
Some Computational Properties of Intersection Types�

(Extended Abstract)

Antonio Bucciarelli, Silvia De Lorenzis, Adolfo Piperno, Ivano Salvo
Dipartimento di Scienze dell’Informazione, Universit`a di Roma “La Sapienza”,

Via Salaria 113, 00198 Roma, Italy.
fbuccia, piperno, salvog@dsi.uniroma1.it

Abstract

This paper presents a new method for comparing com-
putational properties ofλ-terms typeable with intersection
types with respect to terms typeable with Curry types. In
particular, strong normalization andλ-definability are in-
vestigated. A translation is introduced from intersection
typing derivations to Curry typeable terms; the main fea-
ture of the proposed technique is that the translation is
preserved byβ-reduction. This allows to simulate a com-
putation starting from a term typeable in the intersection
discipline by means of a computation starting from a sim-
ply typeable term. Our approach naturally leads to prove
strong normalization in the intersection system by means
of purely syntactical techniques. In addition, the presented
method enables us to give a proof of a conjecture proposed
by Leivant in 1990, namely that all functions uniformly de-
finable using intersection types are already definable using
Curry types.

1. Introduction

Theλ-calculus originated as atype-freetheory of func-
tions: every term may be considered either as a function
or as an argument, and no syntactic restriction is imposed
to represent a function application. This makes the system
so powerful to represent all computable functions. When
types are added to the calculus, it is possible to consider
them as syntactical objects assigned to pure terms in or-
der to give a description of the functional behaviour of ex-
pressions. Two type systems are investigated in this paper:
simple types, which were introduced by Curry in [8], and
a variant of intersection types; intersection types originate

�This work has been partially supported by MURST 40%
grants.

in the works of Barendregt, Coppo and Dezani [6, 5]; the
system we will use in this paper, namelystrict intersection
types, has been introduced in [7], and has received a sys-
tematic treatment in [1, 2].

The expressive power of a type system can be analyzed
from different standpoints. From one hand, one may con-
sider the class of terms typeable in the system; from the
other hand one may analyze the definable class of (nu-
meric) functions. From the first perspective, simple types
are much less expressive than intersection types. In partic-
ular, intersection types are able to type all untyped terms or,
when the universal type is disallowed, all strongly normal-
izing ones. From here onwards, we will consider intersec-
tion types without universal type. Although strict types are
a proper subset of intersection types, they preserve, from
the point of typeability, the expressive power of the whole
system [1, 2].

In this paper, we will compare simple and intersection
types with respect to the problem ofλ-definability. In such
case, the relationship between the systems is not as clear as
in the case of the typeability perspective.

We denote byn then-th Church numeral (n� λxy:xny).
We briefly recall that, given a typed lambda calculus
λT and a numeric functionϕ : Nk ! N, we say that a
lambda termM represents (non uniformly)ϕ if for ev-
ery n1; : : :;nk 2 N, Mn1 : : :nk can be typed inλT and
Mn1 : : :nk �!

�
β ϕ(n1; : : :;nk); a natural condition to im-

pose is that the types of arguments do not depend on their
values: we say thatM representsϕ uniformlyin λT , if there
are typesτ1; : : :;τk;τ such that, for everyn1; : : :;nk 2 N,
Mn1 : : :nk can be typed inλT with τ, with typesτi assigned
to ni(i 2 f1; : : :;kg) andMn1 : : :nk�!

�
β ϕ(n1; : : :;nk) [17].

The severe restrictions imposed by the structure of
Curry types allows the simply typedλ-calculus to uni-
formly represent elementary functions, only. Indeed, the
class of representable functions has been characterized in
[19, 21, 17]. A first attempt to compare this characteriza-

tion with computational properties of intersection types ap-
peared in [16], where it is proved that all functions repre-
sentable uniformly in that system are elementary (elemen-
tary functions are a strict subset of total recursive ones),
whereas all total computable functions are representable
non uniformly. In addition, starting from the result above,
Leivant conjectured that the class of functions uniformly
representable in the intersection discipline coincides with
the class of functions definable in Curry system. The proof
of this conjecture, in the case of strict intersection types, is
one of the main achievements of this paper.

It has to be noted that Leivant’s results have a purely
semantical nature, since the considered systems are com-
pared by investigating the class of definable functions. In
contrast, we will obtain our results using syntactical tech-
niques, only. We believe that a syntactical approach gives
a more direct understanding of the relationships between
different calculi. In particular, we will show that, for any
termT typeable with strict intersection types, and for any
of its typing derivationsD, there exists a termT 0

D , which is
typeable in Curry system and which is able to “represent”
the whole computation ofT. In other words, theλ-calculus
with intersection types can be embedded into the simply
typed calculus. This will allow us to simulate all possible
reductions starting fromT by means of reductions ofT 0

D .

As a first result given by our method, we will present a
new proof of the strong normalization property for inter-
section types (without universal type). We recall here that
there is a close relationship between the definability prob-
lem and the “difficulty” of a normalization proof in typed
λ-calculi (see [9]). Simply typedλ-calculus allows for a
normalization proof which assigns a decreasing metric to
terms during reduction [10, 11]. On the other hand, normal-
ization in polymorphicλ-calculi is usually proven using
variants of the so-calledcomputabilitytechnique ([20]),
which has a merely semantical nature: consider Girard-
Reynolds second orderλ-calculus [12, 18] as an example,
but also vanBakel’s proof for the system considered in this
paper [2].

