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Abstract. We show how the Murϕ model checker can be used to au-
tomatically carry out safety analysis of a quite complex hybrid system
tele-controlling vehicles traffic inside a safety critical transport infras-
tructure such as a long bridge or a tunnel. We present the Murϕ model
we developed towards this end as well as the experimental results we
obtained by running the Murϕ verifier on our model.

Our experimental results show that the approach presented here can
be used to verify safety of critical dimensioning parameters (e.g. band-
width) of the telecommunication network embedded in a safety
critical system.

1 Introduction

Because of technological as well as economical reasons, the number of systems
relying on wireless telecommunication (telco) networks is always increasing. This
is also happening for safety critical systems. This poses new challenges to the
safety analysis work. In fact, the telco network behaviour needs to be modeled in
a fairly accurate way in order to formalize the relationship between telco network
parameters (e.g. bandwidth) and the system safety property being investigated.

We show how the above is possible by presenting a case study on the analysis
of a safety property for a Tele Control System (TCS), developed in the frame of
the European project SAFETUNNEL [11].

The goal of TCS is to take active measures to improve safety in the Critical
Transport Infrastructure (CTI) it controls, namely a tunnel. More specifically,
TCS aims at reducing the number of accidents inside alpine road tunnels, ex-
ploiting GPRS (General Packet Radio Service)) communication between instru-
mented vehicles and a Tunnel Control Centre (TCC). TCS implements preven-
tive safety functions, namely: vehicle prognostics, vehicle tunnel access control,
vehicle speed and distance control, dissemination of emergency message.
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We present a model of TCS and an automatic analysis of it via model checking
[12]. Our goal is to show that TCS operates in a safe way, that is no dangerous
situation can arise from installation and usage of the TCS in our CTI.

More specifically, our analysis focuses on the interaction of TCS telco net-
work dimensioning with TCS preventive safety functions. We formally check,
via model checking, that the telco dimensioning, in terms of bandwidth, guar-
antees TCC ability to safely handle different tunnel scenarios. Namely: nor-
mal system operational mode (registrations, deregistrations, anomaly situations
and emergency situations), emergency scenarios (i.e. dissemination of emergency
information).

Basically, our presentwork is about TCS validation by modeling along the lines
of [1]. In fact, in our case, only a limited number of field tests can be run on the
actual system. This is because measures requiring long observation times inside the
infrastructure (that has to be closed to the ordinary vehicular traffic, with loss of
availability and money) should be kept to a minimum. Moreover measures which
would require irreproducible infrastructure scenarios (i.e occurrence of incidents
and emergency scenarios) cannot simply be done. From the above considerations
stem the importance safety and performance analysis on the system model.

TCS is a quite large hybrid system, that is a system with continuous as well as
discrete state variables. Automatic analysis of Hybrid Systems poses formidable
challenges both from a modeling as well as from a verification point of view. In
fact the simultaneous presence of continuous and discrete variables may lead very
quickly to state explosion, thus preventing completion of the verification process.

Many verification tools (model checkers) are available for automatic verifi-
cation of hybrid systems. Examples are: HyTech [9,3,2] and UPPAAL [10,18].
Also tools originally designed for hardware verification have been used for hybrid
systems verification. E.g. in [17] SMV [12,16] has been used for verification of
chemical processing systems.

In this case study we use the CMurϕ [5,4] verifier since both HyTech and
SMV could not complete the verification task because of state explosion. This is
in agreement with our previous experience in hybrid systems verification [14].

CMurϕ is the Murϕ verifier [6,13] extended with (finite precision) real num-
bers [14], caching and disk based algorithms [15,5].

Automatic timeliness verification with the Murϕ verifier and performability
analysis of TCS telco network has also been studied, respectively, in [8], [7].

Our main contributions here can be summarized as follows. We sketch TCS
features (Section 3), present our modeling of the TCS system (Sections 4, 4.1, 4.2,
4.3, 4.4), present a formalization of the main TCS safety requirement (Section
5) and finally give experimental results showing effectiveness of our approach
(Section 6). Lack of space prevents us from giving the Murϕ model of TCS.

