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Abstract

Motivation. Model-based approaches to safety and efficacy assessment of pharmacological drugs,

treatment strategies, or medical devices (In Silico Clinical Trials, ISCT) aim to decrease time and cost

for the needed experimentations, reduce animal and human testing, and enable precision medicine.

Unfortunately, in presence of non-identifiable models (e.g., reaction networks), parameter estimation is not

enough to generate complete populations of Virtual Patients (VPs), i.e., populations guaranteed to show

the entire spectrum of model behaviours (phenotypes), thus ensuring representativeness of the trial.

Results. We present methods and software based on global search driven by statistical model checking

that, starting from a (non-identifiable) quantitative model of the human physiology (plus drugs PK/PD)

and suitable biological and medical knowledge elicited from experts, compute a population of VPs whose

behaviours are representative of the whole spectrum of phenotypes entailed by the model (completeness)

and pairwise distinguishable according to user-provided criteria. This enables full granularity control on

the size of the population to employ in an ISCT, guaranteeing representativeness while avoiding over-

representation of behaviours.

We proved the effectiveness of our algorithm on a non-identifiable ODE-based model of the female

Hypothalamic-Pituitary-Gonadal axis, by generating a population of 4830 264 VPs stratified into 7 levels (at

different granularity of behaviours), and assessed its representativeness against 86 retrospective health

records from Pfizer, Hannover Medical School and University Hospital of Lausanne. The datasets are

respectively covered by our VPs within Average Normalised Mean Absolute Error of 15%, 20%, and 35%

(90% of the latter dataset is covered within 20% error).

1 Background

Model-based approaches to safety and efficacy assessment of drugs,

pharmacological treatments, or medical devices (In Silico Clinical

Trials, ISCT) hold the promise to decrease time and cost for the

needed experimentations, reduce the need for animal and human

testing, and enable precision medicine, where personalised treatments

or devices optimised for each patient can be designed before being

actually administered or implanted (Avicenna Project, 2016; Pappalardo

et al., 2019). To enable ISCT, quantitative mechanistic models (Virtual

Physiological Human, VPH, models) of the human (patho-) physiology as

well as of the relevant medicinal drugs are being actively developed and

validated. Such models define drug concentration time courses and effects

(Pharmacokinetics/Pharmacodynamics, PK/PD) and the physiology of

interest at different levels of scale, ranging from molecules (e.g., Roy and

Roy, 2010), molecular and gene networks (e.g., Le Novère, 2015), cells

(e.g., Bächler et al., 2014), organs (e.g., Cox et al., 2009), up to body

compartments (e.g., Balazki et al., 2018) and the whole body (e.g., Hester

et al., 2011).

1.1 Motivation

One of the main enablers to perform an ISCT is the availability of a

finite population of virtual patients, i.e., computational models able to

predict (via simulation) relevant clinical measurements (those needed to

assess efficacy/safety of the therapy, i.e., drug, treatment, or device, under

trial) from time courses of clinical actions (such as drug administrations,

see, e.g., FDA, 2018; EMA, 2019). For an ISCT to provide compelling

evidence of the safety/efficacy of a therapy and to support its design and

revision, such population must be complete, i.e., representative of the
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entire spectrum of behaviours deemed of interest, from both physiology

and drug PK/PD points of view.

Virtual Patients (VPs) are typically derived by parameterising

quantitative mechanistic VPH models, which in turn are defined by

encoding qualitative knowledge of the human physiology of interest (e.g.,

from the literature or pathways databases like KEGG, Kanehisa et al., 2017

or Reactome, Fabregat et al., 2018) as well as PK/PD of pharmaceutical

compounds (e.g., Lippert et al., 2019) into mathematical systems such

as, e.g., Ordinary Differential Equations (ODEs) or difference equations

(see, e.g., Bartocci and Lió, 2016; Irurzun-Arana et al., 2017). Indeed,

it is by means of parameters (such as stoichiometric constants, rates, or

other patient-specific quantities) that such models take into account inter-

subject variabilities, as different parameter assignments yield different

model trajectories, also in terms of reactions to drug administrations.

1.2 State of the art in computing populations of VPs

Different approaches have been proposed to compute a population of VPs

for quantitative VPH models. Such approaches greatly differ depending

on whether the given model is identifiable or non-identifiable.

For identifiable models, a complete population of VPs can be computed

by fitting the models against a set of in vivo measurements deemed

representative of the entire spectrum of behaviours of interest. As an

example, the Physiologically-based Pharmacokinetics (PBPK) simulator

in (Lippert et al., 2019) provides a large set of VPs compliant with PBPK

regulations from EMA, FDA, EFSA, or EPA. Also, in (Kovatchev et al.,

2009) a VPH model is described, and a population of 300 VPs is provided

for it, representing 100 adults, 100 adolescents, and 100 children. Such

VPs have been approved by FDA as a substitute for pre-clinical animal

testing of new treatment strategies for Type 1 Diabetes Mellitus. The above

models enjoy a very important property: all their parameters describe

physiological characteristics, have known ranges of values, and can be

reliably estimated through in-vivo or in-vitro measurements.

The situation becomes more intricate for non-identifiable models, for

which, to our knowledge, no approach is available to compute complete

populations of VPs. In fact, although for such models parameter estimation

can still be used (e.g., Teutonico et al., 2015; Allen et al., 2016; Rieger

et al., 2018; Schmiester et al., 2019; Wang et al., 2020 and citations thereof)

to find cases (counterexamples) where the therapy under assessment is

unsafe/ineffective, the resulting population of VPs is not guaranteed to be

complete, no matter how large or representative is the input dataset used

for fitting. This is because, due to model non-identifiability, there could be

other (possibly very different) parameter assignments (not selected through

fitting) still matching experimental data, but leading to different model

behaviours under the new therapy.