As a matter of fact, we will present a normalization
proof for λ-calculus with intersection types which only
makes use of syntactical techniques, in that it (syntac-
tically) reduces the strong normalization problem in the
presence of intersection types to the case of Curry types.
Different syntactical approaches and normalization proofs
for λ-calculus with intersection types are [14] and [15].

Our technique will then allow us to prove Leivant’s con-
jecture for strict intersection types. We will proceed as fol-

lows. In the next section, we will briefly describe the type
systems we are interested in. We will then (section 3) in-
troduce a translation function which transforms a typing
derivation in the intersection type assignment system into
a term typeable with Curry types. We will then show that
the translation is preserved byβ-reduction. Moreover, by
translating a typing of a term which uniformly represents a
numeric functionϕ, we obtain a Curry typeable term which
representsϕ modulo suitable codings of the arguments and
decoding of the result. The structure of derivations typ-
ing Church numerals in the intersection system, and their
translations, will be analyzed. Finally, in section 4.3, we
define Curry typeable terms which realize the mentioned
coding and the corresponding decoding, thus allowing for
a proof of Leivant’s conjecture in the case of strict intersec-
tion types. Some remarks and directions for further work
will conclude the paper.

2. Basic Definitions

We assume the reader to be familiar with standard nota-
tions for the untyped lambda calculus. Terms will be con-
sidered moduloα-equivalence. We also assume that ev-
ery lambda termM obeys the restriction that no variable
is bound more than once and that no variable occurs both
free and bound inM. For every natural numbern, then-th
Church numeral is the lambda termn� λpq:pnq. We use
small greek letters to denote types, with the convention that
α, β andγ denote type variables.

2.1. The Curry Type Assignment System.

Simple (or Curry) typesare generated using the follow-
ing grammar:

σ ::= α j (σ! σ); (1)

where α ranges over a countable set of type variables.
We call Type

!
the set of types resulting from (1). As

usual,σ1 ! σ2 ! �� � ! σn ! τ is an abbreviation for
σ1 ! (σ2 ! (� � �(σn ! τ) � � �)): Note that a typeσ always
has the shape

σ1! σ2 !�� �! σn ! α;

for some type variableα andn� 0.

Definition 2.1 The Curry type assignment system(λ!)
proves statements (typings) of the kindA`! t :σ, whereA
is abasis(a partial function from term variables to types),

t 2 Λ is thesubjectandσ 2 Type
!

is thepredicateof the
typing. The systemλ! consists of the following rules:

(Var)
!

A(x) = σ
A`! x:σ

(!I)
!

A[fx:σg `! t :τ
A`! λx:t :σ ! τ

(!E)
!

A`! t :σ ! τ A`! s:σ
A`! ts:τ

A termt has a typing, or, equivalently,t is typeable, if there
exists a basisA and a typeσ such thatA `! t :σ. The set
of terms typeable inλ! will be denoted byΛ!. Moreover,
D:A`! t :σ (or DA`!t:σ) denotes a derivation inλ! prov-
ing the typingA`! t :σ.

2.2. The Strict Intersection Type Assignment System.

Following the same approach as [1], we define a re-
stricted version of the Intersection Type Assignment Sys-
tem of Coppo and Dezani [6]. This restricted version will
consist of a restricted set of types, in which the type con-
structor\ can appear only on the left hand side of an arrow
type scheme, and of a restricted set of inference rules.

Strict intersection typesare generated using the follow-
ing grammar:

σ ::= τ1\ : : :\ τn (n� 1)
τ ::= α j (σ! τ)

(2)

We callTypes
\

(resp.Type
\
) the set of types resulting from

(2) with startsymbolτ (resp.σ).

Definition 2.2 The Strict Intersection type assignment
system(λS

\) proves statements (typings) of the kind:A `\
M:τ, whereA is a basis, i.e. a partial function from term
variables toType

\
, M 2 Λ andτ 2 Types

\
. The systemλS

\

consists of the rules in Fig. 1.

We say thatD:A `\ t :τ (or DA`\t:τ) if D is a derivation
in λS

\ proving the typingA `\ t :τ. Note that intersections
of types may appear as predicates in bases, only; types as-
signed to terms always belong toTypes

\
.

The systemλS
\ has been introduced in [1], where it

is proven that the terms typeable inλS
\ are exactly the

strongly normalizing ones. In particular, the original proof
of the fact that any term typeable inλS

\ is strongly nor-
malizing relies on a computability argument, semantic in
nature. This is in sharp contrast with the case ofλ!, where
strong normalization can be proven by defining a (well

founded) “measure” for typeable terms, which decreases
strictly as reductions go on. In the next section, we intro-
duce a translation of typings fromλS

\ to λ!, with the prop-
erty that any reduction path rooted in a term typeable inλS

\,
is mimicked by a (longer, in general) reduction path rooted
in a suitable simply typed term. An immediate corollary
of this is an original, syntactic proof of strong normaliza-
tion for λS

\. Moreover, since our translation allows to rep-
resent inλ! any “computation” feasible inλS

\, it provides
a framework for studyingλ-definability in these systems.
This will be the subject of section 4.

