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Abstract

This paper presents a new method for comparing com-
putational properties ok-terms typeable with intersection
types with respect to terms typeable with Curry types. In
particular, strong normalization and-definability are in-
vestigated. A translation is introduced from intersection
typing derivations to Curry typeable terms; the main fea-
ture of the proposed technique is that the translation is
preserved bys-reduction. This allows to simulate a com-
putation starting from a term typeable in the intersection
discipline by means of a computation starting from a sim-
ply typeable term. Our approach naturally leads to prove

in the works of Barendregt, Coppo aneéani [6, 5]; the
system we will use in this paper, namealyict intersection
types has been introduced in [7], and has received a sys-
tematic treatment in [1, 2].

The expressive power of a type system can be analyzed
from different standpoints. From one hand, one may con-
sider the class of terms typeable in the system; from the
other hand one may analyze the definable class of (nu-
meric) functions. From the first perspective, simple types
are much less expressive than intersection types. In partic-
ular, intersection types are able to type all untyped terms or,
when the universal type is disallowed, all strongly normal-
izing ones. From here onwards, we will consider intersec-

strong normalization in the intersection system by means tion types without universal type. Although strict types are
of purely syntactical techniques. In addition, the presented a proper subset of intersection types, they preserve, from
method enables us to give a proof of a conjecture proposedthe point of typeability, the expressive power of the whole
by Leivant in 1990, namely that all functions uniformly de- system [1, 2].
finable using intersection types are already definable using  In this paper, we will compare simple and intersection
Curry types. types with respect to the problem ®fdefinability. In such
case, the relationship between the systems is not as clear as
in the case of the typeability perspective.

We denote byl then-th Church numerali{= Axy.x"y).
We briefly recall that, given a typed lambda calculus

o At and a numeric functioy : N — N, we say that a
TheA-calculus originated astgpe-freetheory of func- 15 hqa termM represents (non uniformiyd if for ev-
tions: every term may be considered either as a function ery ni,....,nk € N, Mfy... N, can be typed im\t and

or as an argument, and no syntactic restriction is imposedMﬁl. .Mic &% ®(ng,....my); a natural condition to im-
to represent a function application. This makes the system pose is that tr?e types of arguments do not depend on their

so powerful to represent all computable functions. When |51 as: we say thal represents uniformlyin At, if there
types are added to the calculus, it is possible to consider g, typesty, ..., T, T such that, for everyn,....n € N

them as syntactical objects assigned to pure terms in M, . ..fi, can be typed it with T, with typest; assigned
der to give a description of the functional behaviour of ex- mi(i € {1,...,k}) andMny . ..M @%E m [17].
pressions. Two type systems are investigated in this paper: e severe restrictions imposed by the structure of
simple types, which were introduced by Curry in [8], and Curry types allows the simply typed-calculus to uni-

a variant of intersection types; intersection types originate formly represent elementary functions, only. Indeed, the

*This work has been partially supported by MURST 40% class of representable functions has been characterized in
grants. [19, 21, 17]. A first attempt to compare this characteriza-
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tion with computational properties of intersection types ap- lows. In the next section, we will briefly describe the type
peared in [16], where it is proved that all functions repre- systems we are interested in. We will then (section 3) in-
sentable uniformly in that system are elementary (elemen-troduce a translation function which transforms a typing
tary functions are a strict subset of total recursive ones), derivation in the intersection type assignment system into
whereas all total computable functions are representablea term typeable with Curry types. We will then show that
non uniformly. In addition, starting from the result above, the translation is preserved If3¢reduction. Moreover, by
Leivant conjectured that the class of functions uniformly translating a typing of a term which uniformly represents a
representable in the intersection discipline coincides with numeric functior, we obtain a Curry typeable term which
the class of functions definable in Curry system. The proof represent$ modulo suitable codings of the arguments and
of this conjecture, in the case of strict intersection types, is decoding of the result. The structure of derivations typ-
one of the main achievements of this paper. ing Church numerals in the intersection system, and their
It has to be noted that Leivant's results have a purely translations, will be analyzed. Finally, in section 4.3, we
semantical nature, since the considered systems are comdefine Curry typeable terms which realize the mentioned
pared by investigating the class of definable functions. In coding and the corresponding decoding, thus allowing for
contrast, we will obtain our results using syntactical tech- a proof of Leivant’s conjecture in the case of strict intersec-
niques, only. We believe that a syntactical approach gives tion types. Some remarks and directions for further work
a more direct understanding of the relationships betweenWill conclude the paper.
different calculi. In particular, we will show that, for any
termT typeable with strict intersection types, and for any
of its typing derivation®), there exists a tery,, which is
typeable in Curry system and which is able to “represent”
the whole computation &F. In other words, tha-calculus We assume the reader to be familiar with standard nota-
with intersection types can be embedded into the simply tions for the untyped lambda calculus. Terms will be con-
typed calculus. This will allow us to simulate all possible Sidered modulax-equivalence. We also assume that ev-

