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Abstract. The aim of this work is to propose an approach to monitor
and protect Electric Power System by learning normal system beha-
viour at substations level, and raising an alarm signal when an abnormal
status is detected; the problem is addressed by the use of autoassociat-
ive neural networks, reading substation measures. Experimental results
show that, through the proposed approach, neural networks can be used
to learn parameters underlaying system behaviour, and their output pro-
cessed to detecting anomalies due to hijacking of measures, changes in
the power network topology (i.e. transmission lines breaking) and unex-
pected power demand trend.

1 Introduction

Monitoring and protecting Large Complex Critical Infrastructures (LCCIs) is be-
coming more and more important, as the growth of structures interdependecies,
and their increasing complexity make them vulnerable to failures or to deliberate
attacks.

Our goal is to detect anomalies in the dynamics (i.e. evolution over time) of
the measure vectors coming from the substations of an Electric Power System. In
this paper, a neural network based approach for novelty detection is presented, on
the same lines proposed by Thompson et al. [1], but in a different setting. The
use of autoassociative neural networks is aimed at learning normal behaviour
of a LCCIs subcomponents, for a low level, distributed monitoring approach:
dangerous attack or accidental fault within the system would probably bring
significant deviations at this level, thus causing novelty detection.

Research, implementation and test have been developed in the operative
framework of the Safeguard1 project.

1 Safeguard is a European project investigating new ways of protecting Large Complex
Critical Infrastructures, developed by ENEA, QMUL, AIA, LiU, and Swisscom. For
further details refer to [5] .

M.Gh. Negoita et al. (Eds.): KES 2004, LNAI 3213, pp. 1242–1248, 2004.
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2 Basics

2.1 Electric Power Systems

An Electric Power System (EPS) can be seen as a set of nodes, called substations,
connected each other by transmission lines. Each substation, usually monitored
by a Remote Terminal Unit (RTU), is composed by several components, each
playing a specific role in the power generation/consuming process.

Electric power is generated by generators, distributed through transmission
lines, consumed by loads, which demand may usually vary hourly, weekly and
monthly.

2.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is built out from simple, non-intelligent
units (neurons) which are connected together, becoming able to perform complex
signal processing.

In the learning phase, an ANN is presented with input data set and is trained
to fire out the desired values at output layer. The training algorithm iteratively
modify weights on connections through which signals are transmitted, in order
to minimize gap between network output and desired one.

The Autoencoder Model - An Autoassociative Neural Network Encoder (or
simply autoencoder) has two primary features:

– Autoassociative Feature: the network is trained to reproduce at output layer
same values presented as input. For this reason input and output layer have
the same size (i.e. the same number of neural units).

– Bottleneck Layer : at least one of the hidden layers of the network must be
smaller than input and output.

The architecture selected in this work consists of an input layer, 3 hidden
layers, and an output layer (see Fig. 1).

The three hidden layers shape a “feature detection” architecture in which
the bottleneck layer plays the key role in the identity mapping, as it forces the
network to develop a compact representation of the training data that better
models the underlying system parameters.
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Fig. 1. Sample of autoassociative neural network encoder
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3 Problem Definition

The aim of this work is to built a system able to perform strict on-line monitoring
on substations belonging to an electric power network, reading measures by
RTUs, and able to raise an alarm signal in case of anomaly detection. One of
the major difficulties in LCCIs monitoring is due to the non-linear nature of
its behaviour; the problem become even harder when a large amount of non
predictable abnormal states can arise, due to local or generalized faults.

Numerical methods are usually time and resources consuming and could
be not proper for an on-line measure monitoring with a small sampling time.
Presently, numerical estimation algorithms are often used to rebuilt the state
of the power system in case of missing and/or corrupted data: however, state
estimator approach does not address the problem of giving a normal/abnormal
state assessment, and in some cases could tend to hide traces of an ongoing
attack or of other anomalies. Moreover state estimators efficiency and accuracy
depend on the size of the network, and the estimation of state is often based on
prior knowledge about substations sensor reliability.

Electric system peculiarities and problem specific features suggested the use
of neural networks as objects able to deal with continuous values coming from
physical fields, with good performances, suitable for on-line data processing, and
able to implicitly learn data underlying aspects featuring the system behaviour.

4 Power Net Monitoring

In our approach, a specific autoencoder is deployed on each substation (i.e.
through a software-agent platform). Due to peculiarities of each substation in
terms of components, geographic location, role in power generation and/or dis-
tribution, it’s necessary to have a different, specific training session for each
deployed neural network.

4.1 Substation Measures as Autoencoder Input

Some data preprocessing is needed in order to feed the autoencoder with substa-
tion measures: it can be useful to make a selection among available measures in
order to reduce input and output layer size, thus saving time in training phase.

In order to obtain some learning of data variation over time, measures have
been composed in a r-slot sliding window, so that each autoencoder is feeded
with a data vector containing current as well as past measures. The gap between
the slots should be wide enough to have a sensible delta of variation for measured
values. Since it turns out that we only need the signal first derivative, we use
r = 2 in our sliding window. It can be noticed that granularity of substation
monitoring depends on closeness of the sampling rate by which measures are
retrieved from the electric field and stored in the buffer. Let’s call v(t) the
substation measure vector at the time t, T the sampling rate and w the time
gap between the sliding window slots; then, at step k, a slot is filled with v(kT)
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while the other slot is filled with v(kT-w). How can be noticed, there is no
dependence between parameters T and w, as past measures are buffered and
ready to be processed at the right time (see Fig. 2).
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Fig. 2. The sliding window technique: measures coming from power network are
preprocessed and stored in a buffer, so that two measures vectors at once are read
by the neural network

4.2 Autoencoder Output and Novelty Assessment

In the proposed approach, a novelty assessment is given out measuring absolute
gap vector y(t) between input data set and network output, and then performing
some post-processing on it (see Fig. 3).