3. A Translation from λS
\

to λ!

In the definitions below, we use the following notational
convention concerning variable names: we associate to any
variablex, subject of a statementx : σ1\ : : :\σn in a basis
B, a setx1; : : :;xn of fresh variables, that we use in particu-
lar in translating the rules (Var)\ and (! I)\.

Definition 3.1 Define the functions

TT :Types
\
! Type

!
(translation of types);

TB:Bases\! Bases! (translation of bases)

as follows:

TT(α) = α,
TT((σ1\ : : :\σn)! τ) =

TT (σ1)! �� �! TT(σn)! TT(τ);

TB(/0) = /0,
TB(A[fx:σ1\ : : :\σng) =

TB(A)[fx1:TT (σ1); : : :;xn:TT(σn)g:

Definition 3.2 Define the functionTD:Der\!Λ (transla-
tion of derivations)inductively as in Fig. 2.

An expected property of the translation(s) defined above
is the following:

Lemma 3.3 For any derivationD of the typing À \ M:σ
in λS

\,
TB(A) `! TD(D):TT (σ)

is a typing inλ!.

Proof. By induction on the structure of the derivationD.
Let us show for instance the case in which the last rule
applied inD is (!I)

\
, i.e.:

A[fx:σ1\ : : :\σng `\ M:τ
A`\ λx:M:(σ1\ : : :\σn)! τ;

(Var)
\

A(x) = τ1\ : : :\ τn 1� i � n

A`\ x:τi

(!I)
\

A[fx:σg `\ M:τ
A`\ λx:M:σ! τ

(!E)
\

A`\ M:(τ1\ : : :\ τn)! τ A`\ N:τ1 : : :A`\ N:τn

A`\ MN:τ

Figure 1. The System λS
\

TD

�
A(x) = σ1\ : : :\σn

A`\ x:σi

�
= xi ;

TD

0
@ D1

A[fx:σ1\ : : :\σng `\ M:τ
A`\ λx:M:(σ1\ : : :\σn)! τ

1
A =

�
λx1 : : :xn:TD

�
D1

A[fx:σ1\ : : :\σng `\ M:τ

��
;

TD

0
@ D0

A`\ M:(τ1\ : : :\ τn)! τ
D1

A`\ N:τ1 : : :

Dn

A`\ N:τn

A`\ MN:τ

1
A =

TD

�
D0

A`\ M:(τ1\ : : :\ τn)! τ

�
TD

�
D1

A`\ N:τ1

�
: : :TD

�
Dn

A`\ N:τn

�
:

Figure 2. Translation of Typings

let D 0 be a derivation of the typingA[fx:σ1\ : : :\σng `\
M:τ which appears in the premise of such rule. By induc-
tion hypothesis:

TB(A)[fx1: TT(σ1); : : :;xn:TT (σn)g

`! TD(D 0): TT(τ)

so that

TB(A) `! λx1 : : :xn:TD(D 0):
TT (σ1)!�� �! TT (σn)! TT (τ):

The case is settled observing that

TD(D) = λx1 : : :xn:TD(D 0)

and

TT((σ1\ : : :\σn)! τ) =
TT (σ1)!�� �! TT (σn)! TT (τ):

We have seen so far how to translate (derivations of)
typings of λS

\ into terms ofλ!. The crucial property of
this translation is that it is preserved byβ-reduction, as ex-
pressed in the following proposition:

Lemma 3.4 Let D be a derivation of the typing À\ M:σ
in λS

\ and let M�!β N. Then there exists a derivationD 0

of the typing À \ N:σ such that

TD(D) �!+
β TD(D 0):

Proof. By induction on the structure of the derivationD.
The only interesting case is when the last rule applied inD
is (!E)

\
, and the redex isM, so thatD has the shape

D0

A`\ λx:P:σ! τ
D1

A`\ Q:τ1
: : :

Dn

A`\ Q:τn

A`\ (λx:P)Q:τ
(3)

whereσ � τ1\ : : :\ τn. The variablex appears inD0 as
subject ofq instances (for someq� 0) of the rule (Var)

\
.

Hence, a setPairs(D;x) can be defined as follows, where
1� j � q:

(i; j)2 Pairs(D;x) ,
Aj(x) = τ1\ : : :\ τn

Aj `\ x:τi
appears inD:

Clearly, for everyj 2 f1; : : :;ng, Aj � A. By thebasis
lemma(see e.g. [4]), for any(i; j) 2 Pairs(D;x) a deriva-
tion D j

i of the typingAj `\ Q:τi is built replacing inDi

every occurrence of a basisB with B\Aj .

It follows that the derivationD 0 is obtained out ofD0 in
two steps:

1. replacing every occurrence of

Aj(x) = τ1\ : : :\ τn

Aj `\ x:τi

with D j
i ;

2. replacing in the subjects of the so obtained derivation
every occurrence of the variablex with Q.