2 Basic Notions

A Finite State System (FSS) S is a 4-tuple (S, I, A, R) where: S is a finite set
(of states), I ⊆ S is the set of initial states, A is a finite set (of transition labels
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or events or actions) and R is a relation on S × A × S. R is usually called the
transition relation of S. We define the set next(s) of successors of state s as
follows: next(s) = {s′|∃aR(s, a, s′)}.

The set of reachable states of S (notation Reach(S)) is the set of states of
S reachable in zero or more steps from I.

A trace π of S is a finite or infinite sequence π ≡ s0, a0, s1, a1, . . . s.t.: s0 ∈ I
and for i = 0, 1, . . . R(si, ai, si+1) holds. We also write π(i) for s(i).

In the following we will always refer to a given (once and for all) system S
= (S, I, A, R). Thus, e.g., we will write Reach for Reach(S). Also we may
speak about the set of initial states I as well as about the transition relation R
without explicitly mentioning S.

Let B = {0, 1} the set of boolean values. An invariant for S = (S, I, A,
R) is a map ϕ from S to B. We say that S satisfies invariant ϕ iff for all
s ∈ Reach ϕ(s) = 1. That is, if for all reachable states of S, ϕ holds.

Safety properties are modeled using invariants. That is, an error state or an
undesired state is a state that does not satisfy the given invariant.

Basically, using a suitable high level language, a model checker takes as input
the definitions of an FSS S and of an invariant ϕ for S an returns PASS if S
satisfies ϕ, FAIL otherwise. Moreover, when a model checker returns FAIL, it
also returns a finite trace π ≡ s0, a0, s1, a1, . . . sk, of S leading to an error state,
that is we have ϕ(π(k)) = ϕ(sk) = 0.

From the above follows that, given a system S and an invariant ϕ, a model
checker automatically carries out a a reachability analysis, i.e. the computation of
all reachable states, for S, looking for undesired states (i.e. states not satisfying
invariant ϕ).

We plan to use CMurϕ [5,4] extended with real numbers [14] to analyze hy-
brid systems. For this reason we model hybrid systems as Discrete Time Systems
(DTSs). We show the easy relationship between DTSs and FSSs using a toy ex-
ample. Let us consider the DTS x defined by Equation 1, where x(t) is the state
value at time t and d(t) is the disturbance value at time t.

x(t + 1) =
{

x(t) + d(t) if x(t) ≤ 3
x(t) − d(t) otherwise ∀t[d(t) ∈ {0, 1, 2}], x(0) = 0. (1)

ϕ1(v) = (v ≤ 5) ϕ2(v) = (v < 5) (2)

Fig. 1 shows the FSS corresponding to the DTS defined by Equation 1.
The initial state x(0) = 0 is shown with an arrow in Fig. 1, where nodes are
labeled with state values and edges are labeled with action (disturbance, in our
case) values.

Equation 2 defines possible invariants for system x in Equation 1. A model
checker taking as input the pair (x, ϕ1) will return PASS since all reachable states
of x are less than or equal to 5. On the other hand a model checker with input (x,
ϕ2) will return FAIL with the following trace (counterexample) 0, 1, 1, 2, 3, 2, 5.
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Fig. 1. FSS for the discrete time system in Equation 1

3 System Overview

In this Section we give a high level description of our TCS architecture. The
remaining Sections will gradually zoom in TCS components showing how our
Murϕ model is organized.

The goal of TCS is to monitor and control vehicle (mainly trucks) traf-
fic inside the CTI area. This is done by equipping each vehicle with suitable
sensors and actuators (e.g. to measure and control the distance from the pre-
ceding vehicle) and with telecommunication devices (to communicate with the
control center).

TCS consists of three main subsystems: Vehicles, Telecommunication network
(TLC) and, finally, the Tele Control Center (TCC).