In other words, model non-identifiability hinders the possibility to

have a comprehensive picture of the cases where the therapy succeeds

or fails. As a result, although being based on solid scientific principles

(e.g., biochemical reactions), thereby satisfying one of the qualification

requirements for ISCT (e.g., FDA, 2018; EMA, 2019), it is hard to use

non-identifiable models to verify safety/efficacy of a therapy. This is why

identifiability is a key test in, e.g., FDA or EMA PBPK guidelines.

In the literature, qualitative VPH models have also been considered, for

example logic-based models (e.g., Wang et al., 2012; Bloomingdale et al.,

2018). Their aim is to predict sequences of Boolean-valued (low vs. high)

expression levels rather than the time course of the biological quantities

of interest. In qualitative models, non-identifiability can somewhat be

overcome by modelling lack of knowledge about reaction rates through an

asynchronous update schema for their Boolean-valued variables. Complete

populations of VPs can then be generated by using finite state model

checking techniques to look for attractors (e.g., Zheng et al., 2013; Khan

et al., 2017; Razzaq et al., 2018 and citations thereof). Unfortunately,

this approach cannot be used for quantitative models (like those defined

through ODEs or difference equations, our main focus here) defining real-

valued (rather than Boolean-valued) concentrations of compounds, where,

in general the state space is infinite.

We finally argue that the above problem stemming from non-

identifiability also arises in other areas. For example, models used in

machine learning (e.g., neural networks) are typically non-identifiable, and

it is well known that, notwithstanding how large is the training dataset, it

is possible to find (plausible) input data leading to wrong classifications

(e.g., Eykholt et al., 2018). Not surprisingly, similarly to ISCT, this is the

main obstacle in qualifying machine learning–based approaches within

safety-critical (i.e., high impact regulatory purpose) applications such as

autonomous driving (e.g., Jenn et al., 2020).

The above considerations motivate the main goal of this paper:

to develop methods and software that (possibly building on parameter

estimation against in vivo data) can compute a finite set of physiologically

meaningful, pairwise distinguishable VPs, which are representative of

the entire spectrum of behaviours defined by the given (possibly non-

identifiable) quantitative VPH model (completeness).

1.3 Contributions

In this paper we present methods and software to compute populations of

VPs for (possibly non-identifiable) quantitative VPH models. We focus on

the typical case of models that, due to their complexity, cannot be analysed

symbolically, but need to be numerically simulated (e.g., Hucka et al.,

2003; Maggioli et al., 2020), and show the effectiveness of our methods on

a non-identifiable model of the Hypothalamic-Pituitary-Gonadal (HPG)

axis defined in terms of 33 highly non-linear stiff ODEs.

Our populations satisfy three important properties: completeness,

pairwise distinguishability, and stratifiedness.

Completeness means that our populations show all model behaviours

deemed of interest (e.g., physiologically meaningful), even when such a

full set of behaviours is unknown at model design time (this is typical in

large non-identifiable, over-parameterised VPH models, see below). For

example, the population we computed in our case study comprises as many

as 4 830 264 VPs.

Pairwise distinguishability means that no model behaviour (aka

phenotype) is over-represented in our population: any two VPs behave

differently (according to some used-defined notions of behavioural

distinguishability) in at least one scenario (e.g., input pattern) supported

by the model. This avoids waste of computation during an ISCT.

Stratifiedness means that our populations are organised in levels,

(strata), each one showing the entire spectrum of behaviours under different

distinguishability criteria. For example, in our case study we stratified

our 4 830 264 VPs into 7 sub-populations, each one comprising a number

of VPs ranging from 2 million to just 1. Since each sub-population alone

is representative of the entire spectrum of model behaviours (of course

at different granularity), proper trade-offs can be sought, when designing

an ISCT, between the needed behavioural granularity and the budgeted

computational effort.

Our any-time algorithm, based on global search guided by statistical

model checking, intelligently explores the (typically huge) model

parameter space, collects those parameter assignments showing a

physiologically meaningful behaviour (i.e., VPs), and organises them

into strata, while guaranteeing a statistically-sound form of graceful

degradation.

Note that, in many non-identifiable models (like our case-study HPG

axis model), most parameter assignments might not actually represent

VPs, as, upon simulation, their associated model trajectories show-

up to be physiologically meaningless or, anyway, out of interest. This

is due to, e.g., over-parameterisation, presence of parameters whose

values are not measurable through clinical assays (e.g., reaction rates),

presence of unknown (hence, not modelled) interdependency constraints
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among parameters, and use of parameters to define not-well-understood

physiological mechanisms. To find parameter assignments yielding

physiologically meaningful model behaviours and different phenotypes is

thus computationally very hard, and naïve exploration or sampling of the

parameter space could be hopeless.

In order to automatically recognise physiologically meaningful model

behaviours (and thus parameter assignments defining VPs), our approach

envisions the elicitation and formalisation of background biological and

medical knowledge (possibly also coming from available data). Our

approach is fully independent of how such knowledge is formalised, as long

as we can define a criterion that, given a parameter assignment (a candidate

VP), decides whether the resulting model trajectory is physiologically

meaningful or not.

In our case study, we rely on background knowledge available in

terms of known assignments to the model parameters (computed via

parameter estimation against clinical data, hence defining reference VPs),

bounds for model parameters and biological species, and on physiological

meaningfulness criteria which ask for (loose) qualitative similarity of the

model behaviours under a candidate VP with respect to those entailed by

some reference VP. Such criteria are applicable to a wide class of models,

e.g., those defining hormonal signalling networks.

