however that all published literature on ab-stra
tion fo
uses on designing abstra
tions to support veri�
ation or 
ontrol lawdesign. In our 
ase instead, the abstra
tion is fully de�ned by the AD 
onversions
hema and our fo
us is on devising te
hniques to e�e
tively remove abstra
ttransitions in order to 
ountera
t the nondeterminism (information loss) stem-ming from the quantization pro
ess.Control synthesis for Timed Automata (TA) [4℄, Linear Hybrid Automata(LHA) [1, 3℄ as well as nonlinear hybrid systems has been extensively studied.Examples are in [22, 11, 6, 30, 16, 28, 5, 9, 8℄ and 
itations thereof. We note how-ever that all above papers address design of 
ontrol laws and do not take intoa

ount the quantization pro
ess, that is, they assume exa
t (i.e. real valued)state measures. Here instead we address design of quantized feedba
k 
ontrolsoftware.Corre
t-by-
onstru
tion software synthesis in a �nite state 
ontext has beenstudied in [7, 29, 27, 12℄. The above approa
hes 
annot be dire
tly used in our
ontext sin
e they do not a

ount for 
ontinuous state variables.2 Ba
kgroundUnless otherwise stated ea
h variable x ranges on a known bounded interval Dxeither of the reals or of the integers (dis
rete variables). We denote with sup(x)(inf(x)) the sup (inf) of Dx. Boolean variables are dis
rete variables ranging onthe set B = {0, 1}. We denote with X = [x1, . . . xn] a �nite sequen
e (list) ofvariables, with ∪ list 
on
atenation and with DX = ∏

x∈X Dx the domain of X .A valuation X∗ ∈ DX over a list of variablesX is a fun
tion v that maps ea
hvariable x ∈ X to a value v(x) in Dx. We may use the same notation to denotea variable (a synta
ti
 obje
t) and one of its valuations. The intended meaningwill be always 
lear from the 
ontext. To 
larify that a variable [valuation℄ x isreal (integer, boolean) valued we may write xr (xd, xb). Analogously Xr (Xd,
Xb) denotes the sequen
e of real (integer, boolean) variables [valuations℄ in X .If x is a boolean variable [valuation℄ we write x̄ for (1− x).A linear expression (over X) is a linear 
ombination with real 
oe�
ients ofvariables in X . A 
onstraint (over X) is an expression of the form α ⊲⊳ b where
α is a linear expression over X , ⊲⊳ is one of ≤, ≥, = and b is a real 
onstant.A 
onstraint is a predi
ate on X . If A(X) and B(X) are predi
ates on X , then
(A(X)∧B(X)) and (A(X)∨B(X)) are predi
ates on X. A 
onjun
tive predi
ateis just a 
onjun
tion of linear 
onstraints. A satisfying assignment to P (X) isa valuation X∗ su
h that P (X∗) = 1. Abusing notation we may denote with Pthe set of satisfying assignments to P (X). Given a predi
ate P (X) and a freshboolean variable y 6∈ X , the if-then predi
ate y → P (X) [ȳ → P (X)℄ denotes thepredi
ate ((y = 0)∨P (X)) [((y = 1)∨P (X))℄. In our setting (bounded variables),for any predi
ate P (X) there exists a sequen
e Z of fresh boolean variables anda 
onjun
tive predi
ate Q(Z,X) s.t. ∀X [P (X) ⇐⇒ ∃Z Q(Z,X)] (see [23℄for details). Thus, any if-then predi
ate 
an be transformed into a 
onjun
tivepredi
ate. A

ordingly, we will regard and use if-then predi
ates as 
onjun
tivepredi
ates.



4 A Mixed Integer Linear Programming (MILP) problem with de
ision vari-ables X is a tuple (max, J(X), A(X)) where: X is a list of variables, J(X)(obje
tive fun
tion) is a linear expression on X and A(X) (
onstraints) is a 
on-jun
tive predi
ate on X . A solution to (max, J(X), A(X)) is a valuation X∗ s.t.
A(X∗) holds and, for any valuation Ξ, (A(Ξ) → (J(Ξ) ≤ J(X∗))). We write
(min, J(X), A(X)) for (max,−J(X), A(X)). A feasibility problem is a MILPproblem of the form (max, 0, A(X)). We write also A(X) for (max, 0, A(X)).A Labeled Transition System (LTS) is a tuple S = (S,A, T ) where: S isa (possibly in�nite) set of states, A is a (possibly in�nite) set of a
tions, T :
S × A × S → B is the transition relation of S. Let s ∈ S and a ∈ A. Wedenote with: Adm(S, s) the set of a
tions admissible in s, that is Adm(S, s) =
{a ∈ A | ∃s′T (s, a, s′)} and with Img(S, s, a) the set of next states from s via
a, that is Img(S, s, a) = {s′ ∈ S | T (s, a, s′)}. A run or path for S is a sequen
e
π = s(0)a(0)s(1)a(1)s(2)a(2) . . . of states s(t) and a
tions a(t) su
h that ∀t ≥ 0
T (s(t), a(t), s(t+1)). The length |π| of a run π is the number of a
tions in π. Wedenote with π(S)(t) the t-th state element of π, and with π(A)(t) the t-th a
tionelement of π. That is π(S)(t) = s(t), and π(A)(t) = a(t).3 Dis
rete Time Linear Hybrid SystemsIn this se
tion we introdu
e Dis
rete Time Linear Hybrid Systems (DTLHS).De�nition 1. A Dis
rete Time Linear Hybrid System (DTLHS) is a tuple H =
(X, U, Y, N) where:� X = Xr∪Xd is a �nite sequen
e of real (Xr) and dis
rete (Xd) present statevariables. We denote with X ′ the sequen
e of next state variables obtainedby de
orating with ′ all variables in X.� U = U r ∪ Ud is a �nite sequen
e of input variables.� Y = Y r ∪ Y d is a �nite sequen
e of auxiliary variables. Auxiliary variablesare typi
ally used to model modes (e.g., from swit
hing elements su
h asdiodes) or un
ontrollable inputs (e.g., disturban
es).� N(X,U, Y,X ′) is a 
onjun
tive predi
ate over X ∪ U ∪ Y ∪X ′ de�ning thetransition relation (next state) of the system.Note that in our setting (bounded variables) any predi
ate 
an be trans-formed into a 
onjun
tive predi
ate (Se
t. 2). A

