
Ele
troni
 Notes in Theoreti
al Computer S
ien
e ?? (2001)URL: http://www.elsevier.nl/lo
ate/ent
s/volume??.html 14 pagesA Type Inferen
e Algorithm forSe
ure AmbientsFran
o Barbanera,a Mariangiola Dezani-Cian
aglini,bIvano Salvob and Vladimiro Sassone
a Dip. di Matemati
a e Informati
a, Univ. di Cataniae-mail: barba�dmi.uni
t.itb Dip. di Informati
a, Univ. di Torinoe-mail:fdezani, salvog�di.unito.it
 COGS, University of Sussexe-mail: vs�susx.a
.ukAbstra
tWe present a bottom-up algorithm whi
h, given an untyped pro
ess P ,
al
ulatesthe minimal set of
onstraints on se
urity levels su
h that all the a
tions duringa run of P
an be performed without violating the se
urity level priorities. Ouralgorithm appears as a preliminary step in order to use type systems to ensurese
urity properties in the web s
enario.1 Introdu
tionThe Ambient Cal
ulus [CG98℄ has been re
ently su

essfully proposed as amodel for the Web and the sort of (mobile)
omputations that
an take pla
einside it. In su
h a
al
ulus an ambient provides the abstra
tion for a namedlo
ation: it may
ontain pro
esses and sub-ambients, while �-
al
ulus-likepro
esses inside ambients are a natural representation of (
on
urrent)
ompu-tations. A pro
ess may:�
ommuni
ate in an asyn
hronous way with a pro
ess in the same ambient;�
ause the en
losing ambient to move inside or outside other ambients;� destroy the boundary of a sub-ambient,
ausing the
ontents of the sub-ambient to spill into the parent ambient.In order to have a ri
her algebrai
 theory, in the Safe Ambient Cal
u-lus [LS00℄ the a
tivity of pro
esses is better
ontrolled by means of
oa
tions.The basi
 idea is that an ambient
an be traversed or opened if at least onepro
ess inside it agrees.A standard way of forbidding unwanted behaviors is to impose a type dis
i-pline. Di�erent type dis
iplines have been proposed for the Ambient Cal
ulus:Work partially supported by MURST 40% TOSCA Proje
t.

2001 Published by Elsevier S
ien
e B. V.

Barbanera, Dezani, Salvo, Sassonein [CG99℄ the types assure the
orre
tness of
ommuni
ations. The type sys-tem of [CGG99℄ guarantees also that only ambients whi
h are de
lared asmobile will move and only ambients whi
h are de
lared as openable will beopened. Adding subtyping allows us to obtain a more
exible type dis
i-pline [Zim00b℄. Lastly, by means of group names [CGG00℄, the type of anambient n
ontrols the set of ambients n may
ross and the set of ambientsn may open. Moreover the possibility of
reating fresh group names gives a
exible way of stati
ally preventing unwanted propagation of names.A powerful type dis
ipline for the Safe Ambient Cal
ulus has been devisedin [LS00℄. The main features are the
ontrol of ambient mobility and theremoving of all grave interferen
es, i.e. of all non-deterministi

hoi
es betweenlogi
ally in
ompatible intera
tions. This is a
hieved by means of types whi
h
an be derived only for single-threaded ambients, i.e. ambients whi
h at everystep o�er at most one intera
tion with external or internal ambients. These
ure safe ambient
al
ulus of [BC01℄ is a typed variant of Safe Ambients inwhi
h ambient types are prote
tion domains expressing behavioral invariants.Se
urity plays a
ru
ial role in the theory and pra
ti
e of distributed sys-tems. In [DCS00℄ a type dis
ipline is proposed for safe mobile ambients, whi
his essentially motivated by its ensuring se
urity properties. The type of an am-bient name spe
i�es a se
urity level s and it is required that an ambient atse
urity level s
an only be traversed or opened by ambients at se
urity level atleast s. Two independent partial orders are de�ned on se
urity levels for open-ing and movement rights. A general analysis of how en
oding the mandatoryse
urity poli
y inside Ambient Cal
ulus is
arried out in [BCC01b℄: diÆ
ultiesof �nding a natural interpretation of basi
 notions like read and write a