The Tele Control Center (TCC) manages the vehicles in the CTI area. The
TCC-vehicle communication protocol is defined with Message Sequence Charts
(MSCs) which also define the telecommunication network load, since they define
the number of bytes traveling in the communication channels. In case of an
accident the TCC sends to all vehicles in the CTI suitable directives to escape
from the accident area.

This is the most stressful situation for the telecommunication network. Since
our main goal here is to verify the telecommunication network dimensioning, we
will just focus on the case in which, for some reason (e.g. an accident), the TCC
needs to send a given (emergency) message to all vehicles.

As far as we are concerned, vehicles are equipped as follows: 1) Fuel level
sensors, distance sensors, oil level sensors, etc; 2) GPRS telecommunication de-
vices; 3) Automatic Cruise Control (ACC), which takes from the TCC the max
speed and min distance and actuates vehicle throttle and brakes accordingly.

A vehicle equipped with the above devices is also called a mobile station.
For safety reasons a vehicle must be an autonomous system, i.e. it should work

safely also when the TCC or the telecommunication network are not working.
This is why vehicles are equipped with an Automatic Cruise Control (ACC) that
keeps the vehicle speed below a given threshold and the distance of the vehicle
from the preceding one above a given threshold.
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Communication between mobile stations (vehicles) and the TCC essentially
exploits the GPRS technology used to support communication between mobile
stations and TCC inside the whole CTI area.

CTI GPRS network consists of a set of Base Stations situated inside the
CTI. Each Base Station supports traffic for a certain number of Carriers. The
number of carriers per base station depends on the type and configuration of the
base station model.

Using Time Sharing policies each carrier, in turn, is split into 8 Time Slots.
This is the channel used for actual data transmission. The time slot channel has
a transmission speed of 10.22 kbps. Theoretically a GPRS terminal can use up
to 8 time slots in uplink (UL) plus 8 in downlink (DL). Typically, commercial
terminals use 6 time slots for uplink and downlink.

As an example, assuming we have a 3 carriers base station, we have available
3 ∗ 8 = 24 time slots for each installation.

The following alternative working hypothesis have been considered in the
GPRS dimensioning: 1) The max bit rate (UL + DL) for each mobile station is
5 kbps, thus 2 vehicles can share one time slot; 2) The max bit rate (UL + DL)
for each mobile station is 2 kbps, thus 5 vehicles can share one time slot. Of
course the first solution gives faster communication, but requires more carriers.
The second solution saves on the number of carriers, yielding however slower
communication.

4 TCS Model

We use the Murϕ programming language to define our model and the Murϕ
verification engine to check that our model meets given safety requirements.
Murϕ uses a Pascal-like programming language to define model dynamics. This
makes the definition of complex systems quite easy, since an object oriented
modeling approach can be followed.

Because of lack of space we cannot present the actual Murϕ code of our
model. We will just describe the main subsystems forming our systems as well
as their interactions.

Murϕ constants are our TCS model parameters. Some of our constants
are suggested by [11], others have been obtained from various (e.g. physical)
considerations.

Murϕ data structures are our TCS model objects (e.g. vehicles, etc). Murϕ
functions are used to define the dynamics of our TCS model.

As usual we follow the convention of ending function names with (). Function
names used in this section correspond exactly to those in the Murϕ model.

We model TCS as a discrete time system with sampling time T = 100ms [11].
A high level view of TCS consists of three main objects (Figure 2). Namely,

(an array of) mobile stations (i.e. vehicles), the Telecommunication Network
(TLC), the Tele Control Center (TCC).

Figure 2 shows some of the (Murϕ) functions (SendRequest(),
AssignChannel(), CheckBarrier() and BlueToothTrigger()) implementing
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Fig. 2. Model top view

the interaction between (top) TCS objects, namely Mobile Stations, TCC
and TLC.

Mobile Stations and TCC communicate via the TLC which consists of a
GPRS network and a system of antennas used to check vehicle parameters (e.g.
position) at the CTI barriers (CheckBarrier() in Figure 2) and possibly to send
messages to the TCC (BlueToothTrigger() in Figure 2).