ordingly, in Def. 1, withoutloss of generality we fo
used on 
onjun
tive predi
ates in order to simplify ourexposition.The dynami
s of a DTLHS H = (X , U , Y , N) is de�ned by LTS(H) = (DX ,
DU , N̄) where: N̄ : DX × DU × DX → B is a fun
tion s.t. N̄(s, a, s′) =
∃ y ∈ DY N(s, a, y, s′). A state for H is a state for LTS(H) and a run (or path)for H is a run for LTS(H) (Se
t. 2).Example 1. Let H = ({x}, {u},∅, N) with Dx = [−2.5, 2.5], Du = {0, 1}, and
N(x, u, x′) = [u → x′ = αx] ∧ [u → x′ = βx] with α = 1

2 and β = 3
2 . When

Y = ∅ (as here) for the sake of simpli
ity we omit it from N arguments.Adding nondeterminism to H allows us to synthesize robust 
ontrollers. Forexample, variations in the parameter α 
an be modelled with a toleran
e ρ ∈ [0, 1](e.g., ρ = 0.5) for α. This repla
es N with: Nρ = [u → x′ ≤ (1 + ρ)αx] ∧
[u → x′ ≥ (1 − ρ)αx] ∧ [u → x′ = βx]. Suitable 
ontrol synthesis on Hρ =
({x}, {u},∅, Nρ) will yield a robust (up to ρ) 
ontroller for H.



5Example 2. The bu
k DC-DC 
onverter (right part of Fig. 1) is a mixed-modeanalog 
ir
uit 
onverting the DC input voltage (Vi in Fig. 1) to a desired DCoutput voltage (vO in Fig. 1). The typi
al software based approa
h (e.g. see [26℄)is to 
ontrol the swit
h u in Fig. 1 (typi
ally implemented with a MOSFET)with a mi
ro
ontroller. Designing the software to run on the mi
ro
ontroller toproperly a
tuate the swit
h is the 
ontrol design problem for the bu
k DC-DC
onverter in our 
ontext. The 
ir
uit in Fig. 1 
an be modeled as a DTLHS
H = (X , U , Y , N) with: X = Xr = [iL, vO], U = Ud = [u], Y = Y r ∪ Y dwith Y r = [iu, vu, iD, vD] and Y d = [q]. H auxiliary variables Y stem fromthe 
onstitutive equations of the swit
hing elements (i.e. the swit
h u and thediode D in Fig. 1). The transition relation N(X,U, Y,X ′) for H is shown inFig. 1 (left) where we use a dis
rete time model with sampling time T (writing
x′ for x(t + 1)) and model a toleran
e ρ = 0.25 (25%) on Vi values. In Fig. 1(left), 
onstants ai,j , bi,j depend on the 
ir
uit parameters R, rL, rC , L, C andalgebrai
 
onstraints (i.e. 
onstraints not involving next state variables) stemfrom the 
onstitutive equations of the swit
hing elements (see [23℄ for details).
N(X,U, Y,X ′) = ((iL

′ = (1+Ta1,1)iL+Ta1,2vO+Tb1,1vD)
∧ (vO

′ = Ta2,1iL + (1 + Ta2,2)vO + Tb2,1vD)
∧ (vu − vD ≤ (1 + ρ)Vi) ∧ (vu − vD ≥ (1− ρ)Vi)
∧ (iD = iL − iu) ∧ (q → vD = 0) ∧ (q → iD ≥ 0)
∧ (q̄ → vD ≤ 0) ∧ (q̄ → vD = Roff iD)
∧ (u→ vu = 0) ∧ (ū→ vu = Roff iu))
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Fig. 1. Bu
k DC-DC 
onverter4 Quantized Feedba
k Control Problem for DTLHSWe de�ne the Feedba
k Control Problem for LTSs (Def. 2) and for DTLHSs(Def. 4). On su
h a base we de�ne the Quantized Feedba
k Control Problem forDTLHSs (Def. 6).We begin by extending to (possibly in�nite) LTSs the de�nitions in [29, 12℄for �nite LTSs. In what follows, let S = (S,A, T ) be an LTS, I, G ⊆ S be,respe
tively, the initial and goal sets of S.De�nition 2. A 
ontroller for S is a fun
tion K : S×A → B s.t. ∀s ∈ S, ∀a ∈
A, if K(s, a) then ∃s′ T (s, a, s′). Dom(K) denotes the set of states for whi
h atleast a 
ontrol a
tion is enabled. Formally, Dom(K) = {s ∈ S | ∃a K(s, a)}. S(K)denotes the 
losed loop system, that is the LTS (S,A, T (K)), where T (K)(s, a, s′)
= T (s, a, s′) ∧K(s, a). A 
ontrol problem for S is a triple (S, I, G).A 
ontroller for S (Def. 2) is used to restri
t S behavior so that all states inthe initial region (I) will rea
h in one or more steps the goal region (G). In thefollowing, we formalize su
h a 
on
ept by de�ning strong and weak solutions toan LTS 
ontrol problem.We 
all a path π fullpath [7℄ if either it is in�nite or its last state π(S)(|π|)has no su

essors. We denote with Path(s) the set of fullpaths starting in state
s, i.e. the set of fullpaths π su
h that π(S)(0) = s. Observe that Path(s) is neverempty, sin
e it 
ontains at least the path of length 0 
ontaining only state s.Given a path π in S, J(S, π,G) denotes the unique n > 0, if it exists, s.t.
[π(S)(n) ∈ G]∧ [∀ 0 < i < n.π(S)(i) 6∈ G], +∞ otherwise. We require n > 0 sin
eour systems are nonterminating and ea
h 
ontrollable state (in
luding a goal