esshave led the authors to introdu
e a variant of Ambient Cal
ulus, Boxed Am-bients [BCC01a℄.In this work, we present a bottom-up algorithm for the type system intro-du
ed in [DCS00℄, whi
h, given an untyped pro
ess P ,
al
ulates the minimalset of
onstraints on se
urity levels (i.e. the minimal partial order on se
uritylevels) su
h that all the a
tions during a run of P
an be performed with-out violating the se
urity level priorities. Su
h an algorithm is proved to besound and
omplete. Moreover it is shown to be
onsistent with the redu
-tions of the
al
ulus, that is the
onstraints
omputed on a redu
t of a pro
essare related to those
omputed on the pro
ess itself through an embedding of
onstraints relation. In a sense, a redu
tion makes the
omputed
onstraintsloosened. Lastly we show that our algorithm gives some information aboutgroup typing as de�ned in [CGG00℄.In order to simplify the de�nition of the algorithm and its analysis, wedrop
oa
tions, the distin
tion between movement and opening rights, andwe impose some restri
tions on the Ambient Cal
ulus syntax. The
orre
tnessand
ompleteness (and its `minimality') are proved with respe
t to a simpli�edversion of the type system in [DCS00℄.Ex
ept for the distributed system
al
ulus de�ned in [BC01℄, type systemsfor ambients need to
onsider the network as a whole, globally typed obje
t.This s
enario is unrealisti
 as a model for the web, where agents typi
ally2

Barbanera, Dezani, Salvo, Sassoneintera
t with only partial knowledge of ea
h other. And it is even more unre-alisti
 when we try to model se
urity properties, be
ause atta
kers need notobey our type system's rules. Algorithms su
h as ours move a step towardsan e�e
tive use of type systems to ensure se
urity properties in the global
omputing s
enario, as they
an infer useful information even when partialor no type assumptions are available. More pre
isely, ambients
an derive aminimal set of
onstraints on se
urity levels ne
essary for an untyped pro
essto be well-typed, and on the basis of su
h information, they
an then de
idewhether or not to allow the pro
ess in, and with what privileges.2 Cal
ulus and TypesWe fo
us on a version of the Ambient Cal
ulus where only names
an be
ommuni
ated. Under this hypothesis the synta
ti
 distin
tion between ex-pressions and pro
esses be
omes redundant, and the syntax
an be given as inFig. 1, where n ranges over the set N of ambient names. It is worth remark-ing that our removing
apability passing does not a�e
t the expressiveness ofthe Ambient Cal
ulus, as shown in [Zim00a℄ for even more severe restri
tions.Redu
tion is the substitutive binary relation on terms generated by the rulesin Fig. 1. We use (m open n) (resp. (m in n) and (m out n)) to indi
ate a(Red open)-redu
tion (resp. (Red in) and (Red out)) that targets ambientn and happens inside ambient m.The stru
tural
ongruen
e � is de�ned as the least
ongruen
e su
h that:� j and 0 form a
ommutative monoid up to �;� !P � !P j P ; (�n)0 � 0; (�n)(P j Q) � (�n)P j Q (for n not free in Q);and (�n)(�m)P � (�m)(�n)P .Although it is possible to
onsider re�ned notions of stru
tural
ongruen
e, ase.g. in [CG00℄, their adoption here is orthogonal to our development.As mentioned earlier, we shall present a type assignment system that en-ables to infer judgments on pro
esses expressing their abiding to
onstraints onpermissions to open or
ross boundaries. Then we shall present an algorithmto
ompute the minimal set of
onstraints.We
onsider a set of type-level names, the se
urity levels, U , and a setof type variables VarT , ranged over by �; �0; : : :, together with the
onstanttype Shh that represent the absen
e of message ex
hanges. We shall usemetavariables S, O, and O to denote, respe
tively, subsets, preorders andpartial orders on U , and write s �O s0 for (s; s0) 2 O.De�nition 2.1 (Ambient Types and S
hemes) Types are generated byT ::= Æ j s[T℄;where Æ ranges over VarT [fShhg, and s over U .Ambient types, denoted by T; T 0; : : :, are types that
ontain no elements ofVarT . The set of ambient types will be indi
ated by T .Ambient type s
hemes, denoted by �; �; : : :, are types in whi
h Shh does noto

