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Abstract. In Silico Clinical Trials (ISCT), i.e., clinical experimental campaigns carried out by
means of computer simulations, hold the promise to decrease time and cost for the safety and
efficacy assessment of pharmacological treatments, reduce the need for animal and human testing,
and enable precision medicine.

In this paper we present methods and an algorithm that, by means of extensive computer simulation–
based experimental campaigns (ISCT) guided by intelligent search, optimise a pharmacological
treatment for an individual patient (precision medicine). We show the effectiveness of our ap-
proach on a case study involving a real pharmacological treatment, namely the downregulation
phase of a complex clinical protocol for assisted reproduction in humans.
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1. Introduction

Model-based approaches to safety and efficacy assessment of pharmacological treatments (In Silico
Clinical Trials, ISCT) hold the promise to decrease time and cost for the needed experimentations,
reduce the need for animal and human testing, and enable precision medicine, where personalised
treatments optimised for each patient can be designed before being actually administered. This is
to be achieved by developing computational models for human physiology, patho-physiology, and
drugs PharmacoKinetics (PK) and PharmacoDynamics (PD). Such computational models also define
the possible physiological differences between different individuals and/or different reactions to drug
administration. In particular, PK and PD models describe drug concentrations and effects over time in
the human body (see, e.g., [2]), respectively.

Encapsulating knowledge of the human physiology into computational models is among the goals
of Virtual Physiological Human (VPH) (see, e.g., [3]). Indeed, research in VPH provides mechanistic
quantitative models of the human physiology at different levels of scale and for various medical areas
(e.g., cardiology, endocrinology, oncology and neurology, see [4, 5, 6, 7, 8]). For example, several
models have been proposed for molecules (e.g., [9]), cells (e.g., [10, 11]) and single organs (e.g.,
[12, 5, 13]). At upper levels in the hierarchy, we find models of human body compartments. Good
examples are models in [14, 15, 16], which define the glucose regulation mechanism in patients with
Type 1 Diabetes Mellitus, and the Hypothalamic–Pituitary–Gonadal (HPG) axis model presented in
[6], which is specifically focused on hormones related to the human menstrual cycle. Finally, at the
top level we find models of the whole human body, for example the Glucose-Insulin Model [17, 18],
HumMod [19], and Physiomodel [20].

Independently of the level of scale used, most VPH models are defined by means of complex,
highly non-linear differential equations. By means of numerical integration, such models can be
executed within simulators in order to provide quantitative information about the time evolution of the
modelled biological quantities (e.g., blood hormone or glucose concentrations).

VPH models at different positions in the above hierarchy are typically defined at different levels
of abstraction. In order to find a trade-off between simulation accuracy and efficiency, multi-scale
models can be built by integrating, interconnecting, and co-simulating models of the different organs
or body compartments of interest, exploiting the different available levels of abstraction as required
by the focus and scope of the in silico analysis to be performed.

Different languages are traditionally used to define VPH models. Among them are Systems Bi-
ology Markup Language (SBML) [21] and Physiological Hierarchy Markup Language (PHML) (see,
e.g., [22]). The Modelica language (http://www.modelica.org), one of the most widely adopted open-
standard general-purpose modelling languages for networks of dynamical systems within many ar-
eas of engineering, has been proposed as a common modelling platform for the integration of VPH,
Pharmacokinetics/Pharmacodynamics (PKPD) models as well models for engineered systems such as
biomedical devices (see, e.g., [23, 24]) in order to facilitate their co-simulation and analysis.

1.1. Motivations

Current pharmacological treatments are often designed with the average patient in mind. A key topic
in precision medicine is to develop pharmacological treatments optimised for any given individual,

http://www.modelica.org
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namely personalised treatments (see, e.g., [25, 26]). Several optimisation criteria can be defined. A
typical criterion is the minimisation of the overall amount of drug used, which often also reduces the
probability of adverse side-effects and contributes to decrease the treatment cost.

With their amenability to define different individuals, VPH models of proved accuracy are a key
enabler for precision medicine.

1.2. Contributions

In this paper we present methods and an algorithm that, by means of extensive computer simulation–
based experimental campaigns (In Silico Clinical Trials, ISCT) guided by intelligent search, optimise
a pharmacological treatment for an individual patient. We show the effectiveness of our approach on a
case study involving a real pharmacological treatment, namely the downregulation phase of a complex
clinical protocol for assisted reproduction in humans.

To do this, we exploit a state-of-the-art VPH model of the HPG axis (whose accuracy has been
experimentally assessed in [6]) in order to conduct an ISCT. Namely, starting from clinical data
collected from a real patient, we first compute her digital twin, which defines a digital representation
of that patient physiology. Then, we compute in silico, by means of intelligent search on such a digital
twin, the lightest (in terms of overall amount of administered drug) treatment still effective for that
patient.

Our search algorithm extends standard artificial intelligence techniques (such as, e.g., classical
planning [27], CSP [28] and SAT [29]) in order to intelligently explore the space of possible time-series
of drug administrations (treatments) by driving a simulator of the VPH model at hand. To improve
the performance of our search algorithm, we also define suitable ordering heuristics (which keep our
approach complete) and we evaluate their marginal performance gain. Moreover, our implementation
can be easily adapted to several VPH models and to a wide class of clinical treatments as it drives a
Modelica black-box simulator.