2 Material and methods

Below we define our framework (Section 2.1) and methodology

(Section 2.2) to generate complete stratified populations of pairwise

distinguishable VPs.

2.1 Formal framework

VPH models. We adopt a very general approach to define VPH models and

view them as parametric input-output dynamical systems. This general

definition is standard in signals and systems (see, e.g., Sontag, 1998),

especially when, as in the case of physiological models, the system internal

state is not accessible, and only selected outputs (system observables) can

be measured.

Our definition (for a formal statement see Definition 1 in

Section SM1.1.1 of the supplementary material) accounts for both

continuous- as well as discrete-time models (e.g., those defined by means

of ODEs and difference equations, respectively). Namely, model inputs

are time functions u defining the time course of exogenous inputs (e.g.,

drug administrations). Our models are parametric, in that their observation

function y(u, λ), defining the values y(t;u, λ) of the system observables

at any time point t, depends on both the input time functionuand the values

λ for the system parameters, chosen within the model parameter space Λ.

For physical reasons, we require that our VPH models are strictly

causal, i.e., their observation function up to any time point depends only

on past inputs. Also, given the presence of parameters, we focus on

deterministic systems, in that parameters embody any initial condition

which the system output might depend on.

Virtual patients, phenotypes, populations. As anticipated in Section 1,

not all assignments to a VPH model parameters yield behaviours of

interest. Many might even yield physiologically meaningless behaviours.

Conversely, due to, e.g., system over-parametrisation or non-identifiability,

multiple parameter assignments may yield (almost) indistinguishable

behaviours (i.e., their associated observation functions are very similar on

all inputs). Such indistinguishable VPs would increase the computational

effort needed to carry out an ISCT on the entire population, without

bringing any advantage in terms of representativeness of the trial.

For generality, our forthcoming definitions rely on user-provided

Boolean function ϕ and equivalence relation ∼. Boolean function ϕ

defines the conditions to be met by any parameterλ ∈ Λ for the associated

model behaviours to be considered of interest, for example physiologically

meaningful (in which case, λ has to be regarded as a VP). Equivalence

relation ∼ on the set of VPs defines when two VPs shall be considered

having indistinguishable behaviour (i.e., showing the same phenotype):

for any two VPs λ and λ′, λ ∼ λ′ means that the two VPs show the same

phenotype.

With respect to given ϕ and ∼ for a VPH model S, we define

the following concepts (for a formal statement see Definition 2 in

Section SM1.1.2): (a) the population Λ̂ of VPs forS is the set of parameter

assignments λ ∈ Λ for which ϕ(λ) is true; (b) the phenotype of VP λ

is the equivalence class of λ with respect to ∼ (notation: [λ]∼); (c) the

phenotype space Λ̂/∼ of Λ̂ is the quotient set of Λ̂ with respect to ∼,

i.e., the set of all-different phenotypes of VPs in Λ̂; (d) an All-Different

Phenotype Population (APP) of VPs is any subset Λ̂∼ of Λ̂ such that no

two VPs λ, λ′ exist in Λ̂∼ having the same phenotype. Also, an APP

Λ̂∼ is said a Complete APP (CAPP) if it contains a representative of all

phenotypes in the phenotype space of Λ̂.

Clearly, the definition of both function ϕ and relation ∼ depends

on the VPH model at hand, and has to be made starting from expert

knowledge. Also, in the typical case of models subject to external inputs

(e.g., drug administrations), both ϕ and ∼ might need to be defined on

model behaviours under different input functions. This allows the expert to

define meaningfulness and phenotypes of candidate VPs also in terms of

their reactions under different sequences of drug administrations (where

such reactions are dictated by the PK/PD model equations).

Note that, when ∼ is 1 (i.e., the equivalence relation defining a distinct

class per VP λ ∈ Λ̂), we have Λ̂/1 = Λ̂. Hence, the entire population of

VPs (Λ̂) can always be regarded as a CAPP.

In Section 3 we give a widely-applicable definition for ϕ and ∼ based

on qualitative similarity of the model evolutions associated to different

parameters.

2.2 Computing complete populations of VPs

Given a VPH model with parameter space Λ, a Boolean function ϕ and an

equivalence relation ∼ as in Section 2.1, our goal is to compute a CAPP

with respect to ϕ and ∼.

In this paper we focus on cases where the definition of the VPH model,

function ϕ, and the computation of the phenotype [λ]∼ of a VP λ are too

complex for set Λ̂∼ to be computed analytically and/or symbolically in

closed form. For such complex scenarios, deciding whether ϕ(λ) = true

or not for any given λ ∈ Λ (hence, whether λ represents a VP or not)

and, in the affirmative case, computing its phenotype [λ]∼ involves a

numerical simulation of the VPH model and the subsequent analysis of

the resulting model trajectories under different inputs. Also, knowing that

ϕ(λ) = true for someλ ∈ Λ does not allow us to infer (without additional

simulations) whetherϕ(λ′) = true for other parameters λ′ ∈ Λ, let alone

their phenotypes.

In order to cope with such a general setting, we adopt a search-based

approach that explores the model parameter spaceΛ looking for parameters

λ ∈ Λ such that ϕ(λ) = true and belonging to all-different equivalence

classes of ∼. This calls for VPH models whose parameter space Λ is finite

or can be finitised by the user, e.g., into a bounded interval of Nk , k > 0.