ur. The set of Ambient type s
hemes is indi
ated by T S.3

Barbanera, Dezani, Salvo, SassoneP;Q ::= Pro
esses0 (ina
tivity) in n:P (
an enter into n)out n:P (
an exit out of n) open n:P (
an open n)n[P ℄ (ambient) (�n)P (restri
tion)P j Q (parallel) !P (repli
ation)(x):P (input a
tion) hni (output a
tion)n[in m:Q j Q0℄ j m[R℄ �! m[n[Q j Q0℄ j R℄ (Red in)m[n[out m:Q j Q0℄ j R℄ �! n[Q j Q0℄ j m[R℄ (Red out)open n:Q j n[Q0℄ �! Q j Q0 (Red open)hni j (x):P �! Pfx := ng (Red I=O)P �! Q) P j R �! Q j R (Red par)P �! Q) (�n)P �! (�n)Q (Red res)P �! Q) n[P ℄ �! n[Q℄ (Red amb)P 0 � P P �! Q Q � Q0) P 0 �! Q0 (Red �)Fig. 1. Pro
esses and Redu
tionTyping environments will be formalised as partial fun
tions from namesto types. Re
e
ting the
lassi�
ation of types introdu
ed above, we shall useE, E, and E to denote, respe
tively, N * T, N * T S, and N * T . Also,if E(n) = s[T℄, then nE will denote s; and if E and E0 have disjoint domains,then E �E0 stands for partial fun
tion formed as their union. In parti
ular, wewrite E �n:T when E0 = fn;Tg.In the following we shall give pre
ise meaning and use the above elementstuples either in the form hE ; S;O; T i (for the type assignment system) orhE; S;O; �i (for the type inferen
e algorithm). For the time being, we givethe de�nition below on a general sort of tuples that
apture all
ases of interest.De�nition 2.2 (Relation /) The binary relation / on tuples of the shapehE; S; O;Ti, with S � dom(O) is de�ned byhE; S; O;Ti / hE0; S 0; O0;T0iif there exists ': (dom(O)! dom(O0)) [(VarT ! T) su
h that� '(E) � E0;� 8s 2 S 9s0 2 S 0:'(s) �O0 s0;� ' is monotone as a preorder map O! O0;� '(T) = T0. 4

Barbanera, Dezani, Salvo, Sassone3 An assignment system for se
urity levels
onstraintsOur aim is to infer judgments on se
urity poli
ies expressed by permissionsto
ross boundaries. These are granted a

ording to se
urity levels asso
i-ated with ambients. We use a mapping E to des
ribe the type asso
iated toea
h ambient n. Ambient types des
ribe the se
urity level of ambients and,re
ursively, the se
urity levels of the names that
an be ex
hanged inside n.The information provided by E is
omplemented by a partial order O thatdes
ribes the priority relations between se
urity levels that the given se
uritypoli
y di
tates. The
entral judgment in our assignment system sounds as`P abides by the
onstraints E and O', whose meaning
an be informally ex-plained as: if, in any possible redu
tion sequen
e of a pro
ess abiding E andO, a redu
tion makes an ambient n (resp. a pro
ess inside n) enter or exit(resp. open) an ambient m, then the se
urity level asso
iated to n is not lessthan the one asso
iated to m, that is nE �O mE .De�nition 3.1 Pro
ess P abides by the
onstraints E ;O, writtend E ;O òkP , if for all sequen
es P �!+ terminating with (n in m), (n out m), or(n open m) redu
tions, we have nE �O mE .The system proposed in Fig. 2 is essentially a simpli�
ation of the systemof [DCS00℄. Its purpose is to infer all possible judgments E ;O òk P . As amatter of fa
t, we derive judgments that are more informative, viz. E ;O ` P :S; T , where S � dom(O) and S; T is a pro
ess type as de�ned below.De�nition 3.2 (Pro
ess Types) A pro
ess type F is a pair (S; T), with S �U and T 2 T .The �rst
omponent of pro
ess types
ontains the se
urity levels of ambientnames involved in
apabilities possibly performed by a pro
ess; the se
ond isthe ambient type of the names ex
hanged by pro
esses. Con
erning the rules,(in n `), (out n `) and (open n `) verify that the se
urity level s of thetarget ambient name n is bounded by at least one se
urity level in S. Furtherto that, (open n `)
he
ks that the type T of the ambient names ex
hangedby P and inside n
oin
ide. Rule (Pro
 Amb `), instead, veri�es that:� all the se
urity levels of S (whi
h are those of the
apabilities possiblyperformed by P) are bounded by the se
urity level s of the ambient n;� the type T of the ambient names ex
hanged by P and inside n
oin
ide.3.1 PropertiesAs to be expe
ted, system ` assigns the same type to stru
turally
ongruentpro
esses, and su
h types are preserved under redu
tion. The proofs herepro
eed by rule indu
tion on � and �!.Lemma 3.3 (Subje
t Congruen
e of `) If P � Q and E ;O ` P : F , thenE ;O ` Q : F .Theorem 3.4 (Subje
t Redu
tion of `) If E ;O ` P : S; T and P �! Q,then E ;O ` Q : S; T . 5

