URL: http://www.elsevier.nl/locate/entcs/volume??.html 14 pages

A Type Inference Algorithm for
Secure Ambients

Franco Barbanera? Mariangiola Dezani-Ciancaglini?

Ivano Salvo? and Vladimiro Sassone®

& Dip. di Matematica e Informatica, Univ. di Catania
e-mail: barba@dmi.unict.it

b Dip. di Informatica, Univ. di Torino
e-mail:{dezani, salvo}@di.unito.it

¢ COGS, University of Sussex

e-mail: vs@susx.ac.uk

Abstract

We present a bottom-up algorithm which, given an untyped process P, calculates
the minimal set of constraints on security levels such that all the actions during
a run of P can be performed without violating the security level priorities. Our
algorithm appears as a preliminary step in order to use type systems to ensure
security properties in the web scenario.

1 Introduction

The Ambient Calculus [CG98] has been recently successfully proposed as a
model for the Web and the sort of (mobile) computations that can take place
inside it. In such a calculus an ambient provides the abstraction for a named
location: it may contain processes and sub-ambients, while m-calculus-like
processes inside ambients are a natural representation of (concurrent) compu-
tations. A process may:

* communicate in an asynchronous way with a process in the same ambient;
* cause the enclosing ambient to move inside or outside other ambients;

* destroy the boundary of a sub-ambient, causing the contents of the sub-
ambient to spill into the parent ambient.

In order to have a richer algebraic theory, in the Safe Ambient Calcu-
lus [LLS00] the activity of processes is better controlled by means of coactions.
The basic idea is that an ambient can be traversed or opened if at least one
process inside it agrees.

A standard way of forbidding unwanted behaviors is to impose a type disci-
pline. Different type disciplines have been proposed for the Ambient Calculus:

Work partially supported by MURST 40% TOSCA Project.
(©2001 Published by Elsevier Science B. V.

AL A LE,,y A HAIIN Ly ALV A,y ARSI

in [CG99] the types assure the correctness of communications. The type sys-
tem of [CGGY9] guarantees also that only ambients which are declared as
mobile will move and only ambients which are declared as openable will be
opened. Adding subtyping allows us to obtain a more flexible type disci-
pline [ZimOOb]. Lastly, by means of group names [CGGO00], the type of an
ambient n controls the set of ambients n may cross and the set of ambients
n may open. Moreover the possibility of creating fresh group names gives a
flexible way of statically preventing unwanted propagation of names.

A powerful type discipline for the Safe Ambient Calculus has been devised
in [LS00]. The main features are the control of ambient mobility and the
removing of all grave interferences, i.e. of all non-deterministic choices between
logically incompatible interactions. This is achieved by means of types which
can be derived only for single-threaded ambients, i.e. ambients which at every
step offer at most one interaction with external or internal ambients. The
secure safe ambient calculus of [BCO1] is a typed variant of Safe Ambients in
which ambient types are protection domains expressing behavioral invariants.

Security plays a crucial role in the theory and practice of distributed sys-
tems. In [DCS00] a type discipline is proposed for safe mobile ambients, which
is essentially motivated by its ensuring security properties. The type of an am-
bient name specifies a security level s and it is required that an ambient at
security level s can only be traversed or opened by ambients at security level at
least s. Two independent partial orders are defined on security levels for open-
ing and movement rights. A general analysis of how encoding the mandatory
security policy inside Ambient Calculus is carried out in [BCCO1b]: difficulties
of finding a natural interpretation of basic notions like read and write access
have led the authors to introduce a variant of Ambient Calculus, Boxed Am-
bients [BCCO01a].

In this work, we present a bottom-up algorithm for the type system intro-
duced in [DCS00], which, given an untyped process P, calculates the minimal
set of constraints on security levels (i.e. the minimal partial order on security
levels) such that all the actions during a run of P can be performed with-
out violating the security level priorities. Such an algorithm is proved to be
sound and complete. Moreover it is shown to be consistent with the reduc-
tions of the calculus, that is the constraints computed on a reduct of a process
are related to those computed on the process itself through an embedding of
constraints relation. In a sense, a reduction makes the computed constraints
loosened. Lastly we show that our algorithm gives some information about
group typing as defined in [CGGO0].