It comes out thatD 0 is a derivation of the typing

A`\ P[Q=x]:τ:

Moreover, by a straightforward induction on the structure
of D0, observing that

8i; j :(i; j)2 Pairs(D;x)) TD(D
j
i) = TD(Di);

the following holds:

TD(D 0) = TD(D0)[TD(D1)=x1; : : :;TD(Dn)=xn]: (4)

Now,

TD(D) = TD

�
D0

A`\ λx:P:(τ1\ : : :\ τn)! τ

�
TD(D1) : : :TD(Dn)

= (λx1 : : :xn:TD(D0))TD(D1) : : :TD(Dn)

�!+
β TD(D0)[TD(D1)=x1; : : :;TD(Dn)=xn]

= TD(D 0), by (4);

which proves the lemma.

It is easy to see that the property ofTD just shown also
holds for the reflexive and transitive closure of�!β :

Lemma 3.5 Let D be a derivation for the typing B̀\ M :
σ in λS

\ and let M�!�
β N. Then there exists a derivation

D 0

of the typing B̀ \ N : σ such that

TD(D)�!�
β TD(D 0):

Proof. By induction on the length of the reduction of
M �!�

β N, using Lemma 3.4.

We are now able to prove the main result of this section.

Theorem 3.6 (Strong normalization) For any M2 Λ, if
M is typeable inλS

\, then everyβ-reduction path starting
from M is finite.

Proof. If M is typeable inλS
\, then there exists a basisB

and a typeσ such thatB `\ M : σ: Let D be a derivation
of such typing. IfM has an infiniteβ-reduction path, then,
by Lemma 3.5,TD (D) has an infiniteβ-reduction path,
too. But, by Lemma 3.3,TB (B) `! TD (D) : TT (σ), so that
TD (D) has a typing inλ!, hence it is strongly normaliz-
ing, a contradiction.

4. λ-definability in λS
\

and λ!

Since we are able to map computations of terms ty-
peable inλS

\ into computations of terms typeable inλ!
it is natural to ask whether our syntactic approach can be
used to compare the expressive power ofλ! with respect
to λS

\ from the point of view of representable functions.
Since all strongly normalizing terms are typeable inλS

\,
it easy to show that there are functions, representable inλS

\,
which are not representable inλ!. Take as an example the
termE = λx:x(λy:yx)x. Taking as input a Church numeral
n, E reduces toN � n: : :n| {z }

n+1

and hence yields as output the

Church numeralnn
:

:

n
�

n times
. ThusE computes a non–

elementary function; moreover, for alln, En is typeable in
λS
\, because it is strongly normalizing. However, the typ-

ing of En depends onn, as it is clear from the structure of
N. This example shows that typings inλS

\ may be highly
non–uniform. It is interesting to investigate the set of repre-
sentable functions under a reasonable uniformity condition
on typings [16]:

Definition 4.1 (Uniform Representation of Functions)
Let λT be a typed lambda calculus andϕ : Nk ! N a nu-
meric function. We say that a lambda termM representsϕ
uniformlyin λT , if there are typesτ1; : : :;τk;τ such that, for
everyn1; : : :;nk 2 N, Mn1 : : :nk can be typed inλT with τ,
with typesτi assigned toni (i 2 f1; : : :;kg) and

Mn1 : : :nk �!
�
β ϕ(n1; : : :;nk):

We callτ1; : : :;τk the input types, and the typeτ theoutput
type.

In [16], Leivant proved that all functions uniformly rep-
resentable inλS

\ are elementary, as it is the case forλ!.
Moreover, he proposed the following conjecture.

Functions uniformly representable inλ\ are already
uniformly representable inλ!.

The rest of the paper is devoted to prove Leivant’s con-
jecture in the case of strict intersection types.

From now on, for the sake of simplicity, we focus on
unary functions; every result can be easily extended to the
case of function withk > 1 arguments. Letϕ : N!N be
a numeric function uniformly represented inλS

\, by a term
M = λx:M 0. In λS

\ a type assignable toM must have the
shapeτ1\ : : :\ τk!τ, and moreover, by uniformity, each
Church numeral has to be typed withτ1; : : :;τk, and each
Church numeraln such thatϕ(m) = n for somemhas to be
typed withτ. By definition ofTD, we have:

TD(D`\Mn:τ) = TD(D0
`\M:τ1\:::\τk!τ)

TD(D1
`\n:τ1

) : : :TD(Dk
`\n:τk

):
(5)

Our aim is to use bM = TD(D0
`\M:τ1\:::\τk!τ) in or-

der to find a term which representsϕ in λ!. However,
since in general the termsbni = TD(D i

`\n:τi
) and dϕ(n) =

TD(D`\Mn:τ) are not Church numerals, our approach re-
quires the definition of suitable simply typeable terms,
D[τ];E[τ1]; : : :;E[τk], such that

E[τi]n= TD(D`\n:τi) the “encoders”
D[τ](TD(D`\n:τ)) = n the “decoder”.

and the term

P= λx:D[τ](bM(E[τ1]x) : : :(E[τk]x)) (6)

is Curry typeable, so that, for alln, Pn�!�
β ϕ(n). Note that

the termsD[τ];E[τ1]; : : :;E[τk] will be proven to have simple
types. However, they are indexed over intersection types,
because their construction depends on intersection types.