A properly trained autoencoder is able to successfully reproduce normal data
sets: it will be now showed how autoencoder output is processed to have a
measure of anomaly level.

Let v(t) and v̂(t) be respectively the input and output data vector for the
autoencoder at the time t, both composed by n measures. First of all, let’s
consider the vector y(t), where each component is calculated as yi(t) = |vi(t) −
v̂i(t)|. Let m(t) be the mean value of the components of y(t) at the time t, that
is m(t) = 1

n

∑n
i=1 yi(t). The value of m(t) itself could be used to have a measure

of anomaly level detected by the autoencoder, but it’s opportune to introduce
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Fig. 3. Comparison between input data vector and autoencoder output vector. Vector
y(t) is the absolute difference between autoencoder input and output vector
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some smoothing, averaging this value on a sliding window. Thus, being w the
width of the sliding window, a new value is introduced as:

z(t) =
1
w

w−1∑

k=0

m(t − k)

As some measures in the autoencoder output vector are more sensible to
anomalies than others, it has been also used the average of the absolute deviation
of the measures from their mean. Also in this case this value is observed over a
sliding window, so that the final calculated value at the time t is:

γ(t) =
1
w

w−1∑

k=0

µ(t − k)

where µ(t) is the average absolute deviation of the measures yi(t) from their
mean at time t, that is µ(t) = 1

n

∑n
i=1 |yi(t) − m(t)|.

Values z(t) and γ(t) can be used to take a decision about novelty detection.
Analyzing these two values during system normal behaviour, two threshold val-
ues are defined: let’s call them τz and τγ , an alarm signal is raised if z(t) > τz

or γ(t) > τγ .

5 Experimental Results

Experimental tests have been conducted implementing the electric network model
IEEE RTS-96 [6] in an electric power network simulator.

5.1 Training the Autoencoder

Training session has been carried out by a 72 hours data set, consisting of 432
training patterns. Using backpropagation training algorithm a root mean squared
error (RMSE) equal to 0.015 can be reached in about 6000 epochs. Experimental
results have shown that a similar value for RMSE permits the autoencoder to
generalize well, recognizing as normal data which have small variation respect
to training set.

5.2 Testing the Autoencoder

The following experimental tests are aimed to verify if it is possible to discrim-
inate values of z(t) and γ(t) generated in case of normal data processing from
the ones coming from processing data containing anomalies.

Normal Behaviour Data - Data set used to test network during normal be-
haviour consisted of vectors v(t) obtained simulating a load demand added with
zero average uniformly distributed random perturbation. For robustness, calling
l(t) the nominal load demand value at time t, at each step the simulation is
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executed with a load demand value l̂(t) = l(t) ∗ (1 + α), where α is randomly
generated in a suitable interval (i.e. α ∈ [−0.01, 0.01] for a 1% random perturb-
ation).

Several test sets have been generated with the above criteria: the trained
neural network was able to generalize well and successfully reproduced substation
behaviour. As stable (small) values for z(t) and γ(t) were obtained, it has been
easy to choose thresholds τz and τγ to discriminate normal values of z(t) and
γ(t) from abnormal ones.

Next step is to prove that using the autoencoder and the choosen thresholds
it is possible to raise an alarm signal in case of anomaly.

Novelty Detection - One of the critical point of this work is the lackness
of a priori knowledge about system behaviour in case of anomaly. To test the
autoencoder on non-normal values, the following kinds of editing has been made
on the data sets:

1. introduction of random noise on each measure vector;
2. changing the curve shape of load demand over time;
3. changing the electric network topology or components status.

The first approach is aimed to verify if relationships among data have been
embedded in the autoencoder connection weights. The original measures vector
produced by simulation has been perturbated varying each component value by
a certain percentage. Being v(t) the measure vector at the time t, the value of
each component has been recalculated as vi(t) = vi(t) ∗ (1 + βi) where βi is a
zero average uniformly distributed random noise.

Results of this kind of test are particulary significant: values of z(t) and γ(t)
given by the autoencoder output postprocessing are very different from normal
ones when the random noise introduced is just 2% (i.e. β ∈ [−0.02, 0.02]). Plots
of anomalous values and thresholds are shown in Fig. 4 (middle plot).

Several simulation have been performed scheduling different demand curves:
the right side of plot in Fig. 4 shows values of z(t) and γ(t) becoming greater
than established thresholds where demand trend is different by the learned one.
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Fig. 4. Plot for z(t) (solid) and γ(t) (dashed) in case of anomalous state: generators
fault in a neighbour substation (on the left), data hijacking with 2% of noise (center)
and unexpected demand trend (on the right); threshold lines are also plotted
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With the third data set we want to investigate if the autoencoder is able to
detect variations in network topology (i.e. due to a transmission line breaking
or a power generator fault). Left side of plot in Fig. 4 shows peak values in
correspondence of power generators (simulated) fault in a substation belonging
to the same area of the one monitored by the autoencoder. Values for z(t) and
γ(t) in case of system normal behaviour can be seen in the left plot, for t < 2,
and in the right plot, for t > 22.

6 Conclusions

As shown, using autoassociative neural networks it is possible to build a module
to monitor electric power system substations: after a training on data concerning
components normal activity, the autoencoder became able to map the system
behaviour. Through the processed values z(t) and γ(t), the proposed approach
t successfully detects anomalies in the measures due to sensor failures or inten-
tional data hijacking, network topology changes (i.e. components breaking or
transmission lines interruption) or unexpected power demand trend.
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