For GPRS communication a channel must be assigned to the peers. This is
modeled as follows (Figure 2). The sender asks for a communication channel
SendRequest() to the Network Manager. Once such channel is assigned to the
sender (using AssignChannel()) the communication can take place. That is the
sender can send its message to the receiver (Data).

Note that the CTI itself does not appear in Figure 2. This is because the
CTI status does not change over time. Thus it can be simply modeled using its
physical constants.

For example, constant TUNNEL LENGTH defines the physical length of the CTI
under consideration. Constant APPROACHING LENGTH defines the distance out-
side CTI entrances that we still consider relevant for our modeling (CTI area).
Constant TOOTH DISTANCE gives the distance of the first Bluetooth barrier from
the CTI entrance (of course, on both sides of the CTI). As a result, position
(in meters) of the four CTI barriers can be easily computed. Thus, in our TCS
model, to formalize the fact that a vehicle has passed a certain barrier it suffices
to compare the vehicle position with the barrier position.

4.1 Vehicles

A single vehicle is modeled using a record (named Vehicle). Each record
Vehicle field models a vehicle feature (e.g. position, speed, etc) needed in
order to define the dynamics of our model. In other words, record Vehicle holds
the vehicle state information.
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Our CTI has one lane for each direction. Each lane is modeled with an array
of size NUMBER OF VEHICLES PER LANE of vehicle records.

A vehicle can be a car or a truck. Each vehicle is equipped with suitable
communication devices [11]. For this reason, in our context, vehicles are also
called mobile stations or terminals (when dealing with TLC network issues).

When modeling a vehicle dynamics we also take into account its acceleration
and deceleration characteristics.

4.2 The Tele Control Center

The TCC consists of four interacting subsystems: 1) Communication devices;
2) Constant directives (storing system parameters)p 3) Registered vehicle data
(storing information about registered vehicles); 4) Right monitoring devices
(handling the tight monitoring procedure to be describe din Section 4.4).

For example, among the TCC constants directives (parameters) we have
STANDARD RECOMMENDED SPEED (70 Km/h) STANDARD RECOMMENDED DISTANCE
(150 m). If an anomaly occurs in the monitored area TCC suitably recomputes
these values.

For each vehicle v, TCC stores information about v as well as information
about the messages exchanged between TCC and v.

Our model for the Tele Control Center consists of: 1) CTI Status Variables,
storing all information (directives) to be sent to vehicles (e.g. Recommended
Speed AND Recommended Distance); 2) The I/O system handling GPRS com-
munication with the mobile stations; 3) Administrative information to make
decisions about messages to be sent to vehicles.

4.3 The Telecommunication Network

The TLC network is one of the main target of our analysis. More specifically,
our goal is to check that TLC dimensioning guarantees TCC ability to safely
handle emergency situations. In fact, when an emergency occurs, TCS sets up
a particular emergency procedure involving the TCC as well as many vehicles.
This is the more demanding situation for the telco network.

Figure 3 shows our model for the telecommunication network. We view the
telecommunication network as a set of (virtual) channels and a manager that
handles virtual channel assignments and releases.

To save on the state space dimension, we only model the GPRS network and
ignore other components.

In the GPRS architecture each base station can have up to 12 carriers, al-
though typically a base station has 3 or 4 carriers. In our setting we can assume
that each base station can have at least 6 carriers because of the high expected
traffic volume. In the following we denote with C the number of carriers for each
each base station.

Each carrier can have up to 8 time slots to be used for communication.
However usually at most 6 are used. In the following we denote with Nslots the
number of time slots for each carrier.
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In the following we denote with Tspeed the number of bits per second that
a time slot can transmit. With the network configuration envisaged in [11] we
have: Tspeed = 10.22 kbps = 10465 bps.

The same time slot can be used by more than one terminal (vehicle). We
denote with Vehic the number of vehicles sharing the same Time Slot.

For example if the max bit rate per vehicle (UpLink + DownLink) is 5kbps
we can allocate 2 vehicles on the same time slot.

We define as Virtual Communication Channel or just channel the trans-
mission bandwidth ideally allocated to each terminal (vehicle). In the previous
example we have 2 channels with a transmission speed of 5kbps for each slot.