In order to simplify the definition of the algorithm and its analysis, we
drop coactions, the distinction between movement and opening rights, and
we impose some restrictions on the Ambient Calculus syntax. The correctness
and completeness (and its ‘minimality’) are proved with respect to a simplified
version of the type system in [DCS00].

Except for the distributed system calculus defined in [BCO1], type systems
for ambients need to consider the network as a whole, globally typed object.
This scenario is unrealistic as a model for the web, where agents typically

2

ALV A LE,,y A A IIN Ly ALV A,y ARSI

interact with only partial knowledge of each other. And it is even more unre-
alistic when we try to model security properties, because attackers need not
obey our type system’s rules. Algorithms such as ours move a step towards
an effective use of type systems to ensure security properties in the global
computing scenario, as they can infer useful information even when partial
or no type assumptions are available. More precisely, ambients can derive a
minimal set of constraints on security levels necessary for an untyped process
to be well-typed, and on the basis of such information, they can then decide
whether or not to allow the process in, and with what privileges.

2 Calculus and Types

We focus on a version of the Ambient Calculus where only names can be
communicated. Under this hypothesis the syntactic distinction between ex-
pressions and processes becomes redundant, and the syntax can be given as in
Fig. 1, where n ranges over the set AV of ambient names. It is worth remark-
ing that our removing capability passing does not affect the expressiveness of
the Ambient Calculus, as shown in [Zim00a] for even more severe restrictions.
Reduction is the substitutive binary relation on terms generated by the rules
in Fig. 1. We use (m open n) (resp. (m in n) and (m out n)) to indicate a
(Red open)-reduction (resp. (Red in) and (Red out)) that targets ambient
n and happens inside ambient m.

The structural congruence = is defined as the least congruence such that:

* | and 0 form a commutative monoid up to =;

«!P=1P|P; (vn)0 =0; (vn)(P | Q) = (vn)P | Q (for n not free in Q);
and (vn)(vm)P = (vm)(vn)P.

Although it is possible to consider refined notions of structural congruence, as
e.g. in [CGO0], their adoption here is orthogonal to our development.

As mentioned earlier, we shall present a type assignment system that en-
ables to infer judgments on processes expressing their abiding to constraints on
permissions to open or cross boundaries. Then we shall present an algorithm
to compute the minimal set of constraints.

We consider a set of type-level names, the security levels, U, and a set
of type variables VarT, ranged over by «, o/, ..., together with the constant
type Shh that represent the absence of message exchanges. We shall use
metavariables S, O, and O to denote, respectively, subsets, preorders and
partial orders on U, and write s <g ' for (s,s') € O.

Definition 2.1 (AmsienT Types aNDp Scuemes) Types are generated by
T:=6|s[T],
where 0 ranges over VarT U {Shh}, and s over U.

Ambient types, denoted by T,T’,..., are types that contain no elements of
VarT. The set of ambient types will be indicated by 7.

Ambient type schemes, denoted by 7,0,..., are types in which Shh does not
occur. The set of Ambient type schemes is indicated by TS.

3

B

bt §

AL AL

4y MRV RS

N LA SLN

P.Q =

out n.P

PlQ
(x).P

Processes
(inactivity)
(can exit out of n)
n[P] (ambient)
(parallel)
(

input action)

inn.P can enter into n)

open n.P (can open n)

'P

(n)

(
(

(vn)P (restriction)
(replication)
(

output action)

P — Q =
P —Q =

P —Q =

P=P P — Q Q=¢Q

nlinm.Q [Q]| m[R] — mqnQ|QT|]
mnfout m.Q | Q]| R — nlQ | Q'] | m[R)
open n.Q [n[QT — Q| Q'
(n) | (x).P — P{z:=n}

PR — Q|R

(vn)P — (vn)@

n[P] — n[Q)