reductions starting frofl by means of reductions @f,. ery lambda ternM obeys the restriction that no variable
is bound more than once and that no variable occurs both

free and bound iM. For every natural number, then-th
Church numeral is the lambda tefire Apg.p"g. We use
small greek letters to denote types, with the convention that
a, B andy denote type variables.

2. Basic Definitions

As a first result given by our method, we will present a
new proof of the strong normalization property for inter-
section types (without universal type). Wecall here that
there is a close relationship between the definability prob-
lem and the “difficulty” of a normalization proof in typed
A-calculi (see [9]). Simply typed-calculus allows for a
normalization proof which assigns a decreasing metric to
terms during reduction [10, 11]. On the other hand, normal-
ization in polymorphick-calculi is usually proven using
variants of the so-calledomputabilitytechnique ([20]),
which has a merely semantical nature: consider Girard-
Reynolds second ord@rcalculus [12, 18] as an example, wherea ranges over a countable set of type variables.
but also vanBakel's proof for the system considered in this We call Type, the set of types resulting from (1). As
paper [2]. usual,c; — 02 — --- — O — T is an abbreviation for

As a matter of fact, we will present a normalization 01— (02— (---(0n — T)--+)). Note that a type always
proof for A-calculus with intersection types which only has the shape
makes use of syntactical techniques, in that it (syntac-
tically) reduces the strong normalization problem in the 01— 02—-—0n—0Q,
presence of intersection types to the case of Curry types.
Different syntactical approaches and normalization proofs
for A-calculus with intersection types are [14] and [15]. Definition 2.1 The Curry type assignment syste(h_,)

Our technique will then allow us to prove Leivant’s con- proves statementsypingg of the kindA -, t:o, whereA
jecture for strict intersection types. We will proceed as fol- is abasis(a partial function from term variables to types),

2.1. The Curry Type Assignment System.
Simple (or Curry) typeare generated using the follow-

ing grammar:
o:=a|(oc—0), (1)

for some type variable andn > 0.



t € A is thesubjectando € Type. is thepredicateof the founded) “measure” for typeable terms, which decreases
typing. The system_, consists of the following rules: strictly as reductions go on. In the next section, we intro-
duce a translation of typings frok® to A_,, with the prop-

(Var)_, M erty that any reduction path rooted in a term typeabkesin
AF.x0o is mimicked by a (longer, in general) reduction path rooted
(=) Au{xo}t. tit in a suitable simply typed term. An immediate corollary
AbLAxtio—T of this is an original, syntactic proof of strong normaliza-
(mE) AF_tio—T AF.so tion for AS. Moreover, since our translation allows to rep-
- Al tsT resent im_, any “computation” feasible ia3, it provides