Such finitisation can often be performed by exploiting knowledge about,

e.g., physiological bounds to the parameter values and model locality

assumptions (i.e., minor changes to the value of a parameter yield minor

changes in the resulting model behaviours).

Nevertheless, even when Λ is finite, an exhaustive exploration is

practically infeasible unless Λ is very small. Unfortunately, this is not

the case for complex VPH models: for example, the size of the (finitised)

parameter space of our case-study model is 1076, which makes an

exhaustive search clearly out of reach (let alone the fact that computing

ϕ(λ) for each λ takes seconds of simulation time).
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To overcome these obstacles, our search (Section 2.2.1) is an any-time

algorithm relying on Statistical Model Checking (SMC) and hypothesis

testing to guarantee proper statistically-sound graceful degradation.

2.2.1 The algorithm

Our algorithm is an any-time procedure which builds on the SMC and

hypothesis testing methods initially presented in (Grosu and Smolka, 2005)

and extended in (Tronci et al., 2014).

Core algorithm. Given a VPH model S having finite (although too

large for an exhaustive exploration) parameter space Λ, plus function ϕ

and equivalence relation ∼, our algorithm implements a one-sided error

procedure to compute a CAPP Λ̂∼ for S with respect to ∼. The algorithm

randomly samples the parameter space Λ (according to a user-defined

sampling policy), and iteratively adds to the current Λ̂∼ (initialised to ∅)

those parameters λ that represent VPs (i.e., ϕ(λ) = true) and show a

phenotype different than all those already represented in Λ̂∼.

The algorithm can be interrupted at any time and provides a form of

graceful degradation: after each sample, the algorithm computes an upper

bound ε ∈ (0, 1] to the probability that further sampling would produce

VPs of unseen phenotypes (error margin). This fact would prove that

the current APP is not indeed a CAPP. When the achieved value for ε

reaches a sufficiently-small (target) threshold, the user can decide to stop

the algorithm and get the APP computed so far.

The computed value for ε is a function of the number of consecutive

failed attempts N that the algorithm is experiencing in discovering VPs

of new phenotypes. Clearly, being based on sampling, our algorithm can

commit an error in computing the error margin ε (i.e., it could return a

value lower than a true upper bound). However, by exploiting statistical

hypothesis testing methods, given any user-requested value δ ∈ (0, 1)

(confidence ratio), our algorithm ensures (see below and Theorem 1 in

Section SM1.2.1) that the probability of such an error is at most δ.

Sampling policy. In order to be effective in discovering VPs of new

phenotypes, the employed sampling policy may embody proper domain

expert knowledge and structural knowledge about the VPH model, for

example: interdependency constraints among components of the parameter

values (very common in over-parameterised models), or sensitivity

information of model behaviours with respect to parameter values. Also,

the sampling policy can be refined and improved during the search to embed

new knowledge, e.g., about the newly discovered VPs. In Section 3.4

we will outline a sampling policy for our case-study model (but widely

applicable in general), which exploits the above flexibility.

Parallel computation. Our algorithm takes advantage of a parallel High

Performance Computing (HPC) infrastructure. The parameter space Λ is

split upfront into k slices Λ1, . . . ,Λk , and k independent instances of

our core algorithm can be run in parallel, where instance i (i ∈ [1, k])

draws samples from Λi to build population Λ̂∼i . When Λ̂∼i is computed

for all slices, a final population Λ̂∼ is produced by taking the union

of the phenotype spaces of all Λ̂∼i and by choosing one representative

VP from each equivalence class. To take load balancing into account,

the overall number of parallel processes can be much higher than the

number of slices (k). An orchestrator can then dynamically assign such

processes to the exploration of each slice, in order to keep the values of ε

balanced. This approach to parallelism and load balancing is very effective

(see, e.g., Mancini et al., 2016) and avoids overhead due to inter-process

communication (as that experienced in, e.g., Mancini et al., 2015).

Simultaneous computation of stratified APPs. Our algorithm can work

with multiple equivalence relations ∼1, . . . ,∼L, defining different

behavioural indistinguishability (i.e., same phenotype) criteria, e.g., at

different levels of abstraction. When it makes sense to use the same

policy to sample the VPH model parameter space Λ for all the ∼l (l ∈

function slice_APPs(S, Λi , ϕ,∼1, . . . ,∼L , δ)

Λ̂∼∼1i, . . . , Λ̂
∼∼Li←∅;N1, . . . , NL← 0;

while not interrupted

λ← new sample from Λi according to sampling policy;

foreach l∈[1, L] do

if ϕ(λ)=true and [λ]
∼l

unknown in Λ̂
∼l
i

then add λ to Λ̂
∼l
i

;Nl← 0; εl← 1;

else Nl++; εl← 1−δ1/Nl ;

output (∼l, Λ̂
∼l
i
, εl);

if sampling policy to be revised then revise policy;N1, . . . , NL← 0;
end

Fig. 1. A parallel branch of our any-time algorithm to compute stratified APPs.

[1, L]), then theLCAPPs can be computed simultaneously using the same

sequence of random samples. In Section 3 we will exploit this possibility

to compute a hierarchy of stratified CAPPs for our case-study VPH model.