In order to assess the technical viability of our approach, we exploit the above HPG axis VPH
model to conduct a multi-arm ISCT involving 21 patients (for which we have retrospective clinical
measurements). For each such patient, who defines a distinct arm of our ISCT, we compute the optimal
(lightest) still-effective downregulation treatment. Given that the required computation is extremely
intensive, we conduct our ISCT on a large High Performance Computing (HPC) infrastructure.

The possibility to optimise in silico a complex treatment for a given human patient before its actual
administration shows the potential of artificial intelligence search methods for model-based (in silico)
medicine.

Paper outline

The paper is organised as follows. Section 2 describes some background knowledge, introduces the
HPG axis model used in our case study and its phenotypes, defines the concept of clinical record
and that of digital twin of a human patient. Section 3 describes the treatment we used as our case
study. In Section 4 we describe our algorithm to find optimal personalised treatments by means of
intelligent search which drives a black-box simulator of a patient digital twin. Section 5 describes
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our experimental campaign on retrospective data and analyses the outcome of our multi-arm ISCT.
Finally, Section 6 discusses related work and Section 7 draws conclusions.

2. Formal framework

In this section we give the necessary background knowledge. We denote with R, R0+, R+, N, and
N+ the sets of, respectively, all real, non-negative real, strictly positive real, non negative, and strictly
positive integer numbers. Given n ∈ N+, we denote by [n] the set of integers {1, . . . , n}.

2.1. Virtual Physiological Human models

Virtual Physiological Human (VPH) models usually are hybrid systems defined by means of Ordinary
Differential Equations (ODEs) (see, e.g., [30, 31, 32, 33]) as stated in Definition 2.1.

Definition 2.1. A parametric Ordinary Differential Equation (ODE) dynamical system is defined by
a set of differential equations over time (variable t ∈ R0+) having the following form:

ẋ(t) = f(x(t),u(t), λ)

where:

• x(t) ∈ Rnx is called state vector, and models biological quantities;

• u(t) ∈ Rnu is called input vector, and models exogenous inputs (e.g., sequences of drug admin-
istrations);

• Λ ⊆ Rnλ is called parameter space and λ ∈ Λ denotes a parameter vector;

• f is a vector of functions defining system dynamics.

Above, we have nx, nu, nλ ∈ N+.

In our setting, administrations of nu different pharmaceutical drugs (clinical actions) define inputs
to the VPH model. Indeed, for each i ∈ [nu], the i-th component ui of the input vector u defines a
function that associates to each time instant t ∈ R0+ the administered dose of the i-th drug, to be
chosen within a set Ai of possible doses (which always includes dose zero).

Given an assignment λ to the VPH model parameters and an input vector u (i.e., a time sequence
of administrations of the nu drugs defined within the model), the associated VPH model trajectory is
a continuous-time function xλ(t) (or, to simplify notation, x(λ, t)) representing the time evolution of
the biological quantities defined by the model when fed with u starting from its initial state and with
its parameters set to λ. Of course, as the VPH model is causal, its trajectories up to any time point
t ∈ R0+ only depend on the restriction of the input up to time point t (see, e.g., [30, 34]).
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2.2. The GynCycle Virtual Physiological Human model

In this section we describe the GynCycle VPH model, presented and evaluated in [6], which we will
use as our case study.

GynCycle is an ODE-based model of the human female Hypothalamic–Pituitary–Gonadal (HPG)
axis, with a special focus on the interactions and feedback mechanisms between hormones like Gon-
adotropin-Releasing Hormone (GnRH), Follicle-Stimulating Hormone (FSH), Luteinizing Hormone
(LH), Estradiol (E2), Progesterone (P4), Inhibin A (IhA), and Inhibin B (IhB) during the different
stages of the menstrual cycle.

The model defines the time evolution of overall 33 biological quantities (mostly blood concentra-
tion of hormones) and the Pharmacokinetics/Pharmacodynamics (PKPD) of several pharmaceutical
drugs used in assisted reproduction (in particular, we will focus on GnRH analogues like Triptorelin)
by means of highly non-linear differential equations.

For example, equations defining the time evolution of LH, and FSH are as follows:

˙LHblood (t) =
LHpit(t)

Vblood
·
(
bLH
Rel + kLH

G-R ·H+(G-R(t), T LH
G-R;nLH

G-R)
)

− (kLH
on · RLH(t) + kLH

cl ) · LHblood (t)

˙FSHblood (t) =
FSHpit(t)

Vblood
·
(
bFSH
Rel + kFSH

G-R ·H+(G-R(t), T FSH
G-R ;nFSH

G-R )
)

− (kFSH
on · RFSH(t) + kFSH

cl ) · FSHblood (t)

In the differential equations above, LH(t), FSH(t) etc. denote biological species of interest (in the
example, the blood concentration of LH and FSH, respectively), while bLH

Rel , k
LH
cl , etc. denote model

parameters.
As such, GynCycle is a hybrid system whose inputs represent drug administrations. As it happens

with VPH models of practical interest as GynCycle, the number and complexity of their differential
equations makes symbolic analysis (by, e.g., a model checker for hybrid systems) an unviable op-
tion. Indeed, the model can be simulated by means of numerical integration in order to compute the
time evolution of the hormones of interest upon administration of a sequence of drug doses. Thus,
GynCycle is used as an executable black-box model.