We will build terms satisfying all the mentioned require-
ments. For the sake of clarity, we start with a simple case.

4.1. A Strengthened Uniformity Condition

Since Church numerals are essentially iterators, it is in-
teresting to consider the case in whichτ1; : : :;τk;τ are in-
stances of the principal simple type of Church numerals,
(α!α)!α!α.

Fact 4.2 If τ = (τ0!τ0)!τ0!τ0 2 Types
\
, then

TD(D`\n:τ)� n:

Proof. Just observing that, sinceτ0 is not an intersection,
in every derivation of̀ \ λpq:pnq : τ we use the statements
p : τ0!τ0 andq : τ0, and hence the translationTD does not
generate new variables.

Using this fact and the equality (5), we obtain the fol-
lowing:

Proposition 4.3 Let M be a term that uniformly repre-
sentϕ : N!N in λS

\, with typeτ1\ : : :\ τk! τ, and let
τ1; : : :;τk;τ all be instances of(α!α)!α!α. Then the
term bM � TD(D`\M:(τ1\:::\τk)!τ)

uniformly represents inλ! the functionϕ0 : Nk!N, such
that for all n2 N, we have:ϕ0(n; : : :;n) = ϕ(n).

Even in this simple case, the obtained representation
might be unsatisfactory, since in generalbM needsk > 1
copies ofn to computeϕ(n). In effect, the functionϕ could
be uniformly represented inλ! by another term, totally un-
related tobM, which does not requirek copies of the input.
This is shown by the following example.

Example 4.4 The functionϕ(x) = xx is trivially repre-
sentable inλS

\ by the termω = λx:xx, with typeσ = ((τ!
τ) \ τ)! τ. The translationTD(D`\ω:σ) gives the term
λxy:xy which represents the binary exponential function
in λ!. We now show a term typeable inλ! that repre-
sentϕ. Let τ0 = o andτi+1 = (τi!τi)!τi!τi. Consider
the termsA (typed withτ1! τ1! τ1) andM (typed with
τ2! τ1! τ1), which respectively compute addition and
multiplication on natural numbers (we write types used in
the derivation as superscript, to increase readability):

A= λxτ1yτ1 po!oqo:xp(ypq) M = λxτ2yτ1:x(Ay)0:

Then the term:
E = λxτ2:x(Mx)1

computes the unary exponential function. As this exam-
ple shows, strict intersection types add expressive power at
least in the sense of compact representation of functions.

4.2. A Redundant Representation of Numbers

Let us consider the general case, when we do not require
that typesτ1; : : :;τk;τ are instances of(α!α)!α!α.
Throughout the rest of the section we use some notations
introduced below.

Notation 4.5 We first observe that a typeτ in λS
\ that can

be assigned to a Church numeraln has the shapeµ!ρ!τ0,
whereµ� µ1\ : : :\µl andρ� ρ1\ : : :\ρm. Moreover ev-
ery µi has the shapeµi

1\ : : :\µi
ki
! µi

0 (see Fig 3). To in-
crease readability, for any typeτ 2 Types

\
, we denoteTT (τ)

bybτ andTD(D`\n:τ) by bn[τ].

ρ� ρ1\ : : :\ρm

j

τ� µ! ρ! τ0

j

µ� µ1\ : : :\µi \ : : :\µl

j

µi � µi
1\ : : :\µi

ki
! µi

0

Figure 3. Type structure of Church numerals

The aim of the next definitions and propositions is to
characterize the general shape of a termbn[τ], namely to
study the structure of translations of typing derivations of
Church numerals.

Definition 4.6 Let τ be as in Fig. 3. We define a family of
sets of intersection types, as follows:

� T0
τ = fρ1; : : :;ρmg,

� Th+1
τ =

S
1�i�lfµ

i
0 j 8s;1� s� ki ;µi

s2 Th
τ ; g.

We defineTτ =
S

nTn
τ .

Some remarks on the previous definition:

� Tn
τ is exactly the set of types which can be assigned

to the termpnq with basisfp : µ;q : ρg.
� If a given typeσ belongs toTn

τ for all n, thenµ!
ρ!σ can be assigned to all Church numerals.

� For all n, Tn
τ � fµ

1
0; : : :;µ

l
0;ρ1; : : :;ρmg

Example 4.7 In this example, we show thatTτ can contain
a typeσ such that the typingfp : µ;q : ρg `\ pnq : σ is
not derivable for everyn, but there exist typings offp :
µ;q : ρg `\ pnq : τ0, which can only be derived using the
fact thatfp : µ;q : ρg `\ pkq : σ, for somek< n. Consider
µ� (α!β)\ (γ!β)\ (α! γ)\ (γ!α) andρ � α\β.
It is easy to show that we can derive the typing:fp : µ;q :
ρg `\ pnq : β, for all n. To do this, however, forn> 0 we
have to derive the typingfp : µ;q : ρg `\ pn�1q : α or the
typingfp : µ;q : ρg `\ pn�1q : γ. We can derive the former
only if n� 1 is even and the latter only ifn� 1 is odd. In
this example we have

Tk
τ =

�
fα;βg if k is even,
fβ;γg if k is odd.