=

(Red in)
(Red out)
(Red open)
(Red 1/0)
(Red par)
(Red res)
(Red amb)
(

P — Q@ Red =)

Fig. 1. Processes and Reduction

Typing environments will be formalised as partial functions from names
to types. Reflecting the classification of types introduced above, we shall use
E, E, and £ to denote, respectively, NN =~ T, N —~ TS, and N' — T. Also,
if £(n) = s[T], then ng will denote s; and if E and E’' have disjoint domains,
then E - E’ stands for partial function formed as their union. In particular, we
write E-n: T when E' = {n, T}.

In the following we shall give precise meaning and use the above elements
tuples either in the form (£,S,O,T) (for the type assignment system) or
(E,S,0,T) (for the type inference algorithm). For the time being, we give
the definition below on a general sort of tuples that capture all cases of interest.

Definition 2.2 (Rrration <) The binary relation < on tuples of the shape
(E,S,0,T), with S C dom(0O) is defined by

(E,S,0,T) «

(E

LS00 T)

if there exists ¢: (dom(O) — dom(0O")) U (VarT — T) such that

« o(E) CE,

e Vse S 3 e Sp(s) <o s

* ¢ is monotone as a preorder map O — O';

cp(T)=T.

ALV A LE,,y A A IIN Ly ALV A,y ARSI

3 An assignment system for security levels constraints

Our aim is to infer judgments on security policies expressed by permissions
to cross boundaries. These are granted according to security levels associ-
ated with ambients. We use a mapping £ to describe the type associated to
each ambient n. Ambient types describe the security level of ambients and,
recursively, the security levels of the names that can be exchanged inside n.
The information provided by £ is complemented by a partial order O that
describes the priority relations between security levels that the given security
policy dictates. The central judgment in our assignment system sounds as
‘P abides by the constraints £ and O’, whose meaning can be informally ex-
plained as: if, in any possible reduction sequence of a process abiding £ and
O, a reduction makes an ambient n (resp. a process inside n) enter or exit
(resp. open) an ambient m, then the security level associated to n is not less
than the one associated to m, that is ng >p me.

Definition 3.1 Process P abides by the constraints £, O, writtend £, O k;
P, if for all sequences P —* terminating with (n in m), (n out m), or
(n open m) reductions, we have ng >o mg.

The system proposed in Fig. 2 is essentially a simplification of the system
of [DCS00]. Tts purpose is to infer all possible judgments £, O b, P. As a
matter of fact, we derive judgments that are more informative, viz. £, O - P :
S, T, where S C dom(O) and S, T is a process type as defined below.

Definition 3.2 (Procrss Tvpes) A process type F is a pair (S, T), with S C
Uand T e T.

The first component of process types contains the security levels of ambient
names involved in capabilities possibly performed by a process; the second is
the ambient type of the names exchanged by processes. Concerning the rules,
(inn k), (out n) and (open n F) verify that the security level s of the
target ambient name n is bounded by at least one security level in S. Further
to that, (open n) checks that the type T of the ambient names exchanged
by P and inside n coincide. Rule (Proc Amb), instead, verifies that:

o all the security levels of S (which are those of the capabilities possibly
performed by P) are bounded by the security level s of the ambient n;

* the type T of the ambient names exchanged by P and inside n coincide.

3.1 Properties

As to be expected, system F assigns the same type to structurally congruent
processes, and such types are preserved under reduction. The proofs here
proceed by rule induction on = and —.

Lemma 3.3 (Suiect ConGrueNce oF) If P = Q and £,0 - P : F, then
£OFQ:F.

Theorem 3.4 (Sussect Repuction oF F) IfE,O0 F P . ST and P — @,
then £,0F Q:S,T.