a framework for studyin@-definability in these systems.
Atermt has atyping, or, equivalentlyis typeable, ifthere  Thjs will be the subject of section 4.
exists a basié\ and a typeo such thatAF . t:0. The set
of terms typeable in_, will be denoted by\ .. Moreover, .
D:Ab_ t:0 (or Dar_t:¢) denotes a derivation ik, prov- 3. A Translation from 7\% toA_,
ing the typingA . t: 0.
In the definitions below, we use the following notational
2.2. The Strict Intersection Type Assignment System. convention concerning variable names: we associate to any
variablex, subject of a statemert 01N ...N oy in a basis
Following the same approach as [1], we define a re- B, a setx!, ..., x" of fresh variables, that we use in particu-
stricted version of the Intersection Type Assignment Sys- lar in translating the rules (Va)and  1)n.
tem of Coppo and Bzani [6]. This restricted version will

consist of a restricted set of types, in which the type con- Definition 3.1 Define the functions

structom can appear only on the left hand side of an arrow Tr:Typ€ — Type, (translation of types)
type scheme, and of a restricted set of inference rules. Tg:Bases — Bases.  (translation of bases)
. Strict intersection typeare generated using the follow- as follows:
ing grammar:

Tr(a)=aq,

o:=T1N...0Ty (N>1)
Ti=d|(0—=1)

TT((O'lﬂ...ﬂO'n) —)T) =
TT(O'l) — ~~~—>TT(O'n) —>TT(T);

(2)

We call Typ€ (resp.Type,) the set of types resulting from

(2) with startsymbot (resp.o). Te(0) =0,

Te(AU{x01N...N0x}) =
Definition 2.2 The Strict Intersection type assignment Te(A)U{x::Tr(01),...,x Tr(on)}.
system(\3) proves statementsyping9 of the kind:A
M:1, whereA is abasis i.e. a partial function from term
variables toType, M € A andt € Typé. The system\3
consists of the rules in Fig. 1. An expected property of the translation(s) defined above
is the following:

Definition 3.2 Define the functiof p: Der, — A (transla-
tion of derivationsjnductively as in Fig. 2.

We say thaD: At t:1 (or Dar 1) if D is a derivation
in AS proving the typingA I t:T. Note that intersections ~ Lemma 3.3 For any derivatiorD of the typing A~ M:o
of types may appear as predicates in bases, only; types asi A5,

signed to terms always belongTgpe. Te(A) F_. Tp(D): Tt (0)

The systemAS has been introduced in [1], where it
is proven that the terms typeable N3 are exactly the
strongly normalizing ones. In particular, the original proof
of the fact that any term typeable X¥ is strongly nor-
malizing relies on a computability argument, semantic in
nature. This is in sharp contrast with the cas of where AU{x01N...N0Op} Fn MiT
strong normalization can be proven by defining a (well Ao AXM:(o1N...N0n) =T,

is a typing inA_,.

Proof. By induction on the structure of the derivati@h

Let us show for instance the case in which the last rule
appliedinD is (=), i.e.:




= 1<i<
(Var). AX)=T1N...NT, 1<i<n
AR, XT
AU {x.a} - M:T
—1 —_——
- Ab AXM:io =T
(—E)

AFM:(TaN...NTh) =T AR NiT1...AF NiTy

AF-MN:T

Figure 1. The System AS

X

T (A(x) = cm...ﬁcn)
P Al X O

D1
To ( Au{xo1N...Nnon} Fn M:t)
A, AX.M:(01N...N0pn) = T
D1

D.

1 n .
(AX - X To (Au{x:clm...mcn} Fa M:r)) '

To

Do
(AI—m M:(T1N...NTh) =T AFNiTy
AF-MN:T
Do

Dh
ANty | =
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Figure 2. Translation of Typings

let D’ be a derivation of the typingU {x:a1N...Non} Fn
M:1 which appears in the premise of such rule. By induc-
tion hypothesis:

Te(A)U{x::Tr(01),..., X Tr(on)}
|—H TD(DI)ITT(T)
so that
Te(A) F, Axt.. X" Tp(D"):
TT(O'l) — = TT(O'n) — TT(T).
The case is settled observing that
TD(D) )\Xl...Xn.TD(DI)

and

TT((O'lﬂ...ﬂO'n) —)T) =
TT(O'l) —>~~~—>TT(O'n) —>TT(T).