Remark 4.8 Let Tτ = fσ1; : : :;σtg. We can assume
w.l.o.g. thatfµi

1; : : :;µ
i
ki
;µi

0g � Tτ, for eachi 2 f1; : : :; lg,
otherwiseµi is not useful in typings of any Church numeral

(we never derive the judgmentB`\ p : µi in a derivation of
`\ n : τ).

Given a type as in Fig. 3, we can characterize the trans-
lations inλ! of any possible derivationDfp:µ;q:ρg`\pnq:σ,
for all n and for allσ 2 Tτ. In the following definition,qj

and pj are term variables generated by the translationTD

(Def. 3.1). In particular,qj is assigned typebρ j , while pj is
assigned typebµj .

Definition 4.9 (Numeral bodies)Let Tτ = fσ1; : : :;σtg.
We define the family of termsP τ;σi =

S
n2N P τ;σi

n as fol-
lows:

P τ;σi
0 = fqj j ρ j = σig;

P τ;σi
k+1 = fpj Q1 : : :Qkj

j 1� j � l ; σi = µj
0;

Qr 2 P τ;µj
r

k ; 1� r � kjg;

Proposition 4.10 For all n 2N, for all σ 2 Tτ:

fTD(D) jDfp:µ;q:ρg`\pnq:σg= P τ;σ
n

Proof. Induction onn.

It comes out that the setN τ
n of translations of possible

typings of a Church numeraln with τ � µ! ρ! τ0 is
exactly the set of termsλp1 : : :pl q1 : : :qm:M, with M 2

P τ;τ0
n . Moreover, anybn 2 N τ

n shares withn the property
of having a Böhm tree of depthn. Hence the set of terms
N τ

n, can be seen as a redundant representation of natural
numbers. We will define encodersE[τ] and decodersD[τ]
such thatE[τ]n = TD(D`\n:τ) for some derivationD and
D[τ](TD(D`\n:τ)) = n for all D. A proof of Leivant’s con-
jecture will immediately follow.

4.3. A Proof of Leivant’s Conjecture

We first address the problem of finding the decoderD[τ].

bn= λp1 : : :pl q1 : : :qm: pj

nn
nn
nn
nn
n

PP
PP

PP
PP

pj1

yy
yy EE

EE
: : : pjkj

yy
yy EE

EE

p� : : : p� p� : : : p�

q� q�q� q� q� q� q�q� q�
(all paths stop at depthn)

Figure 4. Structure of pseudonumerals

λpq:p

ll
ll
ll
ll
l

p

||
||
|

: : : pjkj

p : : : p� p� : : : p�

q q�q� q� q� q� q�q� q�

Figure 5. Extracting a Church numeral

Lemma 4.11 Let τ be as in Fig. 3 and letbn= TD(D`\n:τ),
for some typing derivationD. There exists a Curry-
typeable term D[τ] and a basis B[τ] such that B[τ] `! D[τ] :bτ!((o!o)!o!o) and D[τ]bn[τ] reduces ton, for anybn[τ].
Proof.(Sketch) The idea is to prune the tree of the pseudon-
umeral bn[τ], whose shape is shown in Figure 4, keep-
ing its leftmost branch and collapsing the non–leaf vari-
ables of this branch into a single one, hence reconstruct-
ing a Church numeral, see Figure 5. First, we observe that
w.l.o.g. a term can be typed using only one type variable,
sayo. We consider the following terms, for 1� i � l ;1�
j � m:

Pi = λx1 : : :xki s1 : : :sai :p(x1vi
1 : : :v

i
bi
)

and
Qj = λs1 : : :sr j :q:

Observe thatPi has typebµi , where

� bµi
0 = φ1! �� �! φai ! o,

� bµi
1 = ψ1 ! �� �! ψbi ! o,

for suitableφ1; : : :;φai ;ψ1; : : :;ψbi . Moreover,Qj has typebρ j � χ1 ! �� �! χr j ! o, for suitableχ1; : : :;χr j . Finally,
we define:

D[τ] = λxpq:xP1 : : :Pl Q1 : : :Qmv1 : : :vr ;

wherebτ0 � ξ1 ! �� �! ξr ! o, for suitableξ1; : : :;ξr . .
The new (free) variables are just used to allow a uniform

typing for p andq with o!o ando, respectively.

The construction of terms which transform a Church nu-
meral into a pseudonumeral (as it comes out from the trans-
lation function), is as follows.

Lemma 4.12 Letτ be such that for every n, the judgement
`\ n : τ is derivable. Then there exists a Curry typeable
term E[τ], such that for any n, E[τ]n�!

�
β bn[τ].