6state) must have a path of positive length to a goal state. The worst 
ase dis-tan
e (pessimisti
 view) of a state s from the goal region G is Jstrong(S, G, s) =
sup{J(S, π,G) | π ∈ Path(s)}. The best 
ase distan
e (optimisti
 view) of a state
s from the goal region G is Jweak(S, G, s) = inf{J(S, π,G) | π ∈ Path(s)}.De�nition 3. A strong [weak℄ solution to a 
ontrol problem P = (S, I, G)is a 
ontroller K for S, su
h that I ⊆ Dom(K) and for all s ∈ Dom(K),
Jstrong(S

(K), G, s) [Jweak(S
(K), G, s)] is �nite.Example 3. Let S0 [S1℄ be the LTS whi
h transition relation 
onsists of the
ontinuous [all℄ arrows in Fig. 2 (left). Let Î = {−1, 0, 1} and Ĝ = {0}. Then,

K̂(ŝ, û) ≡ [ŝ 6= 0 ⇒ û = 0] is a strong solution to the 
ontrol problem (S0, Î, Ĝ)and a weak solution to (S1, Î, Ĝ).Remark 1. Note that if K is a strong solution to (S, I, G) and G ⊆ I (as it isusually the 
ase in 
ontrol problems) then all paths starting from Dom(K) (⊆ I)will tou
h G in�nitely often (stability).A DTLHS 
ontrol problem is a triple (H, I, G) where H is a DTLHS and(LTS(H), I, G) is an LTS 
ontrol problem. For DTLHSs we restri
t ourselves to
ontrol problems where I and G 
an be represented as 
onjun
tive predi
ates.From [17℄ it is easy to show that DTLHS 
ontrol problems are unde
idable[23℄. For DTLHS 
ontrol problems usually robust 
ontrollers are desired. Thatis, 
ontrollers that, notwithstanding nondeterminism in the plant (e.g. due toparameter variations), drive the plant state to the goal region. For this reason,and to 
ountera
t the nondeterminism stemming from the quantization pro
ess,we fo
us on strong solutions. Furthermore, to a

ommodate quantization errors,always present in software based 
ontrollers, it is useful to relax the notion of
ontrol solution by tolerating an (arbitrarily small) error ε on the 
ontinuousvariables. This leads to the de�nition of ε-solution. Let ε be a nonnegative realnumber, W r = ∏n
i=1 W

r
i ⊆ Dr

X , W d = ∏m
i=1 W

d
i ⊆ Dd

X and W = W r × W d ⊆
Dr

X×Dd
X . The ε-relaxation ofW is the set (ball of radius ε) Bε(W )= {(z1, . . . zn,

q1, . . . qm) | (q1, . . . qm) ∈ W d and ∀i ∈ {1, . . . n} ∃ xi ∈ W r
i s.t. |zi − xi| ≤ ε}.De�nition 4. Let (H, I, G) be a DTLHS 
ontrol problem and ε be a nonnegativereal number. An ε-solution to (H, I, G) is a strong solution to the LTS 
ontrolproblem (LTS(H), I,Bε(G)).Example 4. Let P = (H, I, G), H as in Ex. 1, I = Dx and G = {0} (representedby 
onjun
tive predi
ate x = 0). Control problem P has no solution (be
auseof the Zeno phenomenon), but for all ε > 0 it has the ε-solution K s.t. ∀x ∈

I. K(x, 0) = 1.Example 5. The typi
al goal of a 
ontroller for the bu
k DC-DC 
onverter inEx. 2 is keeping the output voltage vO 
lose enough to a given referen
e value
Vref . This leads to the 
ontrol problem P = (H, I, G) where: H is de�ned inEx. 2, I = (|iL| ≤ 2) ∧ (0 ≤ vO ≤ 6.5), G = (|vO − Vref | ≤ θ) ∧ (|iL| ≤ 2) and
θ = 0.01 is the desired 
onverter pre
ision.In order to de�ne quantized feedba
k 
ontrol problems for DTLHSs (Def. 6)we introdu
e quantizations (Def. 5). Let x be a real valued variable ranging ona bounded interval of reals Dx = [ax, bx]. A quantization for x is a fun
tion γ



7from Dx to a bounded interval of integers γ(Dx) = [âx, b̂x]. For ease of nota-tion we extend quantizations to integer variables ranging on a bounded intervalof integers by stipulating that the only quantization γ for su
h variables is theidentity fun
tion (i.e. γ(x) = x). The width ∥

∥γ−1(v)
∥

∥ of v ∈ γ(Dx) in γ is de-�ned as follows: ∥∥γ−1(v)
∥

∥ = sup { |w − z| | w, z ∈ Dx ∧ γ(w) = γ(z) = v}. Thequantization step ‖γ‖ is de�ned as follows: ‖γ‖ = max
{
∥

∥γ−1(v)
∥

∥ | v ∈ γ(Dx)
}.De�nition 5. Let H = (X,U, Y,N) be a DTLHS. A quantization Γ for H isa set of maps Γ = {γw | γw is a quantization for w ∈ X ∪ U}. Let W =

[w1, . . . wk] ⊆ X ∪ U and v = [v1, . . . vk] ∈ DW . We write Γ (v) for the tuple
[γw1