Complete algorithm and main result. Let Λ1, . . . ,Λk be a partitioning of

the finite (or finitised) parameter space Λ of our VPH model S into k > 0

slices. Our overall algorithm runs in parallel k instances of the algorithm

in Figure 1, where instance i ∈ [1, k] runs on slice Λi of Λ and computes

L > 0APPs, one for each given equivalence relation∼l (l ∈ [1, L]) on the

population of VPs entailed by the given function ϕ. During computation,

each parallel branch (Figure 1) outputs a stream of tuples of the form

(∼l, Λ̂
∼l
i , εl) (one after each sample and for each equivalence relation

∼l). Each such tuple states that (for a formal statement see Theorem 1 in

Section SM1.2.1), with statistical confidence (1− δ), the probability that

further sampling within Λi will disprove that Λ̂
∼l
i is a CAPP of Λi with

respect to∼l is< εl. The algorithm in Figure 1 includes a periodic revision

of the sampling policy in order to exploit the new acquired knowledge (of

course at the price of resetting all counters Nl, l ∈ [1, L]).

3 Computing complete stratified populations for
a VPH model of the HPG axis

In this section we show how we instantiated the general methodology

described in Section 2 to a complex state-of-the-art VPH model of the HPG

axis (called GynCycle) in order to compute a stratified set of CAPPs. We

argue that our approach is based on general concepts applicable to a wide

class of VPH models, e.g., those defining hormonal signalling networks.

3.1 The GynCycle model

GynCycle (Röblitz et al., 2013) is a VPH model of the human female HPG

axis with a special focus on the interactions and feedback mechanisms at

different stages of the menstrual cycle. The model (see Section SM2.1 for

more details) defines, by means of parametric highly non-linear ODEs,

the dynamics of 33 biological species (mostly hormones) having a role in

the menstrual cycle (e.g., GnRH, FSH, LH, E2, P4 among the others) and

the PK/PD of two pharmaceutical compounds. In particular, model inputs

encode administrations of GnRH analogues that alter the menstrual cycle.

We formalised our GynCycle model as a dynamical system S

(Section 2.1) as follows.

Time span. Due to the model complexity, GynCycle evolutions need to

be computed by numerical simulation. This results in both input and

observation functions being bounded-horizon sequences of samples evenly

spaced in time. To obtain robust results, we computed physiological

meaningfulness metrics (Section 3.2) and phenotypes (Section 3.3) across

120 days (i.e., roughly 4 menstrual cycles), after ignoring the first 3

cycles (to get rid of any transient model behaviours, with this value

being established by preliminary experiments). The time quantum between

samples was set to 14.4 minutes (i.e., 100 samples per day) to account for

the physiological time scales of the modelled signalling pathways. Hence,

input and observation functions are encoded as sequences of h = 12000

samples, one every 14.4 minutes.
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Parameter space. The model counts 76 real-valued patient-specific

parameters (e.g., hormone decay rates, reaction rates, stimulatory

and inhibitory effects) with known bounds (Röblitz et al., 2013). By

preliminary experiments we assessed that a change of parameter values of

<10% yields very small changes in the resulting model trajectories (model

locality). Hence, by discretising the interval for each parameter into 10

values, we produced a finitised parameter space Λ of size 1076. Although

finite, this size is still too large to be explored exhaustively. However,

thanks to our informed sampling policy (Section 3.4), we were able to

compute large APPs proved complete with a high statistical confidence

(95%) and a small error margin (as low as 5× 10−5).

Model inputs. Model inputs define doses for each of the two supported

pharmaceutical compounds. Thus, an input time function defines a time

sequence of doses administered for each of the two compounds.

Model outputs. Model outputs are non-negative real values for then ∈ N+

model observables. In Section 3.5 we experiment withn = 4 observables,

namely: LH, FSH, E2, P4, which are the hormones typically measured in

a clinical setting, and for which we have retrospective data (Section 3.5.3).

3.2 Physiological meaningfulness

In (Röblitz et al., 2013), GynCycle has been fitted against a database

(courtesy of Pfizer) comprising 20–25 measures for 4 observed hormones

(E2, P4, FSH and LH) on 12 healthy women, totalling more than 1000

measurements. This activity produced a parameter assignment λ(0) ∈ Λ

which entails model behaviours averaging those of such 12 patients (see

Section SM2.2).

In hormonal signalling pathways like those in GynCycle, all healthy

humans show the same qualitative time course of such hormones. Hence,

λ(0) defines a VP that we can (and do) regard as a reference VP. Thus,

we defined function ϕ (which encodes the physiological meaningfulness

criteria that must be satisfied by a parameter assignment λ for it to be

considered a VP, see Section 2.1) asking for (loose) qualitative similarity

between the model observation functions under λ and those under λ(0).

Namely, we proceed as outlined in the following sections.

Representative portfolio of input functions. In order to derive VPs whose

behaviour is meaningful also when drugs are administered, we defined a

representative portfolio U of 5 different input functions. Beyond the no-

drug input (under which the GynCycle observation function must represent

a healthy natural menstrual cycle), we considered two standard treatment

strategies, consisting of daily administrations of two different doses for

each of the two pharmaceutical compounds supported by the model (see

Section SM2.2.1).

Physiological meaningfulness as qualitative similarity. Our function ϕ

returns true on λ ∈ Λ (thus declaring λ to be a VP), if and only if the

model observation functions under λ, when subject to each of the input

functions in U, have values always within certain physiological bounds,

and can be (jointly) time-scaled and/or time-shifted (up to a certain limit)

so to satisfy certain qualitative similarity metrics, when compared to the

observation functions entailed by the reference VP λ(0) under the same

input. Time shifting and scaling allow us to deal with time-alignment issues

and different menstrual cycle durations, respectively.

The qualitative similarity metrics we exploited are standard (discrete-

time) signal processing metrics (see, e.g., Vaseghi, 2009): the Normalised

Zero-Lag Cross-Correlation (NZC) and the Normalised Energy Difference

(NED), which we require to be, respectively, above and below certain

thresholds. In our experiments, we set such thresholds to 70% and 80%,

respectively. We also set limits for time-scaling and time-shifting to

±10% and 35 days, respectively. Such values (defined after preliminary

experiments) are generous enough to allow us to accept model behaviours

quite different from those entailed by the reference VP, but still appearing

physiologically meaningful to a visual inspection.