2.3. GynCycle Virtual Phenotypes

VPH models like GynCycle typically take into account inter-subject variability (i.e., the physiological
differences among different individuals) by including suitable parameters in their equations (like bLH

Rel

and kLH
cl mentioned above). Different value assignments to model parameters yield different model

time evolutions and/or different reactions to drug administrations, thus defining different Virtual Phe-
notypes (VPs). Intuitively, each VP represents a class of indistinguishable (as long as the VPH model
is concerned) patients. Computing a complete set of VPs for the model at hand is the starting point to
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obtain a representative population of virtual patients (hence, ideally showing all possible phenotypes).
In turn, this is the key enabler to perform In Silico Clinical Trials (ISCT) to assess, e.g., safety and/or
efficacy of a pharmacological treatment.

Unfortunately, computing the complete set of VPs defined by a complex VPH model like GynCy-
cle is all but easy from the computational point of view, and may require weeks of massive simulation
on large High Performance Computing (HPC) infrastructures. This is due to the hidden presence of
inter-dependency constraints among elements of the parameter vector which are usually not explicitly
known, and hence not modelled. By ignoring such constraints (which would happen by, e.g., choosing
values for the parameter vector elements in a uninformed random way) would yield with high prob-
ability to model behaviours that violate the laws of biology (and hence such parameter assignments
could not be regarded as VPs).

In [35, 36], a statistical model checking–based approach using intelligent global search heuristics
has been discussed. Such a methodology enables the computation of a population of VPs (parameter
assignments showing time evolutions compatible with the laws of biology) that is complete with re-
spect to the used heuristics up to an arbitrarily high statistical confidence. This approach was recently
generalised in [37], where it proved its effectiveness in computing a population of VPs for a VPH
model of the glucose regulation system in patients with Type 1 Diabetes Mellitus.

In this paper, we conduct our ISCT starting from a population P of around 107 VPs, extracted
using the algorithm in [35, 36] from a huge search space of 1075 possible candidate parameter vector
assignments (set Λ in Definition 2.1). By exploiting model locality assumptions typically made on
ODE-based VPH models (i.e., small changes in the model parameters are expected to yield small
changes in the overall model trajectory), the domain of each of the 75 dimensions of Λ has been
discretised into 10 possible values (see [35] for an evaluation of the appropriateness of this choice).
We then ran the parallel tool described in [36] with error threshold equal to 0.01% and statistical
confidence bound equal to 95%. This means that, upon termination, we have 95% confidence that the
probability of finding new VPs by further searching is at most 0.01%.

2.4. Clinical records

In order to compute personalised optimal treatments, we will start from clinical data collected from a
human patient. Along the lines of [35], a clinical record C (Definition 2.2) consists of a sequence of
measurements for all biological quantities of interest, where each measurement maps a time instant to
a measured value.

Definition 2.2. (Clinical record)
Let S1, . . . , Sp be the biological quantities of interest. A patient clinical record, C, is a tuple (C1, . . . , Cp),
where each Ci (i ∈ [p]) is a finite sequence of pairs (t, v) (possibly empty) where t ∈ R0+ denotes a
time instant and v ∈ R0+ is the measured value of biological quantity Si.

In our case study (fertility treatments), clinical records of interest collect measurements for the
main hormones involved in the human menstrual cycle, namely: LH, FSH, E2, and P4.
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2.5. Digital twin of a human patient

To compute a personalised treatment for a human patient, we first need to compute a digital represen-
tation for her. This will be done by using clinical data (in the form of a clinical record C, Definition 2.2)
available from that patient in order to select, from our representative population of VPs, the subset of
VPs that are compatible with (i.e., fit) such data.

To do so, we proceed as follows. Let C be a clinical record and λ be a VP of our population. We
define η(C, λ) as the average (over all biological quantities Si, i ∈ [p]) Mean Absolute Percentage
Error (MAPE) between the clinical measurements of Si in C and time evolutions of Si in VP λ.
Formally:

η(C, λ) =
1

p

p∑
i=1

1

|Ci|
∑

(t,vi)∈Ci

∣∣∣∣vi − xi(λ, t)ζ(vi)

∣∣∣∣
where ζ(vi) is vi if vi 6= 0 and a small positive constant otherwise (to avoid division by zero).

By using such a metric, Definition 2.3 defines the concept of patient digital twin as the set of all
VPs λ in our population P having a value for η(C, λ) up to a given threshold.

Definition 2.3. Given a clinical record C, our complete population of VPs P , a threshold δ ∈ R0+ for
our error metric η, the digital twin P of C is the following set:

P (C) = {λ ∈ P | η(C, λ) ≤ δ} .

Intuitively, the digital twin of a human patient is a digital representation of the patient physiology
in the form of all VPs entailing model behaviours that fit the patient clinical measurements (up to an
average MAPE δ).

3. Case study: downregulation in assisted reproduction treatments

In this section we define the treatment we used as our case study: the downregulation phase of an as-
sisted reproduction protocol currently administered at the Department of Reproductive Endocrinology
of University Hospital Zurich.

At each menstrual cycle of a human female, among the several follicles initially present in the
ovaries, only one, unless in exceptional cases, grows and reaches maturity. A complex competition
among follicles takes place, driven by a hormone-based feedback loop, in order to inhibit the matura-
tion of multiple follicles.