(v1), . . . γwk
(vk)] and Γ (DW ) for the set of tuples {Γ (v) | v ∈ DW }. Finally,the quantization step ‖Γ‖ for Γ is de�ned as: ‖Γ‖ = max{ ‖γ‖ | γ ∈ Γ}.A 
ontrol problem admits a quantized solution if 
ontrol de
isions 
an bemade by just looking at quantized values. This enables a software implementationfor a 
ontroller.De�nition 6. Let H = (X,U, Y,N) be a DTLHS, Γ be a quantization for Hand P = (H, I, G) be a 
ontrol problem. A Γ Quantized Feedba
k Control (QFC)solution to P is a ‖Γ‖-solution K(x, u) to P su
h that K(x, u) = K̂(Γ (x), Γ (u))where K̂ : Γ (DX)× Γ (DU ) → B.
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ontrol abstra
tion for DTLHSs in Exs. 3 and 8 (left) and Ex. 9 (right)Example 6. Let P be as in Ex. 4, Γ (x) = round(x/2) (where round(x) = ⌊x⌋+

⌊2(x− ⌊x⌋)⌋ is the usual rounding fun
tion) and K̂ as in Ex. 3. Then, ‖Γ‖ = 2and K(x, u) = K̂(Γ (x), Γ (u)) is a Γ QFC solution to P .5 Control Abstra
tionThe AD pro
ess maps intervals of state values into dis
rete state values. As a re-sult the 
ontrol software sees the 
ontrolled system (plant) as a nondeterministi
�nite automaton. Of 
ourse we want our 
ontrol software to work notwithstand-ing su
h a nondeterminism (strong solution, Def. 3). To this end we should tryto limit su
h a nondeterminism as mu
h as possible. This leads to the notion of
ontrol abstra
tion (Def. 8), the main fo
us of this se
tion.Sin
e QFC (Def. 6) rests on AD 
onversion we must be 
areful not to drivethe plant outside the bounds in whi
h AD 
onversion works 
orre
tly. This leadsto the de�nition of safe a
tion (Def. 7). Intuitively, an a
tion is safe in a state ifit never drives the system outside of its state bounds.De�nition 7. Let H = (X,U, Y,N) be a DTLHS and Γ be a quantization.1. We say that a
tion u ∈ DU is safe for s ∈ DX (in H) if for all s′, [∃y ∈
DY N(s, u, y, s′) implies s′ ∈ DX ].



82. We say that a
tion û ∈ Γ (DU ) is Γ -safe in state ŝ ∈ Γ (DX) if for all
s ∈ Γ−1(ŝ), u ∈ Γ−1(û), u is safe for s in H.Note that, in general, not all a
tions u ∈ DU are safe in H sin
e Def. 1 onlyasks N to be a 
onjun
tive predi
ate.Example 7. Let H be as in Ex. 1. Then a
tion u = 1 is not safe in state s = 2sin
e we have N(2, 1, 3), and s′ = 3 is outside H state bounds.A 
ontrol abstra
tion (Def. 8) is a �nite state automaton modelling how aDTLHS is seen from the 
ontrol software be
ause of AD 
onversion.De�nition 8. Let H = (X,U, Y,N) be a DTLHS and Γ be a quantization for

H. We say that the LTS Ĥ = (Γ (DX), Γ (DU ), N̂) is a Γ 
ontrol abstra
tion of
H if its transition relation N̂ satis�es the following 
onditions.1. Ea
h abstra
t transition stems from a 
on
rete transition. Formally: for all

ŝ, ŝ′ ∈ Γ (DX), û ∈ Γ (DU ), if N̂(ŝ, û, ŝ′) then there exist s ∈ Γ−1(ŝ), u ∈
Γ−1(û), s′ ∈ Γ−1(ŝ′), y ∈ DY s.t. N(s, u, y, s′).2. If an abstra
t a
tion is safe then all its possible 
on
rete e�e
ts (besidesself-loops) are faithfully represented in the abstra
t system. Formally: for all
ŝ ∈ Γ (DX), û Γ -safe in ŝ, s ∈ Γ−1(ŝ), u ∈ Γ−1(û), s′ ∈ DX , if [∃y ∈

DY N(s, u, y, s′)] and Γ (s) 6= Γ (s′) then N̂(Γ (s), Γ (u), Γ (s′)).3. If there is no upper bound to the length of 
on
rete paths inside the 
ounter-image of an abstra
t state then there is an (abstra
t) self-loop. Formally:for all ŝ ∈ Γ (DX), û ∈ Γ (DU ), if ∀k ∃x(0), . . . x(k + 1) ∈ Γ−1(ŝ)

∃u(0), . . . u(k) ∈ Γ−1(û) ∃y(0), . . . y(k) ∈ DY [
∧k

t=0 N(x(t), u(t), y(t), x(t +

1))] then N̂(ŝ, û, ŝ).We say that Ĥ is a 
ontrol abstra
tion of H if Ĥ is a Γ 
ontrol abstra
tionof H for some quantization Γ . Finally, we denote with AΓ (H) the set of all Γ
ontrol abstra
tions on H.Note that any abstra
tion (e.g. see [2℄) is also a 
ontrol abstra
tion. However,the 
onverse is false sin
e some 
on
rete transition (e.g. a self loop or an unsafea
tion) may have no abstra
t image. Let S1 = (S, A, T1) and S2 = (S, A, T2)be LTSs. We say that S1 re�nes S2 (notation S1 ⊑ S2) i� for ea
h s, s′ ∈ S,
a ∈ A, T1(s, a, s