Proof.(Sketch) The idea is to construct a term that, given a
numeralnas input, iteratively generates a tuple of pseudon-
umerals. Letτ be a type as in Fig. 3 and lett =jTτ j. At
thek-th step of the iteration, the mentionedt-tuple has the
shape

< bk[δ1]
; : : :;bk[δt]

>;

whereδi = µ!ρ!σi , for all i 2 f1; : : :; tg (we remark
thatτ = δi for somei). We cannot restrict ourselves to the
construction of pseudonumerals of typebτ only, because the
body of a pseudonumeralbn[δi]

has as subterms, in general,
some bodies of pseudonumeralsbm[δ j]

, with m< n andi 6= j .
We show how to construct encoders under the hypoth-

esis that for eachσi 2 Tτ and for eachn, the judgement:
`\ n : δi is derivable. Then we argue about how to approach
the general case. Under this hypothesis,Tτ = fρ1; : : :;ρmg

and hencet = m, since types inTτ are assignable to the
body of 0. Moreover we can choose, foreachσ j 2 Tτ, a
µi such thatµi = µi

1\ : : :\µi
ki
! µi

0, µi
0 = σ j , and allµi

j
are inTτ. Such type does exist under the above hypothe-
sis, since for alln, Tn

τ = Tτ. We rearrange indexes of types
in Tτ in such a way thati = j and we define, for each
1� i � t an index functiongi : f1; : : :;kig!f1; : : :; tg such
thatσgi (j) = µi

j . We also use the convention thatqi has type

bρi andpi has typebµi
1! : : :!cµi

ki
! bµi

0.
We now describe the behaviour of two termsQ andP

(fully defined later), that will serve as arguments ofn in
the iteration outlined above.

1. Q is thet–tuple

λz:zb0[δ1] : : :
b0[δt];

which can be typed with

φ� (bδ1!�� �!bδt!γ)!γ;

for an arbitrary typeγ.
2. P is a term that takes as input at–tuple of the form

λz:zbk[δ1]
: : :bk[δt]

and gives as output thet-tuple:

λz:z d(k+1)[δ1]
: : : d(k+1)[δt]

We will see thatP can be typed inλ! with φ!φ.

Let us consider the following terms (1� i � t):

Zeroes Zi = λp1 : : :pl q1 : : :qm:qi = b0[δi]

Successors

Si = λx1 : : :xki p
1 : : :pl q1 : : :qm:pi(x1p1 : : :pl q1 : : :qm)

: : :(xki p
1 : : :pl q1 : : :qm) .

Si is typeable withbδgi(1)!�� �!bδgi(ki)!
bδi and it

yields d(k+1)[δi]
when applied tobk[δgi (1)

]; : : :;bk[δgi (ki)
]

We can now defineQ andP as follows:

Q= λz:zZ1 : : :Zt ;

P= λzw:z(λx1 : : :xt :w(S1xg1(1) : : :xg1(k1))

: : :(Stxgt (1) : : :xgt (kt))) .

Typing:

� xi with bδi ,

� w with bδ1! : : :!bδt!γ,
� zwith (bδ1! : : :!bδt!γ)!γ,

the termP has typeφ!φ.
This construction can be adapted to the general case in

which we remove the hypothesis that foreachσ 2 Tτ and
for eachn the judgement̀ \ n : µ!ρ!σ is derivable. In
this case we must take care of the fact that some pseudon-
umerals could not be constructed, at some stage of the iter-
ation, and hence some successors could not be appliable at
later stages. Very roughly, this difficulty can be overcome
by introducing boolean values representing the existence
of pseudonumerals. When successors are looked-up in or-
der to perform an iteration step, the existence of their argu-
ments is checked and the first appliable successor is picked
up. It is worth stressing that in this case we have to con-
sider, for a givenσi in Tτ, all the successors constructing a
numeral of typebδi, whereas in the simple case the arbitrary
choice of one of these was sufficient.

Finally, we can extract, from the constructedt–tuple, the
pseudonumeral of typebτ, since we know its position in the
t–tuple, sayr, applying the term:

N = λx1 : : :xt :xr

Observe that, by the hypothesis that, for everyn, the judge-
ment`\ n : τ is derivable, the pseudonumeralbk[τ] appears

in thet–tuple at each stage of the iteration. Choosingγ =bτ,
we can type inλ! the encoder

E[τ] = λx:xPQN

By properties of the translation function, the Curry ty-
peable termbM takes as inputk � 1 pseudonumerals of
types bτ1; : : : bτk. However the termλx: bM(E[τ1]x) : : :(E[τk]x)
is not, in general, Curry typeable, because different en-
coders require arguments of different types. We thus use
an encoder which constructs in parallel pseudonumerals of
type bτ1; : : : bτk and finally puts them into ak–tuple.

Lemma 4.13 Let M be a term typeable inλS
\, which uni-

formly represents a numeric unary functionϕ. Let bM =

TD(D`\M:τ1\:::\τk!τ). Then there exists a term E[τ1;:::;τk;τ],

such that E[τ1;:::;τk;τ] bMn is a Curry typeable term which re-

duces tobMbn[τ1]
: : :bn[τk]

.