|

We have seen so far how to translate (derivations of)

typings of AS into terms ofA_,. The crucial property of
this translation is that it is preserved Byreduction, as ex-
pressed in the following proposition:

Lemma 3.4 LetD be a derivation of the typing A M: o
in AS and let M&—g N. Then there exists a derivatidf
of the typing A-- N:o such that

TD(D) C}—)E TD(DI)

Proof. By induction on the structure of the derivati@h
The only interesting case is when the last rule applidd in
is (—E),, and the redex iM, so thatD has the shape
Do D Dy
AF-AXPo—=1 AR, Q11 AR, Q:Ty
Ak, (AXP)Q:T

whereo = 11N ...NT,. The variablex appears inDg as
subject ofq instances (for somg > 0) of the rule (Var).
Hence, a sePairs(D,x) can be defined as follows, where
1<j<a

3)

Aj(X) =T1N...NTy
Aj Fn X
Clearly, for everyj € {1,...,n}, Aj D A. By thebasis
lemma(see e.g. [4]), for anyi, j) € Pairs(D,x) a deriva-
tion D/ of the typingA; - Q:T; is built replacing inD;
every occurrence of a badswith BN A;.

appears iD.

(i,]) € Pairs(D,x) <



It follows that the derivatio’ is obtained out 0Dg in
two steps:

1. replacing every occurrence of

Aj(X) =T1N...NTy
Aj Fn X

with Dij;
2. replacing in the subjects of the so obtained derivation
every occurrence of the variabtevith Q.

It comes out thaD' is a derivation of the typing
Ak P[Q/X:T.

Moreover, by a straightforward induction on the structure
of Do, observing that

Vi, j.(i,]) € Pairs(D,x) = Tp(D}) = Tp(Dy),

the following holds:

TD(DI) = TD(Do)[TD(Dl)/Xl, .. .,TD(Dn)/Xn]. (4)
Now,
Do
o) = TD(Al—m)\X.PZ(Tlﬂ...ﬂTn)—)T)

To(D1)...To(Dn)
(At .x".Tp(Do))Tp(D1) ... To(Dn)
<:>—>a' To(Do)[To(D1) /%L, ..., To(Dn) /X"
To(D'), by (4),

which proves the lemma. O

It is easy to see that the property T just shown also
holds for the reflexive and transitive closureswf: s .

Lemma 3.5 LetD be a derivation for the typing B, M :
o in AS and let M&—5 N. Then there exists a derivation

D’ of the typing B-- N : o such that
To(D) S To(D').
Proof. By induction on the length of the reduction of
M ¢>—>’[‘3 N, using Lemma 3.4. O
We are now able to prove the main result of this section.

Theorem 3.6 (Strong normalization) For any M € A, if
M is typeable in\3, then evenyB-reduction path starting
from M is finite.

Proof. If M is typeable in\3, then there exists a basis
and a typeo such thaB+, M : a. Let D be a derivation
of such typing. IfM has an infinitg3-reduction path, then,
by Lemma 3.5,Tp (D) has an infiniteB-reduction path,
too. But, by Lemma 3.3[g (B) -, Tp (D) : Tt (o), so that
To (D) has a typing im\_, hence it is strongly normaliz-
ing, a contradiction. O

4. \-definability in AS and A_,

Since we are able to map computations of terms ty-
peable inAS into computations of terms typeable A,
it is natural to ask whether our syntactic approach can be
used to compare the expressive poweh gfwith respect
to AS from the point of view of representable functions.
Since all strongly normalizing terms are typeablain
it easy to show that there are functions, representailg,in
which are not representablein,. Take as an example the
termE = Ax.x(Ay.yx)x. Taking as input a Church numeral
N, E reduces tdN = n...nand hence yields as output the
rey

p ”} ntimes
Church numerah" . ThusE computes a non—
elementary function; moreover, for @] En is typeable in

A3, because it is stngly normalizing. However, the typ-
ing of EN depends om, as it is clear from the structure of
N. This example shows that typings A% may be highly
non—uniform. It is interesting to investigate the set of repre-
sentable functions under a reasonable uniformity condition
on typings [16]:

Definition 4.1 (Uniform Representation of Functions)
Let At be a typed lambda calculus ad N — N a nu-
meric function. We say that a lambda tekirepresents
uniformlyin A+, if there are typesy, . . ., Tk, T such that, for
everyny,...,ng € N, Mny...Ng can be typed il with T,
with typest; assigned t@i (i € {1,...,k}) and

Mnz ...k C}—)E ¢(n1, .. .,nk).