ALV A LE,,y A A IIN Ly ALV A,y ARSI

En:T ,OFP:S5T

(Proc 0 F) (Proc Res)
£0F0:5T E,O0F (vn)P:S,T
EOFP:ST ng=s 3 €8s<ps
(inn)
E,O0Finn.P: 8T
EOFP:ST ng=s 3Is'€Ss<ps
(out n)

E,OFoutn.P:S51T

E,OFP:8T En)=s[T] 3Fs'e€Ss<ps

(openn)
E,OFopenn.P:S5T

EOFP:S5T &n)=s[T] s <ps, foralls' €S

— (Proc Amb F)
E,O0Fn[P]:S,T

0P ST £0FQ:ST £,0-P: 8T
(Proc Par F) ——————— (Proc Repl I)
£EO0FPIQ:ST E,OHP:S,T
E-x:T.OFP:S5T
(Proc Input F) (Proc Output)
E,O0F (x).P:S5T E-n:T,OF(n):ST

Fig. 2. Type Assignment System

To relate the type assignment system to a type inference algorithm, we
find it useful to derive a weakening lemma that uses the relation < introduced
in Definition 2.2. The proof is by induction on deductions.

Lemma 3.5 (Weakening) If (£,0,8,T) < (&', O, S, T"), then
EOFP:ST = &,0+-P:58T.

We close this section by stating formally that our type assignment system
can type a process P w.r.t. given environment and partial order if and only
if P abides by them (according to Definition 3.1). The proof of the ‘if’ part

is by induction on reductions and that of the ‘only if’ part by induction on
derivations.

Theorem 3.6 (SounnnEss aND ComPLETENESS OF F) £, O b P if and only if
there exist S,'T" such that £,0F P :S,T.

4 A minimal constraints algorithm

In this section, we address the problem of finding, for a given, untyped process
P, a ‘minimal’ set of constraints that P abides by.

6

ALV A LE,,y A A IIN Ly ALV A,y ARSI

Definition 4.1 (Minivar Errects) A minimal effect, F is a tuple (E, S, 0O, 1)
whose components are as described in the notational conventions of Section 2.

The bottom-up algorithm described in Fig. 3 enables to infer judgments
of the shape
IFP:F
where P is a process, and F is a minimal effect. If the algorithm computes a
minimal effect (F, S, O, 1) for a process P, this will be such that:
» FE contains the inferred type assumptions about free names of P,

* Sincludes security levels associated to the names involved in the capabilities
possibly performed by P,

* O represents the minimal order relation on security levels for P to be well-
typed, and
» 7 represents the ambient type scheme of the names exchanged by P.
Before discussing the rules in detail, let us remark that, even though we
finally express the constraints that make P typeable as a partial order, we
find it convenient to work with preorders, as they simplify considerably the

rules of Fig. 3. In particular, they allow us to define the following operations
on effects independently of their environments.

Definition 4.2 (OreraTioNs oN PreorDERS) Let O, 0" C U x U be preorders
of security levels.

We define O @ O’ to be the preorder induced by the union of O and O’, i.e.
the transitive closure of O U O'.

For S a set of security levels, and s a security level, ST is the preorder where
s is added to S as the top element. Formally:

S™ ={(s,8)}U{(s,s) | s € SYuU{(s,s) | s €S}
We use O[s < '] for O @& {(s,s")} and O[s = '] for O[s <

s'|[s" < s].
Let 0 = s1[...spfa]...] and 7 = s[... s/ [7]...] be ambient type schemes.
We define
ocifn>m
max(o, 7) =
Tifn<m

Definition 4.3 (UniFicaTioN OF AMBIENT TYPE ScuiEMES) For a # 7, let 0 =

si[...spla)..] and 7 = s}[... sl [y]...] be ambient type schemes, and assume
max(o,7) = 7. The unification of o and 7 produces the set of equations
s; = s;, and the substitution {a <= s, ,[...s;,[7]...]}. We shall use:

 E{o = 7} to denote the environment obtained from FE, by replacing all
occurrences of o with), [...s],[7]...].

» Olo = 7] to denote the preorder O[s; = s}] - [s, = s,].