The intuition behind and the formal definitions of our metrics, as well

as technical details on how ϕ(λ) is actually computed (for any given

λ ∈ Λ) are reported in Section SM2.2.2. Here, we just point out that such

computations are quite heavy. In particular, GynCycle must be numerically

simulated under each candidate parameter λ and each input function

u ∈ U, in order to retrieve the observation function y(u, λ). Also,

time-scaling and time-shifting issues must be evaluated before computing

our similarity metrics between y(u, λ) and y(u, λ(0)). To cope with

such issues efficiently, our approach envisions the solving of a constraint

satisfaction problem to enumerate all possible peak alignments between the

two observation functions, and the use of algorithms to compute NZC and

NED between (the time-scaled and time-shifted) y(u, λ) and y(u, λ(0)),

for each u ∈ U.

3.3 Stratified phenotypes

Our definition of behavioural indistinguishability (i.e., same-phenotype

equivalence relation) of different VPs follows an approach consistent to

the one we used to decide physiological meaningfulness. However, in

this case, similarity is quantitatively evaluated between the observation

functions of each pair of VPs (i.e., parameters that, by satisfying functionϕ

in Section 3.2, already satisfy the qualitative similarity metrics thresholds

against the reference VP λ(0)).

To compare two observation functions available in the form of discrete

sequences of real-valued samples evenly spaced in time (as is our

case), we compare the coefficients of their Discrete Fourier Transforms

(DFTs) (see, e.g., Vaseghi, 2009). In particular, to define behavioural

indistinguishability among VPs, we use an equivalence relation ∼ψ ,

parametric in ψ ∈ R+ (the quantisation factor). Two VPs λ(1) and λ(2)

belong to the same equivalence class (i.e., λ(1) ∼ψ λ(2)) if and only if

the DFT coefficients of their associated VPH model observation functions

(for all observables and for all input functions u ∈ U) belong to the same

quantum (for a formal statement see Definition 4 in Section SM2.3). The

size of quanta for DFT coefficients is inversely proportional to both ψ and

the energy of the observation function of each model observable i ∈ [1, n]

under the distinguished parameter assignment λ(0) (
∣

∣

∣

∣yi(u, λ
(0))

∣

∣

∣

∣

2
),

which acts as a normalising factor. This is important, because the different

model observables may assume values in very different ranges. In our

experiments (Section 3.5) λ(0) is the GynCycle reference VP.

Our definition of ∼ψ implies (see Remark 1 in Section SM2.3) that

ψ is an upper bound to the NED shown by the observation functions of

any two VPs λ(1) and λ(2) such that λ(1) ∼ψ λ(2), for any model

observable i ∈ [1, n] and input function u ∈ U. Thus, by considering

L increasing values for ψ: ψ1 < · · · < ψL (L ∈ N+), we define L

equivalence relations ∼ψ1
, …, ∼ψL

that group VPs in larger behavioural

indistinguishability classes as their associated quantisation factor increases

(stratified phenotypes). In our experiments (Section 3.5), we chooseL = 7

and an increasing set of 7 values for ψ (see Table 1), where ψL is such to

place all generated VPs into a single equivalence class.

Indeed, value ψ turns out to be a very loose upper bound for the NED

between VPs belonging to the same equivalence class. This is because

it does not take into account the fact that all our VPs are known to

satisfy the physiological meaningfulness criteria of Section 3.2 (qualitative

similarity with respect to the behaviour of the VPH model under parameter

λ(0)). In particular, since such criteria depend on optimal time-shifts and

time-stretches sought for each single VP, our bound to the NED cannot

exploit such knowledge and needs to stick to the worst-case. To this end,

in our experimental analysis, we also compute, by means of auxiliary

hypothesis testing–based SMC tasks (along the lines of our main algorithm

of Section 2.2.1, with error margin 1% and confidence ratio 5%), the actual
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maximum NED between VPs belonging to the same equivalence class of

each stratum (see Table 1).

3.4 Sampling policy and parallel computation

Like many VPH models, GynCycle is organised in several components,

one for each of the modelled hormones. Changing the values of the

elements of the parameter vector occurring in a few components typically

changes the overall model dynamics only partially.

This key observation is at the heart of our sampling policy. In order

to draw, with high probability, a parameter assignment that proves to be

a VP, we exploit the knowledge acquired in the past iterations, in terms

of the parameter assignments that already proved to be VPs. Namely, let

Λ̂current be the set of VPs already discovered (population of known VPs).

Our sampling policy draws a random parameter λ by changing uniformly

at random the elements occurring in p ∈ N+ model components (chosen

uniformly at random) from a parameter λ̂ chosen uniformly at random from

Λ̂current (if Λ̂current is empty, then λ̂ = λ(0)). Value of p is drawn from a

Zipf’s distribution (i.e., p ∼ ap−b, where a is a normalisation factor), in

order to draw with high probability small values. In our experiments we

set b to 3 so that the expected value for p is about 1.11.

The sampling policy is periodically revised by updating Λ̂current with

the new discovered VPs. However, in order to avoid too frequent policy

updates (which would resort in an immediate reset of the consecutive

failure counters, see Section 2.2.1), set Λ̂current is updated only every a

given number N of samples. In our experiments we chose N such that

experiencing N consecutive failures to find a new VP (regardless of its

phenotype) would allow us to conclude, with statistical confidence (1 −

δ) = 95%, that the probability that additional VPs will be found by further

sampling is less than ε = 1−δ1/N = 5×10−5 = 0.005%. This results

in N = 59914.