We callt, ..
type

., Tk theinput typesand the type theoutput

In [16], Leivant proved that all functions uniformly rep-
resentable in\3 are elementary, as it is the case fos.
Moreover, he proposed the following conjecture.

Functions uniformly representable My are already
uniformly representable ih_,.



The rest of the paper is devoted to prove Leivant's con-
jecture in the case of strict intersection types.

From now on, for the sake of simplicity, we focus on
unary functions; every result can be easily extended to the
case of function wittk > 1 arguments. Lep : N— N be
a numeric function uniformly representedNg, by a term
M = Ax.M’. In A3 a type assignable tb! must have the
shaper; N...N1Tx— T, and moreover, by uniformity, each
Church numeral has to be typed with ..., Tk, and each
Church numerdi such thath(m) = nfor somem has to be
typed witht. By definition of Tp, we have:

TD(Dl-mMﬁ:T) = TD(DEQM:rln...mk—n)

(5)
TD(DI}mﬁ:Tl) - 'TD(DII-(mﬁ:Tk)'
Our aim is to useM = Tp(D .. (o) IN O

der to find a term which represengsin A_,. However,
since in general the term§ = Tp(D| .} and¢(n) =
To(Dr+,mnx) are not Church numerals, our approach re-
quires the definition of suitable simply typeable terms,

D[T]a E[Tl]a cey E[Tk]' such that

Ern=To(Drn)  the “encoders”
Di(To(Dy i) =1 the “decoder”.

and the term

P= )\X.D[T](M(E[Tl]X) S (E[Tk]X)) (6)

is Curry typeable, so that, for ai| Pﬁ@—fé (n). Note that

the termsDyy, By}, - - -, Epr,y Will be proven to have simple

types. However, they are indexed over intersection types,

because their construction depends on intersection types.
We will build terms satisfying all the mentioned require-

ments. For the sake of clarity, we start with a simple case.

4.1. A Strengthened Uniformity Condition

Since Church numerals are essentially iterators, it is in-
teresting to consider the case in whigh. .., 1, T are in-
stances of the principal simple type of Church numerals,
(a—a)—=a—a.

Fact4.2If 1= (1 —>1)—>1—1 € Typ€, then

TD(DFmﬁZT) =nN.
Proof. Just observing that, sinag is not an intersection,
in every derivation of, Apg.p"q: T we use the statements

p: T —T andq: T, and hence the translatidia does not
generate new variables. O

Using this fact and the equality (5), we obtain the fol-
lowing:

Proposition 4.3 Let M be a term that uniformly repre-
sentd : N— N in A3, with typetiN...NT— T, and let

T1,..., Tk, T all be instances ofa — o) — o —a. Then the

term

M= TD(DFQMZ(Tlﬂ...ﬂTk)—)T)

uniformly represents iA_, the functionp’ : N — N, such
that for allne N, we have®’(n,...,n) = ¢(n).

Even in this simple case, the obtained representation
might be unsatisfactory, since in genel@lneedsk >1
copies offito computep(n). In effect, the functior could
be uniformly represented kv, by another term, totally un-
related toM, which does not requirk copies of the input.
This is shown by the following example.

Example 4.4 The function$(x) = xX* is trivially repre-
sentable in\3 by the termw = Ax.xx, with typeo = ((1—

1) N 1) = T. The translationlp(Dy ) gives the term
Axy.xy which represents the binary exponential function
in A_,. We now show a term typeable k., that repre-
sent. Let o = oandTti;1 = (Ti— 1)) = T, — T;. Consider
the termsA (typed withty — 11 — 11) andM (typed with

To — T1 — T1), Which respectively compute addition and
multiplication on natural numbers (we write types used in
the derivation as superscript, to increase readability):

A= M1y p°°% xp(ypg) M = Ax2y™ x(Ay)O0.