An assisted reproduction treatment aims at neutralising (through drugs) such a feedback loop
(downregulation phase), in order to achieve a controlled and an as-simultaneous-as-possible growth
of 5–15 ovarian follicles (stimulation phase). When the first three follicles reach a size where a mature
oocyte (i.e., an egg cell ready for fertilisation) can be expected (about 18 mm in diameter), ovulation
is induced. Then, the oocytes are retrieved, those which are mature are tried to be fertilised in vitro,
and implanted either immediately within the treatment cycle or later after cryopreservation (i.e., a
preservation process by cooling) back into the uterus.
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Figure 1: Expected downregulation effects on some of the hormones playing a role in the human
female menstrual cycle. The coloured area defines the time window during which Triptorelin is ad-
ministered.

Assisted reproduction treatments are complex and challenging, with low average success rates
(around 30%) even in the top clinics, and with many factors that, to date, can be hardly kept under full
control. Indeed, as hormonal regulatory systems occur within a complex network of endocrinological,
neurological and psychological factors [38, 39, 40], they are difficult to capture within clinical studies,
and model-based approaches might be of great aid in taking these many factors under better control.

Our case study is one of the worldwide classically used downregulation protocols aiming at sup-
pressing the usual hormonal oscillations of the menstrual cycle (as in Figure 1) and preparing the
patient to the following stimulation.

At the Department of Reproductive Endocrinology of University Hospital Zurich, this protocol
currently consists of a sequence of daily administrations of 0.1 mg of Triptorelin, a Gonadotropin-
Releasing Hormone (GnRH) analogue. For physiological reasons, downregulation is started within a
precise time window of the menstrual cycle, namely between day 21 and day 25. The treatment might
have different duration in order to address different patient reactions. In particular, a downregulation
treatment is considered successful (effective) for a patient in case the blood concentrations of a given
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set of hormones and other physiological quantities go below certain thresholds within 9 days from
the first drug administration, and stay always below such thresholds for the following 21 days. As a
consequence, a downregulation treatment might last up to 30 days.

4. Computing optimal personalised treatments

In this section, we define the conditions of a successful treatment through invariants and goals (Sec-
tion 4.1), describe how to perform digital twin simulations (Section 4.2), and describe the algorithm
used at the core of our optimal personalised treatment computation (Section 4.3).

4.1. Modelling treatment invariants and goals

We define conditions that must be always and eventually satisfied by a successful treatment by means
of invariants and goals, respectively. Invariant and goal treatment conditions are modelled as continuous-
time monitors embedded within the Virtual Physiological Human (VPH) model, along the lines of
[41, 42]. Monitors observe the state of the system and check whether the properties of interest are
satisfied.

In particular, given a model trajectory x(λ, t) under a given input u, our monitor output is UNDET

as long as x(λ, t) satisfies the invariants (in other words, the monitor decision is “undetermined” as
long as there is hope to extend the current treatment into a successful treatment) and goes to and stays
at value FAIL as soon as invariants are violated. When a UNDET model trajectory satisfies the goal
conditions, the monitor output turns to SUCCESS, informing the caller that the input u(t) defines a
successful treatment (i.e., an effective treatment which always satisfies invariants).

The use of continuous-time monitors embedded in the VPH model gives us a flexible way to model
both bounded safety and bounded liveness properties, and is a standard approach in the simulation-
based verification of cyber-physical systems (see, e.g., [43, 44]).

In our case study, the properties of interest are the conditions of successful downregulation treat-
ments (Section 3). In particular, our invariant requires that the day of the first drug administration is
between day 21 and day 25 of the menstrual cycle. Moreover, the value of all the biological quanti-
ties under observation must go and stay below their thresholds from the 9-th day after the first drug
administration. Our goal condition instead requires that values for those quantities stay below their
thresholds for 21 consecutive days.

As a consequence, our monitor output is UNDET in the initial state, and eventually turns either to
FAIL or to SUCCESS (see Figure 2). Model output turns to value FAIL as soon as, from the 9-th day
after the first drug administration, the value of any of the physiological quantities under observation
exceeds its threshold. Conversely, model output turns from value UNDET to value SUCCESS as soon
as all the thresholds are satisfied for 21 consecutive days.

4.2. Digital Twin simulation

As anticipated in Section 2, the complexity of the (highly non-linear) differential equations typically
occurring in actual VPH models hinders the possibility for their symbolic analysis. Numerical simula-
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invariants violated

goal reached

Figure 2: Treatment monitor.

tion is often the only means to compute the time evolution of the model quantities of interests (mainly
blood hormone concentrations in our case study GynCycle model) upon a sequence of clinical actions
(administration of one or more drugs with their associated doses). Also, as VPH model equations are
often stiff, simulation can be an expensive process from a computational point of view.

Our algorithm for optimal personalised treatment computation regards the input VPH model as
an executable black-box model. In order to drive the VPH model simulator, our algorithm assumes
that it accepts the following basic commands (which are available or can be readily implemented
within most modern simulators [45, 46]): store, load, free, run, get. Command store(l) stores
in memory the current state of the simulator and labels with l such a state. Command load(l) loads
into the simulator the stored state labelled with l. Command free(l) removes from the memory the
state labelled with l. Command run(a, t) (with a ∈ A1 × · · · × Anu and t ∈ R+) executes clinical
action a (thus administering given –possibly zero– doses for all available drugs) and then advances
the simulation of time t. Command get(x) (with x denoting one of the model variables) returns the
value of model variable x in the current state.