Barbanera, Dezani, Salvo, Sassone(Pro
 0 `)E ;O ` 0 : S; T E �n : T 0;O ` P : S; T (Pro
 Res `)E ;O ` (�n)P : S; TE ;O ` P : S; T nE = s 9s0 2 S:s �O s0 (in n `)E ;O ` in n:P : S; TE ;O ` P : S; T nE = s 9s0 2 S:s �O s0 (out n `)E ;O ` out n:P : S; TE ;O ` P : S; T E(n) = s[T ℄ 9s0 2 S:s �O s0 (open n `)E ;O ` open n:P : S; TE ;O ` P : S; T E(n) = s[T ℄ s0 �O s; for all s0 2 S (Pro
 Amb `)E ;O ` n[P ℄ : S0; T 0E ;O ` P : S; T E ;O ` Q : S; T (Pro
 Par `)E ;O ` P j Q : S; T E ;O ` P : S; T (Pro
 Repl `)E ;O `!P : S; TE � x : T;O ` P : S; T (Pro
 Input `)E ;O ` (x):P : S; T (Pro
 Output `)E �n : T;O ` hni : S; TFig. 2. Type Assignment SystemTo relate the type assignment system to a type inferen
e algorithm, we�nd it useful to derive a weakening lemma that uses the relation / introdu
edin De�nition 2.2. The proof is by indu
tion on dedu
tions.Lemma 3.5 (Weakening) If hE ;O; S; T i / hE 0;O0; S 0; T 0i, thenE ;O ` P : S; T) E 0;O0 ` P : S 0; T 0:We
lose this se
tion by stating formally that our type assignment system
an type a pro
ess P w.r.t. given environment and partial order if and onlyif P abides by them (a

ording to De�nition 3.1). The proof of the `if' partis by indu
tion on redu
tions and that of the `only if' part by indu
tion onderivations.Theorem 3.6 (Soundness and Completeness of `) E ;O òk P if and only ifthere exist S; T su
h that E ;O ` P : S; T .4 A minimal
onstraints algorithmIn this se
tion, we address the problem of �nding, for a given, untyped pro
essP , a `minimal' set of
onstraints that P abides by.6

Barbanera, Dezani, Salvo, SassoneDe�nition 4.1 (Minimal Effe
ts) A minimal e�e
t, F is a tuple hE; S;O; �iwhose
omponents are as des
ribed in the notational
onventions of Se
tion 2.The bottom-up algorithm des
ribed in Fig. 3 enables to infer judgmentsof the shape
 P : Fwhere P is a pro
ess, and F is a minimal e�e
t. If the algorithm
omputes aminimal e�e
t hE; S;O; �i for a pro
ess P , this will be su
h that:� E
ontains the inferred type assumptions about free names of P ,� S in
ludes se
urity levels asso
iated to the names involved in the
apabilitiespossibly performed by P ,� O represents the minimal order relation on se
urity levels for P to be well-typed, and� � represents the ambient type s
heme of the names ex
hanged by P .Before dis
ussing the rules in detail, let us remark that, even though we�nally express the
onstraints that make P typeable as a partial order, we�nd it
onvenient to work with preorders, as they simplify
onsiderably therules of Fig. 3. In parti
ular, they allow us to de�ne the following operationson e�e
ts independently of their environments.De�nition 4.2 (Operations on Preorders) Let O;O0 � U � U be preordersof se
urity levels.We de�ne O � O0 to be the preorder indu
ed by the union of O and O0, i.e.the transitive
losure of O [O0.For S a set of se
urity levels, and s a se
urity level, S"s is the preorder wheres is added to S as the top element. Formally:S"s = f(s; s)g [f(s0; s) j s0 2 Sg [f(s0; s0) j s0 2 SgWe use O[s � s0℄ for O � f(s; s0)g and O[s = s0℄ for O[s � s0℄[s0 � s℄.Let � = s1[: : : sn[�℄ : : :℄ and � = s01[: : : s0m[
℄ : : :℄ be ambient type s
hemes.We de�ne max(�; �) = 8<:� if n � m� if n < mDe�nition 4.3 (Unifi
ation of Ambient Type S
hemes) For � 6=
, let � =s1[: : : sn[�℄ : : :℄ and � = s01[: : : s0m[
℄ : : :℄ be ambient type s
hemes, and assumemax(�; �) = � . The uni�
ation of � and � produ
es the set of equationssi = s0i, and the substitution f� s0n+1[: : : s0m[
℄ : : :℄g. We shall use:� Ef� = �g to denote the environment obtained from E, by repla
ing allo

urren
es of � with s0n+1[: : : s0m[
℄ : : :℄.� O[� = � ℄ to denote the preorder O[s1 = s01℄ � � � [sn = s0n℄.The uni�
ation of ambient type s
hemes is
entral in our
onstru
tion toexpress the
onstraints involved in parallel
omposition of pro
esses { rule(Pro
 Par) in Fig. 3 { where we need to
ompose preorders equating the7