The unification of ambient type schemes is central in our construction to
express the constraints involved in parallel composition of processes — rule
(Proc Par) in Fig. 3 where we need to compose preorders equating the

7

AR AL ALNILE,, A AN,y ALV S, AU

FP:(E,S,0,1)
Ik (vn)P: (E~n,S,0,T)

« fresh
(Proc Res IF)

(Proc 0 IF)

IF0:(2,0,0, «a)

FP:(FE,S0,7) X(n)=s[lo] X=E"

(inn IF)
IFinn.P:(X,SU/{s},O[s = s],7)
FP:(E,S, 0,7y X(n)=slo] X=E"
(out n IF)
IFout n.P: (X,SU{s},O[s = s],7)
FP:(E,S,0,7) X(n)=slo] X=E"
(openn IF)

IFopen n.P: (X[o =171],SU{s},Ols = s|[o = 7], max(o, 7))

IFP:(FE S 0,7) X(n)=slo] X=FE" «fresh
(Proc Amb IF)

I n[P]: (X[o =1],9, (8T ®0)[o = 1],a)

-P:(FE,S,0,7) FQ:(FE S, 0 0)
(Proc Par IF)
FP|Q:((E-EY{o=1}5U8. (0 0o = 7], max(o,7))
BLE
FP:F a fresh
(Proc Output IF)

(Proc Repl IF)
IHP:F - (n) :

(n:a,0,0,)

-P:(E,S,O,7) E%z)=0

(Proc Input IF)
Ik (z).P:{((E~x){oc =7},S,0[0c = 7], max(o, 7))

Fig. 3. Minimal Constraints Algorithm

security levels associated to the same ambient names. This is formalized as:

O @ OI = (O D Ol)[E('n) - El(n)]nedom(ﬁ)ﬁdom(ﬁ")
E,E'
Finally, we will be building environments by means of the operations below.

s E if n € dom(FE)
E n:sla] ifn ¢ dom(E) with s, « fresh
E\{n:E(n)} ifn € dom(E)
Exn=

E if n & dom(F)

Moreover, we extend the notation E - E’ to non necessarily disjoint F and
E' by defining (E - E')(n) = max(E(n), E'(n)) if n € dom(FE) N dom(E").
8

ALV A LE,,y A A IIN Ly ALV A,y ARSI

IF0:(2,9,9,a)

(D1)
IF open m.0 : ({m : so[aq]}, {(s2,s2)}, {s2}, @)

IF0:(2,0,9,a)
IFout n.0: ({n: silai]}, {(s1,s1)}, {s1}, o)

IF m[out n.0] : ({n: si[ai],m : s3[as]}, {(s1,$1), (s3,53), (s2,53)}, D, as)

(D2)

(D1) (D2)
IEPQ: ({n:sifar],m: sofasl}, {(s1,51), (s2,52), (51, 52) }, {s2}, o)
IFn[P|Q]: ({n:silai],m: saasl}, {(s1,81), (s2,82), (51, 52), (s2,81)}, D, ag)

Fig. 4. Example of type inference (P = open m.0 and @ = m[out n.0])

Getting back to Fig. 3, we can now discuss the details of the formal defini-
tion of the algorithm. At the beginning, as formalized in the (Proc 0) rule, no
relation among security levels exists. The environment is empty and there is
no information about names exchanged or involved in capabilities potentially
performed by the processes. A in n or a out n capability cause the name n to
be inserted in the environment, if not already present, and the security level
associated to n to be inserted in the set of effects S. (Notice the use of X in the
rules to indicate that the same level is associated to n both in premises and in
the conclusions.) In the typing of a process of the shape open n.P, we have to
take care that, after the opening of the ambient n, processes running inside n
will run in parallel with P, and hence we have to unify the type exchanged by
P with the type exchanged inside n. According to our security policy, to infer
the type of a process of the shape n[P], we need to impose that the security
level of n is greater or equal to those of names involved in capabilities possibly
performed by P. When two processes P and () are put in parallel, we need
to unify types exchanged by P and (), and compute an order among security
levels, which contains those calculated for P and (). In the typing of an input
action, (z).P, we need to unify the type of the expected value with the type
of messages exchanged by P. The algorithm has to take care of scope rules
of the calculus, removing from the environment names which become bound
because of an input action or a restriction.