Then the term:
E = AX2.x(Mx)1

computes the unary exponential function. As this exam-
ple shows, strict intersection types add expressive power at
least in the sense of compact representation of functions.

4.2. A Redundant Representation of Numbers

Let us consider the general case, when we do not require
that typesty, ..., Tk, T are instances ofo — o) = o —a.
Throughout the rest of the section we use some notations
introduced below.

Notation 4.5 We first observe that a typein AS that can
be assigned to a Church numemdlas the shape— p— T,
wherep=pN...NYw andp=piN...Npm. Moreover ev-
ery i has the shapg) N ..My, — L (see Fig 3). To in-
crease readability, for any types Typ€, we denotd 1 (1)
byT andTp(Dy 1) by ﬁ[T].



pP=p1N...NPm

T=u—p—>T

H= N, ..OpN.

eIl

W=p0. N — 1

Figure 3. Type structure of Church numerals

The aim of the next definitions and propositions is to
characterize the general shape of a tefr[ namely to
study the structure of translations of typing derivations of
Church numerals.

Definition 4.6 Let T be as in Fig. 3. We define a family of
sets of intersection types, as follows:

° TTOI{pla“'apm}'
° TTh+l:UlsiS|{pi0|VS,1§S§kiaHISETTh’ }
We defineT, = U, T

Some remarks on the previous definition:

o T['is exactly the set of types which can be assigned

to the termp"q with basis{p: y,q: p}.

e If a given typeo belongs toT," for all n, thenp—
p— 0 can be assigned to all Church numerals.

e Foralln, T"C {id,.... 1, P, - -, Pm}

Example 4.7 In this example, we show th@t can contain
a typeo such that the typindp: nq:p} -~ p'g: ois
not derivable for evenyn, but there exist typings ofp :
KLq:p} ks p'g: T, which can only be derived using the
fact that{p: u,q: p} F- p“q: o, for somek < n. Consider
M= (a—=B)N(y=B)Nn(a—=y)N(y—a)andp=anp.

It is easy to show that we can derive the typifig: 1, q:
p} F~ p"g: B, for all n. To do this, however, fon > 0 we
have to derive the typingp: 1,q: p} -+ p"1q: a or the
typing{p: W q:p} - p"1q:y. We can derive the former
only if n<1 is even and the latter only if<1 is odd. In
this example we have

k _ {G,B}
T ‘{ By}

Remark 4.8 Let T, = {01,...,0t}. We can assume
w.l.o.g. that{ih, ...k, Ko} C Tr, for eachi € {1,..,1},
otherwiseqy; is not useful in typings of any Church numeral

if kis even,
if kis odd.

(we never derive the judgmeBt- p: 1 in a derivation of
FoN:1).

Given a type as in Fig. 3, we can characterize the trans-
lations inA_, of any possible derivatioD ., 401 pgos
for all n and for allo € T;. In the following definition g’
and p! are term variables generated by the translafign
(Def. 3.1). In particularg’ is assigned typgj, while p/ is
assigned typg;.

Definition 4.9 (Numeral bodies)Let T; = {01,...,0t}.
We define the family of termB™% = |J .\ Pn®' as fol-

lows:

Po%={d | pj=0i}, |
P;lkoi:{pj Ql"'ij | 1§j§|a_0i:p(1)a
QrePQ’“*J, 1<r <kjl,

Proposition 4.10 Foralln € N, forall o € Ty:
{TD(D) | D{p:u,q:p}l—mp”q:o} = pg,o

Proof. Induction onn. O

It comes out that the sé¥l | of translations of possible
typings of a Church numerd with t= p—p—T1 is
exactly the set of termapy...pQ:1-..qm-M, with M €

I Moreover, anyf N ! shares withh the property
of having a Bhm tree of deptm. Hence the set of terms
N T, can be seen as a redundant representation of natural
numbers. We will define encodeB; and decoder®y
such thatEn = Tp (D n:) for some derivatiorD and
Diq(To(Drmir)) = nifor all D. A proof of Leivant's con-
jecture willimmediately follow.