Barbanera, Dezani, Salvo, Sassone� fresh (Pro
 0
)
 0 : h?;?;?; �i
 P : hE;S;O; �i (Pro
 Res
)
 (�n)P : hE r n; S;O; �i
 P : hE;S;O; �i X(n) = s[�℄ X = En (in n
)
 in n:P : hX;S [fsg; O[s = s℄; �i
 P : hE;S;O; �i X(n) = s[�℄ X = En (out n
)
 out n:P : hX;S [fsg; O[s = s℄; �i
 P : hE;S;O; �i X(n) = s[�℄ X = En (open n
)
 open n:P : hX[� = � ℄; S [fsg; O[s = s℄[� = � ℄;max(�; �)i
 P : hE;S;O; �i X(n) = s[�℄ X = En � fresh (Pro
 Amb
)
 n[P ℄ : hX[� = � ℄;?; (S"s �O)[� = � ℄; �i
 P : hE;S;O; �i
 Q : hE0; S0; O0; �i (Pro
 Par
)
 P j Q : h(E �E0)f� = �g; S [S0; (OME;E0O0)[� = � ℄;max(�; �)i
 P : F (Pro
 Repl
)
!P : F � fresh (Pro
 Output
)
 hni : hn : �;?;?; �i
 P : hE;S;O; �i Ex(x) = � (Pro
 Input
)
 (x):P : h(E r x)f� = �g; S;O[� = � ℄;max(�; �)iFig. 3. Minimal Constraints Algorithmse
urity levels asso
iated to the same ambient names. This is formalized as:OME;E0 O0 = (O � O0)[E(n) = E 0(n)℄n2dom(E)\dom(E0)Finally, we will be building environments by means of the operations below.En=8<:E if n 2 dom(E)E; n : s[�℄ if n 62 dom(E) with s; � freshE r n=8<:E n fn : E(n)g if n 2 dom(E)E if n 62 dom(E)Moreover, we extend the notation E �E 0 to non ne
essarily disjoint E andE 0 by de�ning (E �E 0)(n) = max(E(n); E 0(n)) if n 2 dom(E) \ dom(E 0).8

Barbanera, Dezani, Salvo, Sassone
 0 : h?;?;?; �0i (D1)
 open m:0 : hfm : s2[�2℄g; f(s2; s2)g; fs2g; �0i
 0 : h?;?;?; �4i
 out n:0 : hfn : s1[�1℄g; f(s1; s1)g; fs1g; �4i (D2)
 m[out n:0℄ : hfn : s1[�1℄;m : s3[�3℄g; f(s1; s1); (s3; s3); (s2; s3)g;?; �5i(D1) (D2)
 P j Q : hfn : s1[�1℄;m : s2[�2℄g; f(s1; s1); (s2; s2); (s1; s2)g; fs2g; �0i
 n[P j Q℄ : hfn : s1[�1℄;m : s2[�2℄g; f(s1; s1); (s2; s2); (s1; s2); (s2; s1)g;?; �6iFig. 4. Example of type inferen
e (P � open m:0 and Q � m[out n:0℄)Getting ba
k to Fig. 3, we
an now dis
uss the details of the formal de�ni-tion of the algorithm. At the beginning, as formalized in the (Pro
 0) rule, norelation among se
urity levels exists. The environment is empty and there isno information about names ex
hanged or involved in
apabilities potentiallyperformed by the pro
esses. A in n or a out n
apability
ause the name n tobe inserted in the environment, if not already present, and the se
urity levelasso
iated to n to be inserted in the set of e�e
ts S. (Noti
e the use ofX in therules to indi
ate that the same level is asso
iated to n both in premises and inthe
on
lusions.) In the typing of a pro
ess of the shape open n:P , we have totake
are that, after the opening of the ambient n, pro
esses running inside nwill run in parallel with P , and hen
e we have to unify the type ex
hanged byP with the type ex
hanged inside n. A