We denote with B the number of base stations available.
Given the network technology (e.g. GPRS for us) the number of channels

NUMBER OF CHANNELS and their speed CHANNEL CAPACITY are project require-
ments for the network design. The following relations hold:

NUMBER OF CHANNELS = BCNslots, CHANNEL CAPACITY = Tspeed/Vehic.

For example, with our data (Tspeed = 10.22 kbps, Vehic = 5) we have:
CHANNEL CAPACITY = Tspeed/Vehic = 10465/5 = 2093 bps.

Here we are only interested in transmission capacity. For this reason we
consider channels as basic elements of our modeling.

Communication channels, of course, can be implemented with many tech-
nologies. The only difference resides in the network architecture (e.g. number
of base stations, carriers, etc) needed to meet the given network specifications,
NUMBER OF CHANNELS, and CHANNEL CAPACITY for us.

In other words, NUMBER OF CHANNELS and CHANNEL CAPACITY define the ex-
ternal view of the telecommunication network and are indeed the design parame-
ters of the network itself. Since our goal is to study the interaction of the telecom-
munication network with the other TCS subsystems NUMBER OF CHANNELS and
CHANNEL CAPACITY are indeed a good abstraction of the network. That is, they
are what the other TCS subsystems see of the network.

Of course the above computation of B assumes that each base station covers
most of the area of our interest. This is a reasonable assumption in the case of
CTI area.

Communication set up is done, once and for all, from each vehicle upon en-
tering CTI area. This establishes a communication link between the terminal
(vehicle) and the TCC. During this setup the vehicle sends to the TCC admin-
istrative information such as vehicle identifier, etc. When a terminal (vehicle)
wants to communicate with the TCC it must look for an available channel, that
is a channel not in use by another vehicle. Only once such available channel is
found communication can take place. Thus each communication round is pre-
ceded by a channel search phase.

A terminal (vehicle) may loose its communication link with the TCC. In such
cases the interaction protocol with the TCC is such that the lost link cannot be
recovered. Thus if a vehicle looses its communication link, it is no more connected
to the TCC.
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Fig. 3. Telecommunication Network

4.4 Communication Protocols

The protocols used in the TCS are defined by using Message Sequence Charts
(MSCs). In particular we have a Vehicle Registration Procedure (VRP), a Vehicle
Deregistration Procedure (VDP), a Tele Control Application Procedure (TAP), a
CTI Exit Procedure (CEP), an Emergency Procedure (EP). To make our model
working we have to model all such procedures. For space reasons, however, here
we only show (Figure 4) the Emergency Procedure which is needed to define our
safety requirement.

Many different kind of emergencies, with different severity levels, each re-
quiring specific recovery procedures, are considered in CTI.

However, emergency ranking often requires a human intervention. This is
hard (if possible at all) to model in our framework. On the other hand our goal
here is to evaluate safety of the Tele Control System consisting of the TCC, the
TLC network and the vehicles. For this reason we just consider the emergency
situation that is more demanding for the TLC network. This happens when the
TCC has to broadcast an emergency message to all vehicles in the CTI area,
Figure 4.

Our goal here is to simulate an accident blocking traffic on both lanes. In this
case TCC sends to all vehicles a request to stop. Thus in our model we have a
procedure SimulateAccident() that stops (suddenly) a given vehicle at a given
point in the CTI. That vehicle then sends a DetectedAnomalyMessage to the
TCC. Such message send to the TCC the vehicle id, the kind of accident, etc.

Upon receiving the DetectedAnomalyMessagemessage the TCC, once it has
determined the nature of the emergency, starts the procedure in Figure 4. More
specifically, once the TCC has determined the nature of the emergency, it sends
a recovery strategy using the message ActivateRepairingPlanningRequest
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Fig. 4. Emergency Procedure

(left side of Figure 4). At the same time TCC sets to true the TCC alarm
field and registers the vehicle involved in the emergency in order to activate
a Tight Monitoring (TM) procedure. The TM procedure tells TCC to check
the vehicles status with a higher frequency than usual. Moreover one (virtual)
channel is reserved for each vehicle under tight monitoring. The mobile sta-
tion (vehicle) answers the ActivateRepairingPlanningRequest message with
a ActivateRepairingPlanningResponse message.