For the above sampling policy to work on top of a slicing of the

parameter space Λ to be processed in parallel, it is enough to ensure

that λ(0) belongs to all slices. This was done by defining our (initially

continuous) parameter space finitisation as a grid having λ(0) as one

of its vertices, and by defining the k slices by bisecting Λ on values

λ
(0)
i1
, . . . , λ

(0)
ir

for any subset of coordinates i1, . . . , ir within [1, 76], thus

definingk = 2r slicesΛ1, . . . ,Λk all containingλ(0). In our experiments

we chose r = 7 random coordinates, hence k = 128.

3.5 Experimental results

Here we present our results on GynCycle. In Section 3.5.1 we show

the APPs we computed, in Section 3.5.2 we analyse the behaviour

of our sampling policy, and in Section 3.5.3 we perform a qualitative

and quantitative evaluation of the representativeness of our populations

with respect to retrospective clinical data (86 medical cases courtesy of

Hannover Medical School, University Hospital of Lausanne, and Pfizer).

3.5.1 Computed APPs

We ran our SMC-based algorithm on a parallel HPC infrastructure (the

Marconi cluster at Cineca, Italy) with the settings defined above, in order

to compute the stratified APPs as defined in Section 3.3. Confidence ratio

δ was set to 0.05.

The computation was stopped after around 60 days. In total, our

algorithm sampled 414 245 648 parameters (simulating GynCycle for 7

months on each of them and for each of the input functions in the

representative portfolio described in Section 3.2). Overall, 4 830 264

parameters were declared to define VPs.

Table 1 lists the sizes of the 7 computed APPs. The bottom line refers

to the entire population of VPs, Λ̂1 (which is an APP with respect to

equivalence relation 1).

We decided to terminate our (any-time) computation when we achieved

ε = 5 × 10−5 for all slices on the top three strata. This means that

id ψ APP size error margin (ε) max NED

min avg max

7 16 200 1 5× 10−5 5× 10−5 5× 10−5 163.23%

6 8100 104 5× 10−5 5× 10−5 5× 10−5 144.36%

5 4050 3862 5× 10−5 5× 10−5 5× 10−5 106.74%

4 2700 43 941 5× 10−5 6.75× 10−3 4.51× 10−1 84.70%

3 1800 251 239 5.09× 10−4 2.36× 10−2 1 59.09%

2 900 2 136 710 3.25× 10−3 8.33× 10−2 1 48.07%

1 – 4 830 264 9.87× 10−3 1.81× 10−1 1 –

Table 1. Stratified GynCycle APPs. Statistical confidence: 95%.

(see Section 2.2.1 and Theorem 1 in Section SM1.2.1), with statistical

confidence 1 − δ = 95%, the probability that further sampling (in any

single slice) would disprove that such top three APPs are indeed CAPPs

is below the error margin (5× 10−5).

As for the other strata, the table reports minimum, maximum and

average error margins across the k = 128 parallel processes (one per

slice) at the time of termination of our any-time computation. Since the

exploration of each slice is an independent process, the k error margins

for each stratum can be quite different, as the value for ε for a given slice

depends on the time when the last VP belonging to that slice was generated.

Also, when we terminated our experiment, a new VP (of a phenotype

known to the top three strata) was just generated. Hence, the max ε for the

population Λ̂1 consisting of all VPs (bottom line of Table 1) is 1.

Figure 2(a) shows the trajectories of the GynCycle observables under

the VPs belonging to the computed APPs for all strata except the extreme

two. It can be seen that, despite the number of VPs greatly reduces at

higher levels of our stratification, all APPs retain full representativeness

of the entire spectrum of possible behaviours.

A final note is in order. Although 60 days could appear an unusually-

long time for a computation (especially if compared to the time typically

needed by classical model fitting tasks), this is a one-time activity for

the input VPH model, and can be sped-up almost arbitrarily by using a

higher number of parallel processes (e.g., using 1280 processes –which

is perfectly feasible in today’s infrastructure-as-a-service platforms– with

groups of 10 processes jointly exploring each of our 128 slices, would

have required just 6 days). Indeed, once a population of VPs for a given

model has been computed, it can be used to carry-out multiple ISCT (i.e.,

for different treatment strategies or medical devices). Each ISCT can be

carried-out on the most appropriate stratum of VPs, depending, e.g., on

the chosen trade-off between budgeted computational effort and required

behavioural granularity of the VPs recruited for the trial. Also, more

sophisticated approaches can be exploited, e.g., iterative deepening within

the stratification of phenotypes (guided by simulation results) searching

for a VP showing a failure of the candidate treatment or medical device (a

counter-example, see, e.g., Mancini et al., 2013).

3.5.2 Sampling policy behaviour

Our informed sampling policy was able, on average, to find (within our 128

slices) an admissible VP every 86 attempts (average success rate: 1.17%).

This is to be compared to a uniform (non-informed) sampling policy, which

was unable to discover a single VP after 50 million attempts.

Figure 2(b) shows the error margin achieved by our informed sampling

policy during generation of Λ̂∼4050 , i.e., the APP associated to the smallest

value ofψ (see Table 1) for which we reached an error margin of 5×10−5

for all slices. The plot shows the values for the error margin reached by each

of the 128 parallel computations (light curves) when discovering each of

its VPs (x axis), thus disproving that the current APP was indeed a CAPP.