′) implies T2(s, a, s
′). The binary relation ⊑ is a partial order.Moreover, the poset (AΓ (H),⊑) is a latti
e. Furthermore, sin
e AΓ (H) is a �niteset, the poset (AΓ (H),⊑) has unique maximum and unique minimum elements.Example 8. LetH be as in Ex. 1 and Γ be as in Ex. 6. Ea
h Γ 
ontrol abstra
tionof H has the form Ĥ = ({−1, 0, 1}, {0, 1}, N̂), where the set of transitions in N̂is any subset, 
ontaining all 
ontinuous arrows, of the set of transitions of theautomaton depi
ted in Fig. 2 (left). In parti
ular, a 
ontrol abstra
tion mayomit some self loops (namely, those with dotted arrows in Fig. 2). Transitions

N̂(0, 0, 0) and N̂(0, 1, 0) must belong to all Γ 
ontrol abstra
tions, be
ause of
ondition 3 in Def. 8. In fa
t all paths starting in 0 will remain in 0 forever. Thetransition relation de�ned in Fig. 2 (left) by 
ontinuous arrows is the minimum
Γ 
ontrol abstra
tion Ĥmin of H whereas the transition relation de�ned by allarrows is the maximum Γ 
ontrol abstra
tion Ĥmax of H. Note that there isno 
ontroller (strongly) driving all states of Ĥmax to state 0. In fa
t, be
auseof self-loops, a
tion 0 from state 1 may lead to state 0 as well as to state 1(self-loop). On the other hand the 
ontroller K̂ enabling only a
tion 0 in any



9state will (weakly) drive all states of Ĥmax to 0 sin
e ea
h state in Ĥmax has atleast a 0-labelled transition leading to state 0. Controller K̂ will also (stronglyand thus weakly) drive all states of Ĥmin (in
luding 0) to state 0.Remark 2. Example 8 suggests that we should fo
us on minimum 
ontrol ab-stra
tions in order to in
rease our 
han
es of �nding a strong 
ontroller. Cor-re
tness of su
h an intuition will be shown in Theor. 1. As for 
omputing theminimum 
ontrol abstra
tion we note that this entails de
iding if a given self-loop 
an be eliminated a

ording to 
ondition 3 in Def. 8. Unfortunately it iseasy to show that su
h a problem 
omes down to solve a rea
hability problem onlinear hybrid systems, that, by [17℄, is unde
idable. Thus, self-loop eliminabilityis unde
idable too in our 
ontext. As a result, in general, we 
annot hope to
ompute exa
tly the minimum 
ontrol abstra
tion.6 Synthesis of Quantized Feedba
k Control SoftwareWe outline our synthesis algorithm QKS (Quantized feedba
k Kontrol Synthesis)and give its properties (Theor. 1). Details are in [23℄. QKS takes as input a tuple(Γ , H, I, G), where: H = (X , U , Y , N) is a DTLHS, Γ is a quantization for
H and (H, I, G) is a 
ontrol problem. QKS returns a tuple (µ, D̂, K̂), where:
µ ∈ {Sol,NoSol,Unk}, K(x, u) = K̂(Γ (x), Γ (u)) is a Γ QFC solution for H(Def. 6), D̂ = Dom(K̂) and D = Γ−1(D̂) = Dom(K) is K 
ontrollable region.We 
ompute QKS output as follows. As a �rst step we 
ompute a Γ 
ontrolabstra
tion Q̂ = (Γ (DX), Γ (DU ), N̂) of H as 
lose as we 
an (see Remark 2) tothe minimum one. Se
t. 6.1 (fun
tion minCtrAbs in Alg. 1) outlines how Q̂ 
an be
omputed. Let Î = Γ (I), Ĝ = Γ (G) and K̂ be the most general optimal (mgo)strong solution to the (LTS) 
ontrol problem (Q̂, ∅, Ĝ). Intuitively, the mgostrong solution K̂ to a 
ontrol problem (Q̂, ∅, Ĝ) is the unique strong solutionthat, disallowing as few a
tions as possible, drives as many states as possible toa state in Ĝ along a shortest path. We 
ompute (the OBDD representation for)
K̂ by implementing a suitable variant of the algorithm in [12℄. Finally, we de�ne:
K(x, u) = K̂(Γ (x), Γ (u)), D̂ = Dom(K̂), and D = Γ−1(D̂) = Dom(K).If Î ⊆ D̂ then QKS returns µ = Sol. Note that in su
h a 
ase, from the
onstru
tion in [12℄, K̂ is time optimal for the 
ontrol problem (Q̂, Î, Ĝ), thus
K will typi
ally move along a shortest path to G (i.e., K is near time-optimal). If
Î 6⊆ D̂ then we 
ompute the maximum Γ 
ontrol abstra
tion Ŵ of H and use thealgorithm in [29℄ to 
he
k if there exists a weak solution to (Ŵ , Î, Ĝ). If that isthe 
ase QKS returns µ = Unk, otherwise QKS returns µ = NoSol. Note thatthe maximum 
ontrol abstra
tion may 
ontain also (possibly) unsafe transitions(
ondition 2 of Def. 8). Thus a weak solution for Ŵ may exist even when noweak solution for Q̂ exists. Using the above notations Theor. 1 summarizes themain properties of QKS.Theorem 1. Let H be a DTLHS, Γ be a quantization and (H, I, G) be a
ontrol problem. Then QKS(Γ , H, I, G) returns a triple (µ, D̂, K̂) s.t.: µ ∈

{Sol,NoSol,Unk}, D̂ = Dom(K̂), D = Γ−1(D̂) and K = K̂(Γ (x), Γ (u)) isa Γ QFC solution to the 
ontrol problem (H, D,G). Furthermore, the followingholds.