At the end, we obtain associations between free ambient names and type
schemes in the environment and a preorder relation among security levels.
Figure 4 gives an example of derivation.

4.1 Properties

As for the type assignment system, our algorithm enjoys some of the expected
properties: it infers isomorphic effects for structural congruent processes; by

9

ALV A LE,,y A A IIN Ly ALV A,y ARSI

reduction, the minimal constraints of a process get loosened, because order
constraints depend on the potential execution of capabilities, and performed
capabilities disappear during reduction. In the following definitions we for-
malize the notion of isomorphic effects and loosened constraints. We start by
lifting functions from sets to environments and ambient type scheme.

Definition 4.4 For S, 5" C U, a map ¢: (S — S") U (VarT — TS8) defines
maps Lo : TS — TS and "¢ ™": Env — FEnv as follows

Lpa(a) = p(a); Lpa(s[T]) = w(s)[Lpa(T)]
"o (E)=rpioFE.

In the following we shall omit explicit mention of . _and "_".

Definition 4.5 (Partiar OrpEr Corraprse) For F = (E,S O, 1) an effect, its
partial order collapse is the effect F= = (E/=,S/=,0/=,7/=) where _/= is a
quotient map ! for the equivalence relation = =def <0 N >¢. For the sake of
readability we will denote F— with F and the tuple (E/=, S/=,0/=,7/=) with
(E,S,0,7).

Note that partial order collapses are a special kind of effects, since their
preorder component is actually a partial order. We call them ordered effects.
Ordered effects are relevant to our development because, as it will be evident
shortly, they represent the essence of effects and provide a bridge to ambient
types. In particular, if our rules allow to infer IF P : F, then the essential
information given by our algorithm is contained in F—.

Definition 4.6 (THE RELATION X ON OrDERED ErrecTs) Let F = (E,S,0,7)
and F' = (E',S",0',7") be ordered effects. We say that F 0x F' if F < F' (as
defined in Definition 2.2) via a map ¢ which is an isomorphism between S
and S’ and between O and O'.

Definition 4.7 (ErrrcTs INEQUALITIES AND TsomorpHIisM) Effect F is refined by
effect F/, notation F < F', if F— <« FL. Effect F is isomorphic to effect F',
notation F = F'| if F— b FL.

Theorem 4.8 (Concruence) If P=Q, |k P:F and - Q : F', then F = F'.

As stated formally by the following theorem, the system I infers an effect
for each well-formed process: at worst, all security levels could be equated,
making our security policy not relevant.

Lemma 4.9 (TerMmINATION) For every P there exists F, unique up to =2, such
that I P : F.

Theorem 4.10 (LooseniNG BY rREDUCTION) If I P : F, and P — @, and
IFQ:F, then F < F.

Proof. We give a concise proof which stems from relationships between sys-
tems - and I, discussed in the next section (Theorems 5.2 and 5.3).

! We convene that _/= chooses a canonical representative for each class and maps security

levels accordingly, as the canonical quotient map x — [z]/= would not yield an effect for
trivial reasons.

10

ALV A LE,,y A A IIN Ly ALV A,y ARSI

Let F=(E,S,O,7) and F' = (E', S, O',7'). We have that

I+ P:(E,S,0O,T) FQ:(E', SO 1"
(by Th. 5.2) ﬂ W (by Th. 5.3)
Ok —— P 0F Q57

where, according to Theorem 5.3, (F*,§, 0,7 4 (E S,0,7*). Tt easily
follows that (E,S,0,7) < (E',S",O', 7"). O

One could argue that it would be quite natural to expect the statement
of the Loosening by reduction Theorem to hold for a stronger version of the
relation <, namely the one obtained by adding, in the second condition on ¢
of Definition 4.6, the requirement of ¢ to be injective. This, however, turns
out to be impossible, intuitively because by performing a reduction we make
the number of capabilities in a process decrease. It is obvious that the fewer
the capabilities in a process, the fewer the pairs in the preorder inferred by
our algorithm. However, to have a smaller preorder does not imply to get
a smaller corresponding partial order. Then, roughly, by reduction we get
smaller preorders, but not necessarily smaller corresponding partial orders.
This is better explained by the following example. Let us consider the process

P = njopen m.0 | m[out n.0]].