4.3. A Proof of Leivant’'s Conjecture

We first address the problem of finding the decddlgy.



wheret’ = &1 — - — & — o, for suitablegq, .. . &,. .

n= --Pida-- The new (free) variables are just used to allow a uniform
/ \ 0 typing for p andq with o— o ando, respectively. O
ik
/ \ e J o The construction of terms which transform a Church nu-
p— p— . p— meral into a pseudonumeral (as it comes out from the trans-

Lo T T lation function), is as follows.
- 09 9 O O q Q— g- .
(all paths stop at depth) Lemma 4.12 Lett be such that for every n, the judgement

k- n: 1 is derivable. Then there exists a Curry typeable
term By}, such that for any n, gn c;e’é ﬁ[r].

Proof. (Sketch) The idea is to construct a term that, given a
numerainas input, iteratively generates atuple of pseudon-
umerals. Lett be a type as in Fig. 3 and let=| T |. At

Figure 4. Structure of pseudonumerals

APa.p thek-th step of the iteration, the mentionedluple has the
D Piy, shape R R
/ <Kgp - K5 >
p p- p- p- whered; = u—p—aj, foralli € {1,...,t} (we remark
thatt = &; for somei). We cannot restrict ourselves to the
9 99 9 4- - 09 9 construction of pseudonumerals of typenly, because the
body of a pseudonumer%i has as subterms, in general,
Figure 5. Extracting a Church numeral some bodies of pseudonumerﬁl[gj], withm< nandi # j.
We show how to construct encoders under the hypoth-
Lemma4.11 Lett be as in Fig. 3 and lei = Tp (Dy 7:1), esis that for eaclw; € T; and for eachn, the judgement:
for some typing derivatiorD. There exists a Curry- F;1:9;is derivable. Then we argue about how to approach
typeable term R and a basis B; such that By - Dy : the general case. Under this hypothe§iss {p1,...,pm}
T—((0—~0)—0—0) and qT reduces tan, foranyn[] and hencd = m, since types irl; are assignable to the
Proof. (Sketch) The ideais to prunethe tree of the pseudon- Pody of 0. Moreover we can choose, feacha;j € Tr, a
umeral fir;, whose shape is shown in Figure 4, keep- M such thaty =t NN, — My, Ky = 0}, and ally

ing its leftmost branch and collapsing the non-leaf vari- &€ inTr. Such typﬁ does exist under the above hypothe-
ables of this branch into a single one, hence reconstruct-SiS; Since for alh, T¢" = Tr. We rearrange indexes of types

ing a Church numeral, see Figure 5. First, we observe thati" Tr in such a way that = j and we define, for each
w.l.0.g. a term can be typed using only one type variable, 1< i<tanindexfunctiom; : {1,....ki} —{1,...,t} such
sayo. We consider the following terms, ford i <1,1< thatag,j) = Hj. We also use the conventlon tiprhas type
j<m pi andp' hastypq11—> —>uk —>p0
We now describe the behaviour of two ter@sand P
P=AX.. XgSt...Sq-P(XaVy .. . Vhy) (fully defined later), that will serve as argumentsfoin
and the iteration outlined above.
Qj=Ast...5;.0. 1. Qis thet—tuple
Observe thaP has typd, where }\2.26[61] . .6[5[],

. ;I},:cp1—>~~~—>(p‘-,]j -0,

~

e =P — - =Py =0,

which can be typed with

0= (81—>~~~—>8t—>y)—>y,
for suitableqy, ..., @, Y1, . .., Yy. Moreover,Q; has type .
Pj =X1— - — Xr; — O, for suitablexs, ..., Xr;. Finally, for an arbitrary typey.