Since the input of our algorithm is a digital twin P (C) computed from a patient clinical record C
and consisting of a set of np ∈ N+ Virtual Phenotypes (VPs) (see Section 2.5), during the search we
drive the simulation of np independent copies of our VPH model (each one connected to a copy of the
monitor checking for treatment invariants and goals, as explained in Section 4.1). The different model
copies are instantiated with different values for the model parameter vector defined in P (C), hence
represent the different VPs in the patient digital twin.

By means of commands run(a, t) (a ∈ A1×· · ·×Anu), we simultaneously apply the same clinical
action to all VPs in P (C) and synchronously advance all models by time t. Furthermore, by means
of store and load commands, we can efficiently expand a tree of sequences of clinical actions, as
typically done by backtracking-based state exploration algorithms. In particular, upon a backtrack, we
only need to load back a previously stored state of our models, thus avoiding to simulate the entire
input sequence starting from the initial state.

4.3. Intelligent backtracking–driven simulation

In this section we describe our intelligent search that drives a digital twin simulator, by defining
our search tree (Section 4.3.1) and criteria for the evaluation and expansion of search tree nodes
(Section 4.3.2). We also introduce two ordering heuristics aiming at efficiently pruning the search
tree (Section 4.3.4) and speeding up the digital twin simulation time (Section 4.3.5), while retaining
completeness of the overall algorithm.
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4.3.1. Search tree definition

Given a patient clinical record C, its digital twin P (C), and possible alternative doses for each treat-
ment drug at hand (i.e., sets A1, . . . , Anu , each one including dose zero), our backtracking-based
algorithm performs a search in the space of possible treatments (i.e., time sequences of clinical actions
in A1 × · · · × Anu). Under the following assumptions: (i) the sets of allowed doses A1, . . . , Anu
for the nu drugs are finite; (ii) drug administrations occur at time instants multiple of a given time-
quantum τ ∈ R+; and (iii) sought treatments have a bounded duration (τh, with h ∈ N+ being the
treatment horizon), we can limit our search to a finite tree of maximum depth h, where each tree node
at depth 0 ≤ l ≤ h defines a discrete sequence of l clinical actions (elements of A1, . . . , Anu), each
one occurring in the first l time points multiple of τ .

As described in Section 4.2, our search algorithm drives a simulator containing multiple copies of
the VPH model (one per VP in the digital twin given as input), each one connected to a copy of the
monitor which checks for treatment invariants and goals.

Accordingly, each node of our search tree keeps also track of the digital twin simulator state
reached by injecting the clinical action sequence of that node. This is done via a store command (see
Section 4.2). A transition between a parent node and a child node consists of extending the clinical
action sequence of the parent node with a new action a ∈ A1 × · · · × Anu . In doing so, we also
advance the digital twin simulator state of the parent node via a run command (see Section 4.2). In
Section 4.3.2, we describe more in details how a search tree node is evaluated and expanded.

Before the search starts, for each VP λ in the input digital twin, we prepare its associated copy of
the VPH+monitor model within the digital twin simulator, by setting the parameter vector to λ. We
also store the initial simulator state via a store command (see Section 4.2).

Clearly, the assumptions above together with the entailed search tree structure hold for a very
wide class of treatments. For example, in our downregulation treatment case study, there is only
one possible drug, namely Triptorelin, hence nu = 1. Also, as such treatments allow at most one
Triptorelin administration per day, we can safely set τ = 1 day. Finally, successful treatments cannot
last more than h = 25 + 9 + 21 = 55 days, starting from day 1 of the patient menstrual cycle (i.e.,
the latest cycle day, 25, when the treatment might start, plus the latest day, 9, within which the safety
conditions must be met, plus the number of consecutive days, 21, in which the safety conditions must
be always satisfied in order to declare success).

Moreover, in our case study, the initial simulator state represents day 1 of the menstrual cycle of
all VPs in the input digital twin.

4.3.2. Search tree node evaluation and expansion

At each node of the search tree, our algorithm needs to extend the current sequence of clinical actions
(a treatment prefix, which is the empty sequence in the initial state). To do so, the algorithm:

1. Stores the current states of the VP models by means of a store command.

2. For each clinical action a ∈ A1 × . . . × Anu (according to the heuristic ordering discussed in
Section 4.3.4), injects a into the simulator and advances the simulation (simultaneously for all
VPs defined within the simulator) by time τ (this is done by issuing a command run(a, τ)).
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3. If the monitor output for one VP returns FAIL, the algorithm infers that there is no hope to
extend the partial treatment to a complete treatment successful for all the VPs in the digital twin
and issues a backtrack, by loading back (via a load command) the simulator state of all VPs
associated to the parent node in the search tree.

4. Otherwise, if the monitor output for all VPs is SUCCESS, the algorithm infers that the current
treatment is successful for all VPs.

5. Otherwise, the algorithm continues by expanding the new search tree node and extending the
current treatment prefix.

Whenever no further actions can be executed in the current node of the search tree, the current
simulator state is freed from memory by a free command before triggering a backtrack.

In order to reduce the required simulation time when expanding each node, the multiple model
copies are not actually packaged into a single (much heavier to be simulated) model, but are kept
separate and simulated sequentially. This allows our algorithm to perform two performance optimisa-
tions: a sort of early pruning of the current treatment prefix and a dynamic revision of the order with
which the VPs in the input digital twin will be actually simulated in the sequel (Section 4.3.5).