The right side of Figure 4 shows that notice of a serious emergency (incident)
must be broadcasted to all vehicles in the CTI area. This, together with the
ongoing TM puts a nontrivial load on the TLC network. Checking that the
TLC network, under such condition, can deliver the emergency notification, to
ALL vehicles in the CTI area within an assigned time constraint, is the safety
requirement what we want to verify here.

Of course satisfaction of such requirement depends on the number of virtual
channels available, which in turn depends on the TLC network dimensioning.

Moreover we must consider that GPRS technology, used for our TCS, does
not allow one to many communications. Thus the broadcast needed in case of
the above mentioned emergency is simulated by the TCC by sending sequentially
to each vehicle in the CTI area the emergency message.

The message to be broadcast to all vehicles is Dissemination Of
Emergency Info and its length is 200 bytes (the longest message of all here).
This message transmit an updated version of the emergency exits map, a strategy
to leave the accident area as well as TCC notes (if any).

Summing up, we are going to analyze the scenario in which there is
one vehicle that requires tight monitoring and TCC that broadcasts the
Dissemination Of Emergency Info message. This is the most stressful situa-
tion (assuming single vehicle failure) for the TLC network.
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Note that, the case in which we have n channels and (k + 1) vehicles
requiring tight monitoring and (at the same time) broadcasting of the
Dissemination Of Emergency Info can be treated as the case in which we have
(n − k) channels and one vehicle requiring tight monitoring and broadcasting.
This is because each vehicle under tight monitoring reserves a channel which is
not released until the tight monitoring is over.

5 Requirements

Murϕ defines requirements by using invariants. An invariant is a condition that
all reachable states must satisfy. In other words, if a reachable state does not
satisfy the given invariant we have a reachable undesired (error) state. The ver-
ifications task is to check if it is possible for the given system to reach an error
state, i.e. to reach a state that does not satisfy the given invariant.

In general there are many invariants to check, one for each requirements.
Here we will discuss only the main invariant for our system.

Our invariant asks that the time needed by the TCC to broadcast the
Dissemination Of Emergency Info message (Section 4.4) be below given
threshold TIME TO FAULT.

The TCC, Upon receiving the Detected Anomaly Message from the vehicle:

– handles, if possible, vehicle involved in an accident;
– sends (broadcast) to all N registered vehicle a

Dissemination Of Emergency Info message;
– sets to 0 the value of our auxiliary variable ReceivedAcks counting the

number of ack’s (Emergency Info Ack) received in response to the
Dissemination Of Emergency Info message;

– initialize our timer timer to TIME TO FAULT.

Depending on channel availability some messages will get sent immediately,
some will have to wait accordingly to the rules described in Section 4.3.

Upon receiving message Dissemination Of Emergency Info, each mobile
station will send to the TCC a Emergency Info Ack message. The TCC, in turn,
increments by 1 counter ReceivedAcks for each Emergency Info Ack message
received.

At each sampling time, variable timer is decremented by SAMPLING TIME.
Our invariant asks that it does not take too much to broadcast the emergency

info to all vehicles in the CTI area. That is, (timer �= 0 or receivedAcks = N).
Using Murϕ syntax this is written as follows.

Invariant "Too much time to deliver"
!(timer = 0.0) | receivedAcks = registeredVehicles;

That is, not too much time is elapsed (!(timer = 0.0)) or all vehicles
have got the Dissemination Of Emergency Info message (receivedAcks =
registeredVehicles).

Of course the more virtual channel we have, the more chances we have to
make our invariant true.
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6 Experimental Results

In this Section we describe our verification experiments and show our experi-
mental results.

Our invariant has been defined in Section 5.
What remains to be defined is the constant TIME TO FAULT denoting the

maximum time by which all emergency messages have to be sent.
Taking TIME TO FAULT too large would make our verification uninteresting.