101. If µ = Sol then I ⊆ D and K is a Γ QFC solution to the 
ontrol problem
(H, I, G).2. If µ = NoSol then there is no Γ QFC solution to the 
ontrol problem
(H, I, G).3. If µ = Unk then QKS is in
on
lusive, that is (H, I, G) may or may not havea Γ QFC solution.Note that the AD 
onversion hardware is modelled by Γ and that from theOBDD for K̂ above we get a C program (Se
tion 6.2). Thus K̂ as des
ribedabove de�nes indeed the 
ontrol software we are looking for. Finally, note that
ase 3 in Theor. 1 stems from unde
idability of the QFC problem [17℄.Example 9. Let P = (H, I, G) be as in Ex. 4 and Γ be as in Ex. 8. For all

Γ 
ontrol abstra
tions Ĥ (and thus for the minimum one shown in Ex. 8) not
ontaining the self loops N̂(−1, 0,−1) and N̂(1, 0, 1), K̂ as in Ex. 3 is the mgostrong solution to (Ĥ, ∅, Γ (G)). Thus, K(s, u) as in Ex. 6 is a Γ QFC solutionto P . Weak solutions to (Ĥ, Γ (I), Γ (G)) exist for all Γ 
ontrol abstra
tions Ĥ.Note that existen
e of a Γ QFC solution to a 
ontrol problem depends on Γ . Letus 
onsider the quantization Γ ′(x)=⌊x/2⌋ for H. Then the maximum Γ ′ 
ontrolabstra
tion of H is L = ({−2,−1, 0, 1}, {0, 1}, N̂), where the transition N̂ isdepi
ted in Fig. 2 (right). Clearly (L, Γ ′(I), Γ ′(G)) has no weak solution sin
ethere is no path to the goal Γ ′(G) = {0} from any of the states −2, −1. Thus Phas no Γ ′ QFC solution.6.1 Computing Control Abstra
tionsFun
tionminCtrAbs in Alg. 1 
omputes a 
lose to minimum Γ 
ontrol abstra
tion(Def. 8) Q̂ = (Γ (DX), Γ (DU ), N̂) of H = (X , U , Y , N) as well as Î = Γ (I) and
Ĝ = Γ (G).Line 6 initializes (the OBDDs for) N̂ , Î, Ĝ to ∅ (i.e. the boolean fun
tionidenti
ally 0). Line 2 loops through all |Γ (DX)| states ŝ of Ĥ. Line 3 [line 4℄ addstate ŝ to Î [Ĝ℄ if ŝ is the image of a 
on
rete state in I [G℄. Line 5 loops throughall |Γ (DU )| a
tions û of Ĥ. Line 13 
he
ks if a
tion û is Γ -safe in ŝ (see Def. 7.2and Def. 8.2). Fun
tion SelfLoop in line 7 returns 0 when, a

ordingly to Def.8.3 a self-loop need not to be in N̂ . An exa
t 
he
k is unde
idable (Remark 2),however our gradient based SelfLoop fun
tion typi
ally turns out (Tab. 1 in Se
t.7) to be a quite tight overapproximation of the sets of (stri
tly needed) self-loops.We 
ompute SelfLoop(ŝ, û) as follows. For ea
h real valued state 
omponent xi,let wi[Wi℄= (min[max℄, x′

i − xi, N(X,U, Y,X ′) ∧ Γ (X) = ŝ ∧ Γ (U) = û). If forsome i [wi 6= 0 ∧ Wi 6= 0 ∧ (wi and Wi have the same sign)] then SelfLoopreturns 0 (sin
e any long enough sequen
e of 
on
rete a
tions in Γ−1(û) willdrive state 
omponent xi outside of Γ−1(ŝ)), otherwise SelfLoop returns 1. Lines9, 10, 11 
ompute a quite tight overapproximation (Over_Img) of the set ofstates rea
hable in one step from ŝ. Line 12 loops on all |Over_Img| abstra
tnext states ŝ′ that may be rea
hable with the abstra
t outgoing transition (ŝ, û)under 
onsideration. Line 13 
he
ks if there exists a 
on
rete transition realizingthe abstra
t transition (ŝ, û, ŝ′) when ŝ 6= ŝ′ (no self-loop) and if so adds the



11abstra
t transition (ŝ, û, ŝ′) to N̂ (line 14). Finally, line 15 returns the (transitionrelation for) the 
ontrol abstra
tion along with Î and Ĝ.Remark 3. From the loops in lines 2, 5, 12 we see that the worst 
ase runtimefor Alg. 1 is O(|Γ (DX)|2|Γ (DU )|). However, thanks to the heuristi
 in lines 9�11, Alg. 1 typi
al runtime is about O(|Γ (DX)||Γ (DU )|) as 
on�rmed by ourexperimental results (Se
t. 7, Fig. 3(b)).Remark 4. Alg. 1 is expli
it in the (abstra
t) states and a
tions of Ĥ and sym-boli
 with respe
t to the auxiliary variables (modes) in the transition relation
N of H. As a result our approa
h will work well with systems with just a fewstate variables and many modes, our target here.Algorithm 1 Building 
ontrol abstra
tionsInput: A quantization Γ , a DTLHS H = (X,U, Y,N), a 
ontrol problem (H, I , G).fun
tion minCtrAbs(Γ , H, I , G):1. N̂ ← ∅, Î ← ∅, Ĝ← ∅, let X = [x1, . . . , xn℄, X ′ = [x′