4.3.3. Optimality constraint

Since we seek the optimal personalised treatment for the input digital twin, our algorithm does not stop
at the first found successful treatment. Indeed, along the lines of [47], it keeps track of the lightest
successful treatment found so far, i.e., the one envisioning the administration of the minimum overall
drug amount Dmin ∈ R0+. Initially, Dmin is set to +∞.

At each node of the search tree, any action extending the current partial treatment with an adminis-
tration of a drug dose which would make the overall administered drug amount reaching or exceeding
Dmin is regarded as not applicable.

The optimality constraint (whose threshold is updated each time a new optimal treatment is found),
the presence of a bounded horizon h and the fact that our algorithm does not stop at the first successful
treatment clearly guarantee that a global optimum is always returned (if any successful treatment
exists).

4.3.4. Action ordering heuristic

In a black-box setting as ours, no inference can be made on the effects of each candidate action without
performing a simulator run to actually advance the model and then querying the model monitor output.
Hence, approaches to compute, through inference, a dynamic preference order among the candidate
actions to be tried during search (as those exploited in, e.g., classical planning, planning for white-box
hybrid systems –see Section 6– or (Q)CSP, SAT or local search solvers, see e.g., [28, 29, 48, 49, 50,
51, 52]) cannot be applied.

The only information available to the algorithm without running the simulator is value Dmin and
the overall cost of the current partial treatment (overall amount of drug administered). Hence, given
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that our algorithm searches for a successful treatment of minimum cost and that any action has a non-
negative contribution to the overall treatment cost, not surprisingly tries the clinical actions on each
node in the search tree in ascending order of their associated dose (i.e., cost), hence performing a
greedy, optimistic choice.

4.3.5. Dynamic VP simulation ordering

When, during the evaluation of search tree node, the monitor output after the simulation of a VP in
the digital twin returns FAIL, our algorithm, by performing a sort of early pruning, does not simulate
nor evaluate the remaining VPs, but it backtracks and tries the next available action from the parent
node, if any. Upon backtracking, the algorithm changes the verification ordering of the VPs in the
digital twin in such a way that those VPs not satisfying treatment invariants or not yet simulated in the
previous search step are simulated first. The rationale is that those VPs that already satisfied treatment
invariants in previous step, will more likely satisfy treatment invariants in the current step, where a
slightly different drug dose is chosen.

5. Multi-arm In Silico Clinical Trial

In this section we outline how we set up and conducted our In Silico Clinical Trial (ISCT) in order to
assess the technical viability of the proposed approach.

5.1. Retrospective clinical records

Our ISCT has been conducted against retrospective clinical data courtesy of Pfizer Inc. and Hannover
Medical School (Germany).

In particular, such our overall dataset consists of 21 patient clinical records for a total of around
800 measurements. Each clinical record comprises measurements for the hormones that play the most
important role during the human menstrual cycle: LH, FSH, E2, and P4. Figure 3 shows measurements
of such hormones in our overall dataset.

Each of the 21 clinical records in our retrospective clinical data defines a distinct arm of our
multi-arm ISCT.

5.2. Computing digital twins: exclusion criteria and VP selection

From the GynCycle model, we generated a population P of around 107 Virtual Phenotypes (VPs)
as explained in [35, 36] and recapped in Section 2.3. Hence, such a population is representative of
(almost) all patient behaviours allowed by the model (in the sense of [35, 36]). Note that, although
generating such a population required weeks of High Performance Computing (HPC) computation,
this is a one-time task for each Virtual Physiological Human (VPH) model.

In order to carry out our multi-arm ISCT, we computed a digital twin for each of the 21 clinical
records in our retrospective clinical data. In particular, we set the threshold value δ (Definition 2.3)
to 35% and, for each clinical record C, we included in the digital twin of C, P (C), all λ ∈ P such



298 S. Sinisi et al. / Optimal Personalised Treatment Computation through ISCT on Patient Digital Twins

0
50
100
150
200
250
300
350
400
450
500
550

0 5 10 15 20 25 30

p
g
/m
L

time (days)

(a) E2

0

5

10

15

20

25

30

0 5 10 15 20 25 30

n
g
/m
L

time (days)

(b) P4

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

IU
/L

time (days)

(c) FSH

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

IU
/L

time (days)

(d) LH

Figure 3: Measurements (dots) of, respectively, Estradiol (E2), Progesterone (P4), Follicle-Stimulating
Hormone (FSH) and Luteinizing Hormone (LH) of the 21 clinical records within the dataset from
Pfizer Inc. and Hannover Medical School (Germany).
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that η(C, λ) ≤ 35%. Hence, for each clinical record, we selected all VPs having an average Mean
Absolute Percentage Error (MAPE) at most 35%.

Since the reference downregulation treatment of Section 3 does not succeed on all possible phe-
notypes (this is not surprising since, as described in Section 3, fertility treatments are known to have
a low rate of success), we removed from P (C) those VPs for which the treatment using the maxi-
mum allowed dose (i.e., 0.1 mg on each day for up to 30 days, see Section 3) fails, for any C. Such
an exclusion criterion directly stems from domain knowledge on downregulation treatments (namely:
for these protocols, if a treatment envisioning one full drug dose per day fails for a patient, a lighter
treatment will fail as well). Our 21 digital twins contain, on average, 843 424 VPs each.