On the other hand, taking TIME TO FAULT too small would give us false positives
i.e. errors that indeed do not occur in the actual system.

We estimate a reasonable value for TIME TO FAULT as follows. Let v be the
vehicle suggested speed inside the CTI and let d be the minimum distance among
vehicles in the CTI. Suppose that a vehicle speed suddenly drops to 0 (stop).
The following vehicle will bump into such stopped vehicle after

Tbump = d/v

Assuming (our case) that v = 70Km/h and d = 150m, we have Tbump =
7.7 seconds. Considering some lead time the above calculation suggests us to set
TIME TO FAULT to 5 seconds. That is we ask that within 5 seconds all vehicles in
the CTI are reached by the emergency message broadcasted by the TCC.

Two parameters can (and do) lead to state explosion: the number of vehicles
and nondeterminism in the inter-arrival times between vehicles.

Thus, to avoid state explosion, we scale down our model as follows.

– We limit the number of vehicles in the tunnel area.
– We set the inter-arrival time (ENQUEUING TIME) to 5 seconds for 70% of all

vehicles. The remaining 30% vehicles have a non deterministic interarrival
time in the interval [ENQUEUING TIME - 1, ENQUEUING TIME + 1].

Figure 5 shows the experimental results we obtained with Murϕ.
Column Vehicles gives the total number n of vehicles in the CTI area (namely

we have n/2 vehicles per lane).
Column Channels gives the minimum number of virtual channels needed to

pass verification. For example with 10 vehicles we need at least 4 channels to
satisfy our invariant. If we use 3 channels our invariant fails.

Column Rules gives the number of rules fired by the Murϕ verifier during
verification.

Column Time gives the time (in seconds) needed to complete our verification.
Column Reach gives the number of reachable states.
Column State Size gives the number of bit used by Murϕ to represent each

state.
The results in Figure 5 have been obtained using Murϕ 4.2 [4] with 200 MB

RAM (option -m200) bit compression and hash compaction enabled (options -b
-c) on a 800 MHz Pentium 3 Linux PC. Note that computation times in Figure
5 depend on the size of the set of reachable states (column Reach). The latter,
in turn, depends on both number of vehicles and number of channels.
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Of course we may use Figure 5 to dimension our TLC network. It is interesting
to compare the dimensioning obtained from Figure 5 with that obtained from
the approximate worst case analysis of the TLC network.

Figure 6 plots our results from Figure 5 (bottom curve) as well as the curve
obtained from the TLC network dimensioning (top curve) suggested in [11]. On
the x axes we have the number of vehicles in the CTI area (column Vehicles of
Figure 5). On the y axes we have the minimum number of virtual channels that
the TLC network should have (column Channels of Figure 5).

The exact analysis via model checking shows (Figure 6) that we may save on
the virtual channel (and thus on the TLC network size) without compromising
safety. In other words, our analysis allows us to estimate the robustness of our
dimensioning, i.e. how many channel we may lose without compromising safety.

Vehicles Channels Rules
Time
(Sec) Reach

State
Size
(bits)

10 4 77942 1798 26332 2890
20 9 58312 4960 19702 4366
30 12 48477 8443 16379 6294
40 16 98730 31041 33354 8381
50 19 79100 37915 26724 10322
60 22 59470 40916 20094 12263
70 25 170875 152150 57735 14306
80 28 58730 65170 19844 16260
90 31 54085 77480 18273 18214

Fig. 5. Murphi TCS model experimen-
tal results
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Fig. 6. Comparison between Murphi
TCS model results from Figure 5 and
TLC dimensioning in [11]

7 Conclusions

Our experimental results (Section 6) show that the approach presented here
can be used to verify safeness of critical TLC network dimensioning parameters
(namely bandwidth) as well as robustness w.r.t. safety of the TLC network
dimensioning.

The main obstruction to be overcome is state explosion. Thus, in order to
verify larger hybrid systems more efficient model checking algorithms are needed.
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