Proof. We use the construction of Lemma 4.12 taking the
set of typesT =

Uk
i=1Tτi instead of a singleTτ. We extract,

from thet–tuplegenerated by the termnPQ, thek pseudon-
umerals of typesbτ1; : : :; bτk, knowing their positions, say
r1; : : :; rk, in thet–tuple, using the term:

N = λx1 : : :xt z:zxr1 : : :xrk:

Choosingγ = (bτ1! : : :! bτk!bτ)!bτ, we typeN with

(bδ1! : : :!bδt!γ);

so that the term(nPQ)N has typeγ, typing n with (φ!
φ)!φ!φ. SincebM has typebτ1!: : :! bτk!bτ (from trans-
lation), the term(nPQ)N bM is typeable inλ! with bτ and it
reduces tobMbn[τ1]

: : :bn[τk]
. Hence the term

E[τ1;:::;τk;τ] = λxy:yPQNx

satisfies the statement.

Using the above lemmas we prove the main result of
this section:

Theorem 4.14 Every functionϕ : N!N, uniformly repre-
sentable inλS

\, is uniformly representable inλ!.

Proof. If M represents a function inλS
\, let bM be the term

produced by the translation function. Using Lemmas 4.11
and 4.13, we set

M 0 � λx:D[τ](E[τ1;:::;τk;τ] bMx);

which proves the theorem.

5. Concluding remarks

A new technique has been proposed to compare compu-
tational aspects of typedλ-calculi. The presented (syntacti-
cal) technique has been successfully applied to the analysis
of strong normalization and to the characterization of de-
finable functions in the strict intersection type assignment
system. Several directions for future work are suggested by
the new approach. First, it would be interesting to inves-
tigate the possibility of defining a translation function for
the whole intersection type assignment system, eliminating
the restriction to strict types, which on its side allows for an
easier, syntax directed system. Observe that Leivant’s con-
jecture would be false in the full system only in the case
that there exists a function with a uniform typing which is
no longer uniform in the strict system.

Also, it seems interesting to investigate the algebraic
structure of the redundant representation of numbers,
which naturally comes out of our translation function.

References

[1] S. van Bakel,Complete Restrictions of the Intersec-
tion Type Discipline, Theoretical Computer Science
102 (1992) 135-163.

[2] S. van Bakel,Intersection Type Disciplines in Lambda
Calculus and Applicative Term Rewriting Systems,
PhD Dissertation, Amsterdam (1993).

[3] H. Barendregt,The Lambda Calculus: its Syntax and
Semantics,North-Holland, Amsterdam, revised edi-
tion (1984).

[4] H. Barendregt,Lambda Calculus with Types,in Hand-
book of Logic in Computer Science, Volume II, Ox-
ford University Press (1991).

[5] H. Barendregt, M. Coppo and M. Dezani-Ciancaglini,
A Filter Lambda Model and the Completeness of Type
Assignment, The Journal of Symbolic Logic 48(4)
(1983) 931-940.

[6] M. Coppo and M. Dezani-Ciancaglini,An Extension
of the Basic Functionality Theory for theλ-Calculus,
Notre Dame Journal of Formal Logic, 21(4) (1980)
685-693.

[7] M. Coppo, M. Dezani-Ciancaglini and B. Venneri,
Functional Character of Solvable Terms, Zeitschr. f.
math. Logik und Grundlagen d. Math 27 (1981) 45-48.

[8] H.B. Curry,Functionality in Combinatory Logic,Proc.
Nat. Acad. Sci. U.S.A. 20 (1934) 371-401.

[9] S. Fortune, D. Leivant and M. O’Donnell,The Expres-
siveness of Simple and Second Order Type Structures,
Journal of the ACM 30 (1983) 151-185.

[10] R.O. Gandy,Proofs of strong normalization, in [13],
1980.

[11] R.O. Gandy,An early proof of normalization by
A.M.Turing, in [13], 1980.

[12] J.-Y. Girard, Une extension de l’interpr´etation de
Gödel à l’analyse, et son application `a l’elimination
des coupures dans l’analyse et la th`eorie des types,
Procs of 2nd Scandinavian Logic Symposium, North-
Holland, 1971.

[13] To H.B. Curry: Essays in Combinatory Logic,
Lambda Calculus, and Formalism, Hindley, J.R.,
Seldin, J.P., eds, Academic Press, 1980.

[14] A.J. Kfoury and J.B. Wells,New Notions of Reduc-
tion and Non-Semantic Proofs ofβ-Strong Normal-
ization in Typedλ-calculi, Symposium on Logic in
Computer Science (LICS’95), IEEE Computer Soci-
ety Press, 1995.

[15] Z. Khasidashvili and A. Piperno,Normalizationof ty-
pable terms by superevelopments, Computer Science
Logic’98, LNCS 1584, 1999.

[16] D. Leivant,Discrete Polymorphism, ACM conference
on Lisp and Functional Programming (1990) 288-297.

[17] D. Leivant,Functions over free algebras definable in
the simple typed lambda calculus, Theoretical Com-
puter Science 121 (1993) 309-321.

[18] J. Reynolds,Toward a theory of type structures, in J.
Loeckx (ed.), Conference on Programming, LNCS 19
(1974) 408-425.

[19] R. Statman,The typedλ-calculus is not elementary
recursive, Theoretical Computer Science 9 (1979) 73-
81.

[20] W.W. Tait,Intensional interpretation of functionals of
finite type I, J. Symbolic Logic 32 (1967) 198-212.

[21] M. Zaionc,λ-definability on free algebras, Annals of
Pure and Applied Logic 51 (1991) 279-300.