Unfortunately, in the worst-case scenario, each step of our backtracking search requires to simulate
all VPs within the input digital twin in order to check the monitor output (i.e., treatment invariants and
goals, see Section 4.3.2). Thus, since simulating one VP requires seconds of numerical integration,
the total computation time of our algorithm is highly affected by the size of the input digital twin, and
may easily become impractical.

To overcome such an obstacle, we note that within a digital twin of a given clinical record we can
(and typically do) have VPs exhibiting very similar model behaviours (both with and without drug
administrations). Simulating such very similar VPs would then simply be a waste of computation as
long as our ISCT is concerned. In order to reduce the size of a digital twin, we compute a subset P̂ (C)
of P (C), for each given clinical record C, such that P̂ (C) does not contain such redundant VPs.

To do so, we define the distance among the time evolutions of any biological quantity Si (i ∈ [nx])
of two VPs normalised against the time evolution of Si of a third (reference) VP (Definition 5.1).

Definition 5.1. Let λ, λ′ and λ? be three VPs of a VPH model defining nx biological quantities.
For every biological quantity Si (i ∈ [nx]) the distance between λ and λ′ with respect to λ? on Si

is:

di,λ?(λ, λ
′) =

√∫ +∞
0 [xi(λ, t)− xi(λ′, t)]2 dt

ζ

(√∫ +∞
0 xi(λ?, t)2 dt

)
where, as usual, ζ(α) is α when α 6= 0 and a small constant otherwise (in order to avoid division by
0).

Intuitively, Definition 5.1 defines the Euclidean distance between the time evolutions of biological
quantity Si of two given VPs (λ and λ′) normalised with respect to the L2-norm of that of a reference
VP, λ?. In practice, we will compute the above distance using a bounded-horizon simulation, i.e.,
model trajectories will be defined for 0 ≤ t ≤ h, where h is the treatment horizon. Hence, to match
the above general definition, we assume that, for any t > h, xi(λ?, t), xi(λ, t) and xi(λ′, t) are 0.

Given this notion of distance, we build P̂ (C) from the digital twin P (C) of a clinical record C as
follows:

• We select, from P (C), the reference VP λ? as one that minimises η(C, λ?). In other words, λ?

is one of the VPs of P that best matches the clinical measurements of C.
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Figure 4: Bar chart showing digital twin sizes (in terms of number of VPs) before (light) and after
(dark) the removal of redundant VPs and the application of our exclusion criteria for each clinical
record.

• We remove from P (C) those VPs whose time evolutions of all biological quantities have a
distance below a certain threshold from other VPs in P̂ (C) with respect to λ? (Definition 5.2).

Such a distance threshold obviously depends on the VPH model and treatment subject of the ISCT.

Definition 5.2. Let C be a patient clinical record, P (C) be its digital twin, λ? be any VP such that
η(C, λ?) is minimal, and d be the distance function of Definition 5.1.

Then, given a threshold θ, we call compact digital twin P̂ (C) any subset of P (C) such that the
following condition holds:

∀λ ∈ P (C) . λ 6∈ P̂ (C)→ ∃λ′ ∈ P̂ (C) . ∀i ∈ [nx] di,λ?(λ, λ
′) ≤ θ/2.

As a result of the application of the above approach and of our exclusion criteria, we obtained
compact digital twins with an average size of 11. This has been achieved by tuning the distance
threshold θ in such a way that: (i) VPs having redundant and undistinguishable behaviours have
been filtered out; (ii) the computed compact digital twins were representative enough for all VPs
in corresponding patient digital twins; and (iii) their sizes were small enough to be computationally
affordable. Figure 4 shows the distribution of their sizes.

5.3. Multi-arm In Silico Clinical Trial run

We ran our 21-arm ISCT using a large HPC infrastructure (the Marconi cluster) kindly provided by
the Cineca consortium.
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For each patient clinical record C in our retrospective clinical data (see Section 2.4), we, first,
computed a compact digital twin P̂ (C) (see Section 5.2), and then we ran our algorithm of Section 4
on an independent node of the cluster searching for an optimal (i.e., lightest) and robust (with respect
to all VPs of P̂ (C)) downregulation treatment for that specific digital twin. Thus, the whole 21-arm
ISCT has been conducted in an embarrassing parallel fashion.

Each VP in a compact digital twin has been encoded in a Modelica (http://www.modelica.org)
model (encompassing the GynCycle VPH model taking clinical actions as input, a parameter vector
assignment, and a monitor to check for treatment invariants and goals) and has been simulated using
JModelica v2.1 (http://www.jmodelica.org). Our search algorithm (which drives a Modelica simulator
per VP) has been implemented in Python.

In the following sections, we first evaluate the marginal impact of our heuristic ordering of actions
(Section 5.3.1) and of our dynamic simulation ordering of VPs within a digital twin (Section 5.3.2).
Then, we present computational results (Section 5.3.3) and outcomes (Section 5.3.4) of our multi-arm
ISCT.

5.3.1. Evaluation of the action ordering heuristic

The goal of this section is to assess the marginal impact of the heuristic presented in Section 4.3.4,
which sorts actions by their ascending associated cost (administered drug dose), in the overall effi-
ciency of the optimal personalised treatment search algorithm.