The partial order of constraints for P is simply {(s,s)}, with ng = s and
mg = s, whereas the algorithm computes {(s1, s1), (S2, S2), (81, S2), (S2, 51) },
with ng = s; and mg = s (see Figure 4). If we reduce P via a (Red open)
reduction, we get

n[out n.0]

It is not difficult to see that the partial order of constraints is bigger for this
process than for P. In fact it is {(s1, s1), (S, S2), (S1, S2)}, coming out of a
preorder computed by the algorithm as {(s1, s2), (s1, 1), (S92, $2) }.

5 Correctness and Minimality

In this section, we show that the algorithm is correct and complete with respect
to the type assignment system. Moreover, Theorem 5.3 asserts that the effect
computed by the algorithm refines (in the sense of Definition 4.7) any possible
typing in the type assignment system.

Definition 5.1 Let (-)*: VarT — T be the map such that a* = Shh, for all
a € VarT. We lift (-)" to type schemes and environments in the obvious way.

Theorem 5.2 (Correctness) If, for a process P, we have: |- P : (E,S,O,T)
then E°, O+ P : S, 7*, where (E,S5,0,7)=(E,S,0,7)-.

The order ‘calculated’ by the algorithm is miminal in the following sense.

Theorem 5.3 (Minvarity) Let I P : (E,S,0,7) and £,0 - P : S',T
Then (E°,S,0,7*) < (£,5",0,T).

11

ALV A LE,,y A A IIN Ly ALV A,y ARSI

Both theorems can be proved by induction on derivations. All cases are
quite simple, apart from that of rule (Proc Amb IF), which requires so technical
ingenuity.

6 Relations with group types

In this section we experiment about the relationships between types as con-
sidered here and the group types of [CGGO0]. We consider security levels
as group names, and do not distinguish between groups for opening and for
moving ambients. The syntax of group types is then

T := Shh | s[S, T).

Let GT stand for the set of group types. Due to lack of space we cannot
reformulated here the typing rules of [CGGO00] with the types in GT; suffices
it to say that there is no surprise in that, and the rules are as expected. We
denote by F¢ the type system so obtained.

Definition 6.1 Given a partial order O we define
So(s) ={s'| s <o s}, So(S) =[] So(s)
sES
and the mappings pp : 78 = GT, vp : T — GT such that

po(Shh) = Shh, po(slt]) = s[So(s), po ()],
vo(a) = Shh, vo(s[r]) = s[So(s), vo(T)].
We lift uo and v to environment as usual.

We can prove that = P : (E, S, O, 1) implies uo(E) Fg P : So(S), po(7)
where O is the partial order induced by the preorder O.

Lemma 6.2 £,0F P: S, T implies po(E) ¢ P : So(S), uo(T).

Proof. By induction on type derivations of . If the last rule applied is
(Proc Amb) let £,0 F n[P] : S”,T" be the conclusion. This implies that
for some S and T, we have derived the judgment £, O F P : S, T and that
E(n) = s[T'], with T = T" and s greater than every security level in S. Under
such conditions and by definition of Sp, we have that S C Sp(S) C So(s).
By weakening, we can derive the judgment £, O+ P : Sp(s),T. Applying the
induction hypothesis, the judgment uo(E) Fq P : So(s), no(T) is derivable
and po(E)(n) = s[So(s), po(T")] are derivable. Since T' = T", clearly implies
po(T) = pe(T"), we can conclude pup(E) g n[P]: So(S"), uo(T"). O

Theorem 6.3 |- P: (E,S,0,T) implies vo(E) Fq P : So(S), vo(T), where
O is the partial order induced by the preorder O.