Values for x have been normalised into percentages of the total number of

the VPs discovered by each parallel computation. We note that the average

error margin (dark curve) lies for most of the time at values one order of

magnitude higher than the value we chose to terminate our experiments
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Fig. 2. (a) Time evolutions for the GynCycle observables under the VPs belonging to the computed stratified APPs. (b) Average error margin (ε) reached during parallel computations

(stratum 5). (c) Parameter space exploration.

(ε = 5 × 10−5, see Table 1). This shows that our informed sampling

policy was always effective to extract (with probability much higher than

5× 10−5) new VPs when (we know that) they actually exist.

Finally, Figure 2(c) shows, as a radar plot, the location of VPs within

the GynCycle parameter space. The figure shows one polygon per VP,

which connects the chosen values for the 76 parameter vector elements.

Interestingly, for some of them, only a few values of their domains actually

occur in VPs. Such constraints were unknown at the time of model design.

3.5.3 Validation against clinical data

The previous sections show that our computed populations exhibit the

properties of pairwise distinguishability and stratifiedness, as well as

that representativeness of the spectrum of behaviours is kept among the

different strata.

What remains to be shown is that our sampling policy was indeed

able to extract VPs representative of the entire space of physiologically

meaningful behaviours that our input VPH model is capable to represent.

Such a full set is of course not known. However, GynCycle was

experimentally shown in (Röblitz et al., 2013) to be expressive enough to

correctly represent a wide spectrum of behaviours of healthy women.

Hence, here we compare the behaviours shown by our VPs with respect

to retrospective clinical data we got from 86 health records, kindly made

available to us by Hannover Medical School (35 patients), University

Hospital of Lausanne (39 patients) and Pfizer (12 patients, which were

originally used in (Röblitz et al., 2013) to compute the reference GynCycle

VP). In each dataset, for each health record we have actual measurements

of the blood levels of the 4 model observables (LH, FSH, E2, P4) on a

(roughly) daily basis for an entire menstrual cycle (all health records refer

to healthy patients subject to no pharmaceutical treatment).

Below we perform both a qualitative and a quantitative assessment

of the representativeness of our computed VP population against such

datasets.

Qualitative evaluation. Figure 3(a) shows daily blood hormone levels

on the 86 health records (box-and-whisker plots) on top of the model

observation functions (i.e., the time functions of the 4 model observables)

of all VPs in our full APP (i.e., Λ̂1 of Table 1, blue curves). Curves as well

as data have been aligned on the LH peak (used to estimate the ovulation

day), in order to account for different transient periods among our VPs.

The figure shows that our VP population is indeed highly representative

of the available clinical measurements, and that the qualitative behaviours

of our VPs faithfully reflect those of the available data.

Quantitative evaluation. Our approach for a quantitative evaluation of

the representativeness of our full APP Λ̂1 with respect to the human

behaviours occurring in our datasets, has been shaped on the fact that

Λ̂1 does not define a probability distribution of behaviours. In particular,

although Λ̂1 might (and indeed does, see Table 1) contain VPs showing

similar behaviours (which are then removed from the higher strata of our

hierarchy), the number of VPs exhibiting any behaviour has no relation

with the frequency of that behaviour in the real world, but only depends

on the model ODEs and on the definition and usage of parameters within

them. This implies that statistical approaches to measure the similarity

between our APP and the distribution of behaviours shown in our datasets

(e.g., those based on the relative entropy of two probability distributions

or the similarity of their momenta) cannot be employed in our case.

To assess the representativeness of our APP with respect to the

available datasets, we then proceed at computing a deterministic measure

of coverage, by assessing the percentage of health records for which there

exist a VP in our APP exhibiting a good-enough fit. Such measure is defined

in terms of a given upper bound of a standard error metric, the Average

Normalised Mean Absolute Error (aNMAE).

Full details on how we formalise each health record in our datasets

and on how we compute the aNMAE of each VP with respect to it are

delayed to Section SM3. Here, we comment on Figure 3(b), which shows

the coverage of our three datasets as a function of the aNMAE, as resulting

from our analysis. The figure shows that most health records are covered

by our population within small aNMAE values. Namely, the totality of

the Pfizer, Hannover, and Lausanne medical records are covered within

aNMAE 15%, 20%, and 35%, respectively. As for the latter dataset, 90%

of the cases are actually covered within an aNMAE of just 20%.

4 Conclusions

In this paper we presented methods and software to compute a complete

and stratified population of pairwise distinguishable VPs for a given

quantitative model of the human physiology (plus drugs PK/PD). The

availability of such populations is a key enabler for ISCT and model-

based therapy design and optimisation (see, e.g., Mancini et al., 2018;

Sinisi et al., 2020). Our approach is especially designed for complex (e.g.,

non-linear stiff ODE–based) parametric non-identifiable VPH models that

cannot be analysed symbolically or integrated in closed form, but must

be numerically simulated. To this end, our algorithm runs a global search

on the space of model parameter assignments, guided by statistical model

checking and hypothesis testing, and exploiting suitable biological and

medical knowledge elicited from experts to recognise physiologically

meaningful behaviours and different phenotypes, as well as structural

knowledge of the model to intelligently drive the search via an informed

sampling policy. Our algorithm can be stopped at any time, since

it continuously provides an upper bound (correct with a user-defined

confidence level) to the probability that further computation will discover

new phenotypes.

We proved the effectiveness of our algorithm on a state-of-the-art non-

identifiable ODE-based VPH model of the female HPG axis, by generating

a population of 4 830 264 VPs stratified into 7 levels (at different granularity

of behaviours), and assessed its representativeness against 86 retrospective

health records.
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