ording to our se
urity poli
y, to inferthe type of a pro
ess of the shape n[P ℄, we need to impose that the se
uritylevel of n is greater or equal to those of names involved in
apabilities possiblyperformed by P . When two pro
esses P and Q are put in parallel, we needto unify types ex
hanged by P and Q, and
ompute an order among se
uritylevels, whi
h
ontains those
al
ulated for P and Q. In the typing of an inputa
tion, (x):P , we need to unify the type of the expe
ted value with the typeof messages ex
hanged by P . The algorithm has to take
are of s
ope rulesof the
al
ulus, removing from the environment names whi
h be
ome boundbe
ause of an input a
tion or a restri
tion.At the end, we obtain asso
iations between free ambient names and types
hemes in the environment and a preorder relation among se
urity levels.Figure 4 gives an example of derivation.4.1 PropertiesAs for the type assignment system, our algorithm enjoys some of the expe
tedproperties: it infers isomorphi
 e�e
ts for stru
tural
ongruent pro
esses; by9

Barbanera, Dezani, Salvo, Sassoneredu
tion, the minimal
onstraints of a pro
ess get loosened, be
ause order
onstraints depend on the potential exe
ution of
apabilities, and performed
apabilities disappear during redu
tion. In the following de�nitions we for-malize the notion of isomorphi
 e�e
ts and loosened
onstraints. We start bylifting fun
tions from sets to environments and ambient type s
heme.De�nition 4.4 For S; S 0 � U , a map ': (S ! S 0) [(VarT ! T S) de�nesmaps x'y: T S ! T S and p'q:Env ! Env as followsx'y(�) = '(�); x'y(s[� ℄) = '(s)[x'y(�)℄p'q(E) = x'y Æ E:In the following we shall omit expli
it mention of x y and p q.De�nition 4.5 (Partial Order Collapse) For F = hE; S;O; �i an e�e
t, itspartial order
ollapse is the e�e
t F� = hE=�; S=�; O=�; �=�i where =� is aquotient map 1 for the equivalen
e relation � =def �O \ �O. For the sake ofreadability we will denote F� with F and the tuple hE=�; S=�; O=�; �=�i withhE; S;O; �i.Note that partial order
ollapses are a spe
ial kind of e�e
ts, sin
e theirpreorder
omponent is a
tually a partial order. We
all them ordered e�e
ts.Ordered e�e
ts are relevant to our development be
ause, as it will be evidentshortly, they represent the essen
e of e�e
ts and provide a bridge to ambienttypes. In parti
ular, if our rules allow to infer
 P : F, then the essentialinformation given by our algorithm is
ontained in F�.De�nition 4.6 (The Relation ./ on Ordered Effe
ts) Let F = hE; S;O; �iand F0 = hE 0; S 0; O0; � 0i be ordered e�e
ts. We say that F ./ F0 if F / F0 (asde�ned in De�nition 2.2) via a map ' whi
h is an isomorphism between Sand S 0 and between O and O0.De�nition 4.7 (Effe
ts Inequalities and Isomorphism) E�e
t F is re�ned bye�e
t F0, notation F � F0, if F� / F0�. E�e
t F is isomorphi
 to e�e
t F0,notation F �= F0, if F� ./ F0�.Theorem 4.8 (Congruen
e) If P � Q,
 P : F and
 Q : F0, then F �= F0.As stated formally by the following theorem, the system
 infers an e�e
tfor ea
h well-formed pro
ess: at worst, all se
urity levels
ould be equated,making our se
urity poli
y not relevant.Lemma 4.9 (Termination) For every P there exists F, unique up to �=, su
hthat
 P : F.Theorem 4.10 (Loosening by redu
tion) If
 P : F, and P �! Q, and
 Q : F0, then F � F0.Proof. We give a
on
ise proof whi
h stems from relationships between sys-tems ` and
, dis
ussed in the next se
tion (Theorems 5.2 and 5.3).1 We
onvene that =�
hooses a
anoni
al representative for ea
h
lass and maps se
uritylevels a

ordingly, as the
anoni
al quotient map x 7! [x℄=� would not yield an e�e
t fortrivial reasons. 10

Barbanera, Dezani, Salvo, SassoneLet F = hE; S;O; �i and F0 = hE 0; S 0; O0; � 0i. We have that
 P : hE; S;O; �i(by Th. 5.2)
��

 Q: hE 0; S 0; O0; � 0iE�; O ` P : S; � � (by Th. 3.4) +3E�; O ` Q : S; � �(by Th. 5.3)KS

where, a

ording to Theorem 5.3, hE 0�; S 0; O0; � 0�i / hE�; S; O; � �i. It easilyfollows that hE; S;O; �i � hE 0; S 0; O0; � 0i. 2One
ould argue that it would be quite natural to expe
t the statementof the Loosening by redu
tion Theorem to hold for a stronger version of therelation �, namely the one obtained by adding, in the se
ond
ondition on 'of De�nition 4.6, the requirement of ' to be inje
tive. This, however, turnsout to be impossible, intuitively be
ause by performing a redu
tion we makethe number of
apabilities in a pro
ess de
rease. It is obvious that the fewerthe
apabilities in a pro
ess, the fewer the pairs in the preorder inferred byour algorithm. However, to have a smaller preorder does not imply to geta smaller
orresponding partial order. Then, roughly, by redu
tion we getsmaller preorders, but not ne
essarily smaller
orresponding partial orders.This is better explained by the following example. Let us
onsider the pro
essP = n[open m:0 j m[out n:0℄℄:The partial order of
onstraints for P is simply f(s; s)g, with nE = s andmE = s, whereas the algorithm
omputes f(s1; s1); (s2; s2); (s1; s2); (s2; s1)g,with nE = s1 and mE = s2 (see Figure 4). If we redu
e P via a (Red open)redu
tion, we get n[out n:0℄It is not diÆ
ult to see that the partial order of
onstraints is bigger for thispro
ess than for P . In fa
t it is f(s1; s1); (s2; s2); (s1; s2)g,
oming out of apreorder
omputed by the algorithm as f(s1; s2); (s1; s1); (s2; s2)g.5 Corre
tness and MinimalityIn this se
tion, we show that the algorithm is
orre
t and
omplete with respe
tto the type assignment system. Moreover, Theorem 5.3 asserts that the e�e
t
omputed by the algorithm re�nes (in the sense of De�nition 4.7) any possibletyping in the type assignment system.De�nition 5.1 Let (�)�:VarT ! T be the map su
h that �� = Shh, for all� 2 VarT . We lift (�)� to type s
hemes and environments in the obvious way.Theorem 5.2 (Corre
tness) If, for a pro
ess P, we have:
 P : hE; S;O; �ithen E�; O ` P : S; � �, where hE; S;O; � i = hE; S;O; �i�.The order `
al
ulated' by the algorithm is miminal in the following sense.Theorem 5.3 (Minimality) Let
 P : hE; S;O; �i and E ;O ` P : S 0; T .Then hE�; S; O; � �i / hE ; S 0;O; T i. 11

Barbanera, Dezani, Salvo, SassoneBoth theorems
an be proved by indu
tion on derivations. All
ases arequite simple, apart from that of rule (Pro
 Amb
), whi
h requires so te
hni
alingenuity.6 Relations with group typesIn this se
tion we experiment about the relationships between types as
on-sidered here and the group types of [CGG00℄. We
onsider se
urity levelsas group names, and do not distinguish between groups for opening and formoving ambients. The syntax of group types is thenT := Shh j s[S; T ℄:Let GT stand for the set of group types. Due to la
k of spa
e we
annotreformulated here the typing rules of [CGG00℄ with the types in GT ; suÆ
esit to say that there is no surprise in that, and the rules are as expe
ted. Wedenote by `G the type system so obtained.De�nition 6.1 Given a partial order O we de�neSO(s) = fs0 j s0 �O sg; SO(S) = [s2S SO(s)and the mappings �O : T S ! GT , �O : T ! GT su
h that�O(Shh) = Shh; �O(s[� ℄) = s[SO(s); �O(�)℄;�O(�) = Shh; �O(s[� ℄) = s[SO(s); �O(�)℄:We lift �O and �O to environment as usual.We
an prove that ` P : hE; S;O; �i implies �O(E) `G P : SO(S); �O(�)where O is the partial order indu
ed by the preorder O.Lemma 6.2 E ;O ` P : S; T implies �O(E) `G P : SO(S); �O(T).Proof. By indu
tion on type derivations of `. If the last rule applied is(Pro
 Amb `) let E ;O ` n[P ℄ : S 00; T 00 be the
on
lusion. This implies thatfor some S and T , we have derived the judgment E ;O ` P : S; T and thatE(n) = s[T 0℄, with T = T 0 and s greater than every se
urity level in S. Undersu
h
onditions and by de�nition of SO, we have that S � SO(S) � SO(s).By weakening, we
an derive the judgment E ;O ` P : SO(s); T . Applying theindu
tion hypothesis, the judgment �O(E) `G P : SO(s); �O(T) is derivableand �O(E)(n) = s[SO(s); �O(T 0)℄ are derivable. Sin
e T = T 0,
learly implies�O(T) = �O(T 0), we
an
on
lude �O(E) `G n[P ℄ : SO(S 00); �O(T 00). 2Theorem 6.3
 P : hE; S;O; T i implies �O(E) `G P : SO(S); �O(T), whereO is the partial order indu
ed by the preorder O.Proof. Just by applying the
orre
tness of the type inferen
e algorithm withrespe
t to the type assignment system and the previous lemma. 212