Proof. Just by applying the correctness of the type inference algorithm with
respect to the type assignment system and the previous lemma. 0

12

ALV A LE,,y A A IIN Ly ALV A,y ARSI

7 Conclusions and Future Works

In the scenario we are considering an ambient can enter another when the
former has a greater priority. Although this is quite reasonable, one has to be
aware that once the ambient has entered its greater priority could enable it
to do, so to speak, whatever it likes. This is to be avoided if we wish to have
a more realistic, safer and thoroughly desirable scenario in which an ambient
manages to control what happens inside itself.

Reflecting on this, we are naturally led to consider the possibility for an
ambient to assign a safe security level to ambients crossing its boundaries
and, in general, to all its sub-ambients. Moreover the security level of an
ambient can increase when it received an ‘audit’ certificate or decrease when
it crosses an unsafe ambient. A distributed version of our type assignment
and algorithm can provide the right framework to address an extension of the
Ambient Calculus with capabilities allowing security levels modifications as
the ones suggested above.

References

[BCO1] Michele Bugliesi and Giuseppe Castagna. Secure safe ambients. In
Proceedings of the 28th ACM Symposium on Principles of Programming
Languages, pages 222 235. ACM Press, 2001.

[BCCO1a] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Boxed ambients.
In Benjamin Pierce, editor, Proceedings of Theoretical Aspects of
Computer Science, Lecture Notes in Computer Science. Springer-Verlag,
2001. To appear.

[BCCO1b] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Reasoning about
security in mobile ambients. In Kim G. Larsen and Mogens Nielsen,
editors, Proceedings of CONCUR 2001, volume 2154 of Lecture Notes in
Computer Science, pages 102—120. Springer-Verlag, 2001.

[CGY8] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice
Nivat, editor, FoSSaCS 1998, volume 1378 of Lecture Notes in Computer
Science, pages 140-155. Springer-Verlag, 1998.

[CGY99] Luca Cardelli and Andrew D. Gordon. Types for mobile ambients. In
POPL’99, pages 79-92, New York, NY, USA, 1999. ACM Press.

[CGO0] Luca Cardelli and Andrew Gordon. Anytime, anywhere. modal logics
for mobile ambients. In Proceedings of the 27th ACM Symposium on
Principles of Programming Languages. ACM Press, 2000.

[CGGY9] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types for
mobile ambients. In Jifi Wiederman, Peter van Emde Boas, and Mogens
Nielsen, editors, ICALP 1999, volume 1644 of Lecture Notes in Computer
Science, pages 230-239. Springer-Verlag, 1999.

13

ALV A LE,,y A A IIN Ly ALV A,y ARSI

[CGGO0] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient groups
and mobility types. In Jan van Leeuwen et al., editor, Theoretical
Computer Science: Ezxploring New Frontiers in Theoretical Informatics,
volume 1872 of Lecture Notes in Computer Science, pages 333-347.
Springer-Verlag, 2000.

[DCS00] Mariangiola Dezani-Ciancaglini and Ivano Salvo. Security types for safe
mobile ambients. In He Jifeng and Masahiko Sato, editors, Proceedings of
ASIAN 2000, volume 1961 of Lecture Notes in Computer Science, pages
215-236. Springer-Verlag, 2000.

[LS00] Francesca Levi and Davide Sangiorgi. Controlling interference in
ambients. In POPL’00, pages 352-364, New York, NY, USA, 2000. ACM
Press.

[Zim00a] Pascal Zimmer. On the expressiveness of pure mobile ambients. In
EXPRESS00, the Tth International Workshop on Ezxpressiveness in
Concurrency, Electronic Notes in Theoretical Computer Science. Elsevier,
2000.

[Zim00b] Pascal Zimmer. Subtyping and typing algorithms for mobile ambients.
In Jerzy Tiuryn, editor, FoSSaCS 2000, volume 1784 of Lecture Notes in
Computer Science, pages 375 390. Springer-Verlag, 2000.

14