1, . . . , x
′

n]2. for all ŝ ∈ Γ (DX) do3. if (MILP (min, 0, I(X) ∧ Γ (X) = ŝ) is feasible) then Î← Î ∪ {ŝ}4. if (MILP (min, 0, G(X) ∧ Γ (X) = ŝ) is feasible) then Ĝ← Ĝ ∪ {ŝ}5. for all û ∈ Γ (DU ) do6. if (MILP (min, 0, N(X,U, Y,X ′) ∧ Γ (X) = ŝ ∧ Γ (U) = û ∧ X ′ /∈ DX) isfeasible) then 
ontinue7. if SelfLoop(ŝ, û) then N̂ ← N̂ ∪ {(ŝ, û, ŝ)}8. for all i = 1, . . . n do9. mi ← x′∗

i , where X ′∗ = [x′∗

1 , . . . , x′∗

n ] is a solution to the MILP (min, x′

i,
N(X,U, Y,X ′) ∧ Γ (X) = ŝ ∧ Γ (U) = û)10. Mi ← x′∗

i , where X ′∗ = [x′∗

1 , . . . , x′∗

n ] is a solution to the MILP (max, x′

i,
N(X,U, Y,X ′) ∧ Γ (X) = ŝ ∧ Γ (U) = û)11. let Over_Img(ŝ, û) = ∏

i=1,...n
[γxi

(mi), γxi
(Mi)]12. for all ŝ′ ∈ Over_Img(ŝ, û) do13. if ŝ 6= ŝ′ ∧ (MILP (min, 0, N(X,U, Y,X ′)∧Γ (X) = ŝ∧Γ (U) = û∧Γ (X ′) =

ŝ′) is feasible) then14. N̂← N̂ ∪ {(ŝ, û, ŝ′)}15. return (N̂ , Î, Ĝ)6.2 Control Software With a Guaranteed WCETFrom 
ontroller K̂ 
omputed by QKS (see Se
t. 6) we generate our 
orre
t-by-
onstru
tion 
ontrol software (obdd2
(K̂)). This is done (fun
tion obdd2
)by translating the OBDD representing K̂ into C 
ode along the lines of [29℄.From su
h a 
onstru
tion we 
an easily 
ompute the Worst Case Exe
utionTime (WCET) for our 
ontroller. We have: WCET = nrTB, where r [n℄ is thenumber of bits used to represent plant a
tions [states℄ and TB is the time neededto exe
ute the C instru
tions modelling the if-then-else semanti
s of OBDDnodes as well as edge 
omplementation (sin
e we use the CUDD pa
kage).Let T be the 
hosen sampling time. Then it must be: WCET ≤ T . Thatis, nrTB ≤ T . This equation allows us to know, before hand, the realizability(e.g. with respe
t to s
hedulability 
onstraints) of the (to be designed) 
ontrolsoftware. For example, let TB = 10−7se
s, n = 10 and r = 1. Then, the for thesystem sampling time we have: T ≥ 10−6 = WCET .



127 Experimental ResultsWe implemented QKS (Se
t. 6) in C, using GLPK to solve MILP problems andthe CUDD pa
kage for OBDD based 
omputations.Our experiments aim at evaluating e�e
tiveness of: 
ontrol abstra
tion (Q̂,Se
t. 6.1) generation, synthesis of OBDD representation of 
ontrol law (K̂,Se
t. 6), 
ontrol software (obdd2
(K̂), Se
t. 6.2) size and guaranteed opera-tional ranges (i.e. 
ontrollable region). Note that 
ontrol software rea
tion time(WCET) is known a priori from Se
t. 6.2 and its robustness to parameter vari-ations in the 
ontrolled system (H) as well as enfor
ement of safety bounds onstate variables are an input to our synthesis algorithm (e.g. see Ex. 1, 2).We present experimental results obtained by using QKS on the bu
k DC-DC
onverter des
ribed in Ex. 2. We denote with H the DTLHS modeling su
h a
onverter. We set the parameters of H as follows: T = 10−6 se
s, L = 2 · 10−4H, rL = 0.1 Ω, rC = 0.1 Ω, R = 5 ± 25% Ω, C = 5 · 10−5 F, Vi = 15 ± 25% Vand require our 
ontroller to be robust to foreseen variations (25%) in the load(R) and in the power supply (Vi).The model in Ex. 2 already a

ounts for variations in the power supply.Variations in the load R 
an be taken into a

ount along the same lines, how-ever mu
h more work is needed (along the lines of [15℄) sin
e H dynami
s isnot linear in R. This adds 11 auxiliary boolean variables to the model in Ex.2. Details are in [23℄. For 
onverters, safety (as well as physi
al) 
onsiderationsset requirements on admissible values for state variables. We set: DiL = [−4, 4],
DvO = [−1, 7]. Note that robustness requires that, notwithstanding nondetermin-isti
 variations (within the given toleran
es) for power supply and load, the syn-thesized 
ontroller always keeps state variables within their admissible regions.We use the following bounds for auxiliary variables: Diu = DiD = [−103, 103]and Dvu = DvD = [−107, 107]. The initial region I and goal region G are as inEx. 5. Finally, the DTLHS 
ontrol problem we 
onsider is P = (H, I, G). Notethat no (formally proved) robust 
ontrol software is available for bu
k DC-DC
onverters.Table 1. Bu
k DC-DC 
onverter (Se
t. 3): 
ontrol abstra
tion and 
ontroller synthesisresults. Experiments run on an Intel 3.0 GHz Dual Core Linux PC with 4 GB of RAM.Control Abstra
tion Controller Synthesis Total
b CPU Ar
s MaxLoops LoopFra
 CPU OBDD CPU8 2.50e+03 1.35e+06 2.54e+04 0.00323 0.00e+00 1.07e+02 2.50e+039 1.13e+04 7.72e+06 1.87e+04 0.00440 1.00e+02 1.24e+03 1.14e+0410 6.94e+04 5.14e+07 2.09e+04 0.00781 7.00e+02 2.75e+03 7.01e+0411 4.08e+05 4.24e+08 2.29e+04 0.01417 5.00e+03 7.00e+03 4.13e+05We use a uniform quantization dividing the domain of ea
h state variable(iL, vO) into 2b equal intervals, where b is the number of bits used by AD 
on-version. We 
all the resulting quantization Γb. The quantization step is ‖Γb‖ =