Barbanera, Dezani, Salvo, Sassone7 Con
lusions and Future WorksIn the s
enario we are
onsidering an ambient
an enter another when theformer has a greater priority. Although this is quite reasonable, one has to beaware that on
e the ambient has entered its greater priority
ould enable itto do, so to speak, whatever it likes. This is to be avoided if we wish to havea more realisti
, safer and thoroughly desirable s
enario in whi
h an ambientmanages to
ontrol what happens inside itself.Re
e
ting on this, we are naturally led to
onsider the possibility for anambient to assign a safe se
urity level to ambients
rossing its boundariesand, in general, to all its sub-ambients. Moreover the se
urity level of anambient
an in
rease when it re
eived an `audit'
erti�
ate or de
rease whenit
rosses an unsafe ambient. A distributed version of our type assignmentand algorithm
an provide the right framework to address an extension of theAmbient Cal
ulus with
apabilities allowing se
urity levels modi�
ations asthe ones suggested above.Referen
es[BC01℄ Mi
hele Bugliesi and Giuseppe Castagna. Se
ure safe ambients. InPro
eedings of the 28th ACM Symposium on Prin
iples of ProgrammingLanguages, pages 222{235. ACM Press, 2001.[BCC01a℄ Mi
hele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Boxed ambients.In Benjamin Pier
e, editor, Pro
eedings of Theoreti
al Aspe
ts ofComputer S
ien
e, Le
ture Notes in Computer S
ien
e. Springer-Verlag,2001. To appear.[BCC01b℄ Mi
hele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Reasoning aboutse
urity in mobile ambients. In Kim G. Larsen and Mogens Nielsen,editors, Pro
eedings of CONCUR 2001, volume 2154 of Le
ture Notes inComputer S
ien
e, pages 102{120. Springer-Verlag, 2001.[CG98℄ Lu
a Cardelli and Andrew D. Gordon. Mobile ambients. In Mauri
eNivat, editor, FoSSaCS 1998, volume 1378 of Le
ture Notes in ComputerS
ien
e, pages 140{155. Springer-Verlag, 1998.[CG99℄ Lu
a Cardelli and Andrew D. Gordon. Types for mobile ambients. InPOPL'99, pages 79{92, New York, NY, USA, 1999. ACM Press.[CG00℄ Lu
a Cardelli and Andrew Gordon. Anytime, anywhere. modal logi
sfor mobile ambients. In Pro
eedings of the 27th ACM Symposium onPrin
iples of Programming Languages. ACM Press, 2000.[CGG99℄ Lu
a Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types formobile ambients. In Ji�r�� Wiederman, Peter van Emde Boas, and MogensNielsen, editors, ICALP 1999, volume 1644 of Le
ture Notes in ComputerS
ien
e, pages 230{239. Springer-Verlag, 1999.13

Barbanera, Dezani, Salvo, Sassone[CGG00℄ Lu
a Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient groupsand mobility types. In Jan van Leeuwen et al., editor, Theoreti
alComputer S
ien
e: Exploring New Frontiers in Theoreti
al Informati
s,volume 1872 of Le
ture Notes in Computer S
ien
e, pages 333{347.Springer-Verlag, 2000.[DCS00℄ Mariangiola Dezani-Cian
aglini and Ivano Salvo. Se
urity types for safemobile ambients. In He Jifeng and Masahiko Sato, editors, Pro
eedings ofASIAN 2000, volume 1961 of Le
ture Notes in Computer S
ien
e, pages215{236. Springer-Verlag, 2000.[LS00℄ Fran
es
a Levi and Davide Sangiorgi. Controlling interferen
e inambients. In POPL'00, pages 352{364, New York, NY, USA, 2000. ACMPress.[Zim00a℄ Pas
al Zimmer. On the expressiveness of pure mobile ambients. InEXPRESS00, the 7th International Workshop on Expressiveness inCon
urren
y, Ele
troni
 Notes in Theoreti
al Computer S
ien
e. Elsevier,2000.[Zim00b℄ Pas
al Zimmer. Subtyping and typing algorithms for mobile ambients.In Jerzy Tiuryn, editor, FoSSaCS 2000, volume 1784 of Le
ture Notes inComputer S
ien
e, pages 375{390. Springer-Verlag, 2000.

14