we define: 2. Pis aterm that takes as input-atuple of the form

Dp = AXpgxPy...RQ1...Qmvi.. .V, )\z.ﬂ?[al] .. .I?[&]



and gives as output thetuple:
AzzZ(k+1) (5, - - (K+ 15
We will see thaP can be typed ii_, with @— @.
Let us consider the following terms (i <t):
Zeroes Zj = Apt...p'gt...q".q = O,
Successors
S=Ma.. %Pt ..pgt...qnp' (xapt...p'gt. ..M
(x4 ptpigtg™ .
S is typeable Withsgi(l) —>"'—>Sgi(ki) —>8i and it
yields(k+ 1);5; when applied t&[g,gi(l)], i .,IA<{5

i (k)]
We can now defin€ andP as follows:

Q=Azz4 .. .Z,
P = Azwz(AX1 ... % W(S1Xg, (1) - - -Xgy (k)
- (SX ) - X)) -
Typing:
e X with Si,

e wwith 81—>...—>8t—>v,
e zwith (81_>...—>8Hv)—>v,

the termP has typep— @.

in thet—tuple at each stage of the iteratiomd®@singy =T,
we can type il\_, the encoder

E[T] = MAXXPQN
a

By properties of the translation function, the Curry ty-
peable termM takes as inpuk > 1 pseudonumerals of
typesTy,...Tx. However the termx.M (Eg,X) . .. (Eq%)
is not, in general, Curry typeable, because different en-
coders require arguments of different types. We thus use
an encoder which constructs in parallel pseudonumerals of
typety, ... T and finally puts them into k-tuple.

Lemma 4.13 Let M be a term typeable ik, which uni-
formly represents a numeric unary functign Let M =
To(Dr m:yn.. nte—t)- Then there exists a termE. 1 1
suchthatf, ¢ 1 M is a Curry typeable term which re-
duces tavi Aoy g
Proof. We use the construction of Lemma 4.12 taking the
set of typesl = Lﬂ!‘:l Ty, instead of a singl&;. We extract,
from thet—tuple generated by the temPQ, thek pseudon-
umerals of typedy,..., Ty, knowing their positions, say
ri,...,r inthet—tuple, using the term:

N =AX{...%XZZ%, .. Xr,-

This construction can be adapted to the general case inChoosingy = (T1— ...— Tx— 1) — T, we typeN with

which we remove the hypothesis that facho € T; and
for eachn the judgement n : p—p—oisderivable. In

this case we must take care of the fact that some pseudon
umerals could not be constructed, at some stage of the iter-
ation, and hence some successors could not be appliable ahtion
later stages. Very roughly, this difficulty can be overcome

by introducing boolean values representing the existence

of pseudonumerals. Whenaessors are looked-up in or-

der to perform an iteration step, the existence of theirargu-
ments is checked and the first appliable successor is pickedatisfies the statement.
up. It is worth stressing that in this case we have to con-

sider, fora giveArUi in Ty, all the successors constructing a
numeral of type;, whereas in the simple case the arbitrary
choice of one of these was sulfficient.

Finally, we can extract, from the constructeduple, the
pseudonumeral of tygg since we know its position in the
t—tuple, sayr, applying the term:

N =AX1... %X

Observe that, by the hypothesis that, for e\mirghe judge-
mentt, N : T is derivable, the pseudonumet?[l] appears

(81—>...—>8t—>y),

so that the term{nPQ)N has typey, typing i with (¢—

—@—@. SinceM has typef; — ... — Tx—T (from trans-
), the term(MPQ)NM is typeable if\_, with T and it
reduces vy, ;...fi, ;. Hence the term

E[rl,...,rk,r] = Axy.yPQNX
O

Using the above lemmas we prove the main result of
this section:

Theorem 4.14 Every functiorp : N— N, uniformly repre-
sentable iM\3, is uniformly representable ik, .

Proof. If M represents a function kS, let M be the term
produced by the translation function. Using Lemmas 4.11
and 4.13, we set

~

M’ = )\X'D[T](E[Tl,...,Tk,T]MX)a

which proves the theorem. O
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