23−b.For ea
h value of interest for b, following Se
t. 6, we 
ompute: (1) a (
lose tominimum) Γb 
ontrol abstra
tion Ĥb for H, (2) the mgo strong solution K̂b for
P̂b = (Ĥb, ∅, Γb(G)), (3) K̂b 
ontrollable region D̂b = Dom(K̂b), (4) a Γb QFC



13solution Kb(s, u) = K̂b(Γb(s), Γb(u)) to the 
ontrol problem Pb = (H, Γ−1
b (D̂b),

G). Note that, sin
e we have two quantized variables (iL, vO) ea
h one with bbits, the number of states in the 
ontrol abstra
tion is exa
tly 22b.Tab. 1 shows our experimental results. Columns in Tab. 1 have the followingmeaning. Column b shows the number of AD bits. Columns labelled ControlAbstra
tion show performan
es for Alg. 1. Column CPU shows Alg. 1 time (inse
s) to 
ompute Ĥb. Column Ar
s shows the number of transitions in Ĥb. Inorder to assess e�e
tiveness of fun
tion SelfLoop (Se
t. 6.1) 
olumn MaxLoopsshows the number of loops in the maximum Γb 
ontrol abstra
tion for H, while
olumn LoopFra
 shows the fra
tion of su
h loops in Ĥb. Columns labelled Con-troller Synthesis show the 
omputation time in se
s (CPU) for the generationof K̂b, and the size of its OBDD representation (OBDD). The latter is also thesize (number of lines) of the C 
ode for our synthesized implementation of K̂b(obdd2
(K̂b)). Finally, 
olumn Total shows the total 
omputation time in se
s(CPU) for the whole pro
ess (i.e., 
ontrol abstra
tion plus 
ontroller sour
e 
odegeneration). All 
omputations were 
ompleted using no more than 200MB. Asfor the value of µ (see Theor. 1), we have that µ =Unk for b = 8, and µ =Solin all other 
ases.From Tab. 1 we see that 
omputing 
ontrol abstra
tions (i.e. Alg. 1) is themost expensive operation in QKS (see Se
t. 6) and that thanks to fun
tionSelfLoop K̂b 
ontains no more than 2% of the loops in the maximum Γb 
ontrolabstra
tion for H.For ea
h MILP problem in Alg. 1, Fig. 3(b) shows (as a fun
tion of b) thenumber of MILP instan
es solved while Fig. 3(a) shows (as a fun
tion of b) theaverage CPU time (in se
onds) spent solving a single MILP problem instan
e.CPU time standard deviation is always less than 0.003. The 
orresponden
ebetween the 
urves in Figs. 3(b), 3(a) and Alg. 1 is the following. MILP1 refersto line 3 (and represents also the data for the twin MILP in line 4). MILP2refers to MILP problems in fun
tion SelfLoop (line 7). MILP3 refers to line 9(and represents also the data for the twin MILP in line 10). MILP4 refers to line13 and MILP5 refers to line 6.From Fig.3(a) we see that the average time spent solving ea
h MILP in-stan
e is small. The lower [upper℄ bound to the number of times MILP4 (i.e.the most 
alled MILP in Alg. 1) is 
alled (#MILP4) is |Γ (DX)||Γ (DU )| = 22b+1[|Γ (DX)|2|Γ (DU )| = 24b+1℄ (see Remark 3). From Fig. 3(b) we see that #MILP4is quite 
lose to |Γ (DX)||Γ (DU )| = 22b+1. This shows e�e
tiveness of our heuris-ti
 to tightly overapproximate Over_Img (lines 9�11 of Alg. 1).One of the most important features of our approa
h is that it returns theguaranteed operational range (pre
ondition) of the synthesized software (Theor.1). This is the 
ontrollable region D returned by QKS in Se
t. 6. Fig. 3(
)shows the 
ontrollable region D for K10 along with some traje
tories (with timein
reasing 
ounter
lo
kwise) for the 
losed loop system. Sin
e for b = 10 we have
µ = Sol, we have that I ⊆ D (see also Fig. 3(
)). Thus we know (on a formalground) that 10 bit AD (‖Γ10‖ = 2−7) 
onversion su�
es for our purposes. The
ontrollable region for K11 turns out to be only slightly larger than the one for
K10.



14
0

0.0009

0.0018

8 9 10 11
0

0.0009

0.0018

8 9 10 11

MILP1
MILP2
MILP3

MILP4
MILP5(a) Average exe
utiontime for MILP prob-lems in Alg.1 216

230

245

8 9 10 11
216

230

245

8 9 10 11

24b+1

#MILP1
#MILP2
#MILP3
#MILP4
#MILP5

22b+1(b) Number of 
alls toMILP problems inAlg.1 (
) Controllable region with b =
10 bits (δ stands for �don't
are�)Fig. 3. QKS performan
e8 Con
lusionWe presented an e�e
tive algorithm that given a DTLHS H and a quantizations
hema returns a 
orre
t-by-
onstru
tion robust 
ontrol software K for H alongwith the 
ontrollable region R for K. Furthermore, our 
ontrol software hasa WCET linear in the number of bits of the quantization s
hema. We haveimplemented our algorithm and shown feasibility of our approa
h by presentingexperimental results on using it to synthesize C 
ontrollers for the bu
k DC-DC 
onverter. Our approa
h is expli
it in the quantized state variables andsymboli
 in the system modes. A

ordingly, it works well with systems with asmall number of (
ontinuous) state variables and possibly many modes. Manyhybrid systems fall in this 
ategory.Future resear
h may investigate fully symboli
 approa
hes, e.g., based onFourier-Motzkin (FM) variable elimination, to 
ompute 
ontrol abstra
tions.Sin
e FM tools typi
ally work on rational numbers this would also have thee�e
t of avoiding possible numeri
al errors of MILP solvers [24℄.A
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