To this end, we compare it against 10 runs of an action selection strategy that evaluates the possible
actions in random order when expanding each node of the search tree, and compare the performance
of our heuristics against such reference strategy.

In particular, we defined a limit of 104 on the number of search tree nodes to expand, and anal-
ysed how fast the cost (overall amount of drug dose) associated to the personalised treatments found
decreases during the search space exploration, on all digital twins involved in our multi-arm ISCT.

In Figure 5, we present 3 representative executions where our heuristic finds an optimal solution at
different points in time (with respect to the number of expanded search tree nodes). For convenience of
presentation, the initial value ofDmin in Figure 5 is set to 3.0 (drug quantity employed by the reference
treatment, i.e., 0.1 mg on each day for up to 30 days) instead of +∞ (as stated in Section 4.3.3). This
is in agreement with our exclusion criteria of Section 5.2 as the reference treatment succeed on all VPs
within our digital twins.

We note that, by choosing actions randomly, the algorithm might show its first solution improve-
ments a bit earlier (Figures 5a and 5c). However, in all cases, our heuristics finds the optimal solution
(i.e., the lightest treatment) within a number of expanded nodes which is orders of magnitude lower
than the number of expanded nodes required by the random action ordering strategy. As an example,
Figure 5c shows that, after 104 expanded nodes, 8 out of 10 runs with the random action ordering still
failed to find a solution better than the reference treatment (i.e., 3.0 mg).

5.3.2. Evaluation of the dynamic ordering of VPs within a digital twin

In order to evaluate the marginal impact of our dynamic VP simulation order within the input digital
twin (Section 4.3.5) at each search tree node, we compared the execution of our algorithm against a

http://www.modelica.org
http://www.jmodelica.org
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Figure 5: Comparison of solution paths traversed by our algorithm when using our ordering heuristic
(green line) against the references (red dashed lines) among different digital twins of our multi-arm
ISCT.
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Figure 6: Marginal impact of our dynamic VP simulation ordering strategy among the digital twins of
our multi-arm ISCT.

reference obtained by averaging 10 different runs where the initial order of the VPs is randomised and
fixed at the beginning of the search.

In particular, we ran our algorithm for each digital twin involved in our multi-arm ISCT, and
compared the saving in terms of the number of simulations performed within each given number of
search tree nodes.

Figure 6 shows our result on 3 digital twins having different sizes: (i) a small size — 3 VPs
(Figure 6a); (ii) an average size — 13 VPs (Figure 6b); and (iii) a large size — 36 VPs(Figure 6c);
which are representative of the spectrum of behaviours among our digital twins.

We note that the our dynamic VP simulation order is always beneficial. The highest saving in the
number of simulations always occurs at the early stages of the search, where the most pruning activity
is performed. In deeper stages of the search, the savings stabilise at values of the order of 10%–20%.
Since the time needed to simulate a VP is essentially constant (as VPs differ only in model parameter
values and not in the system of Ordinary Differential Equations, ODEs), such savings translate in
comparable reductions of the overall computation time.
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Figure 7: Computational results of our ISCT.

5.3.3. Computational results

We ran our multi-arm ISCT on the Marconi HPC infrastructure kindly provided by Cineca, Italy. Due
to CPU-hours budget limit, we ran each arm of our ISCT in parallel for 15 days. Each arm searches
the optimal treatment for one of the 21 patients in our dataset. Indeed, our algorithm can be regarded
as an any-time algorithm in that, at any moment during search, it keeps track of the lightest successful
treatment found so far.

Figure 7a gives, for each ISCT arm, the share of simulation time within the whole computation
time. As we already argued in Section 5.2, the size of the input digital twin highly impacts the speed
(in terms of expanded search tree nodes per seconds) of our algorithm. In fact, in each search node (in
the worst case), our algorithm needs to numerically simulate all VPs within the input digital twin. As
shown in Figure 7a, the time spent in carrying out simulations is, on average, the 81.20% of the total
computation time.

This implies that any technique aimed at reducing the average number of simulations per search
node (like the reduction of the size of the considered digital twin defined in Section 5.2, the action
order heuristic evaluated in Section 5.3.1, and the dynamic VP simulation ordering evaluated in Sec-
tion 5.3.2) is expected to have a substantial impact on the actual performance of the algorithm.

Figure 7b shows, for each of the 21 parallel search processes (one per clinical record), the number
of search nodes expanded within our time limit of 15 days (orange bars, left Y axis), and compares it
to the size of the digital twin considered for that clinical record (blue bars, right Y axis).

The figure show a clear negative correlation (correlation coefficient equal to −60%) between
number of expanded nodes within our time limit and the digital twin size for all clinical records. For
example, we note that when the digital twin size is small, as for, e.g., C4, the number of expanded
nodes is large, i.e., near 106. Instead, when the digital twin size is large, as for, e.g., C17, the number
of expanded nodes is quite low, i.e., less than 3× 104.
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Figure 8: Multi-arm ISCT outcomes.

5.3.4. ISCT outcomes

Figure 8 shows the distribution of the total amount of drug employed by the optimal personalised
treatments computed by our algorithm. Note that, although we ran our multi-arm ISCT with a limited
time budget and did not find provably lightest treatments, the treatments we actually computed use, on
average, less than half (40.82%) of the drug quantity employed by the reference treatment of Section 3
(i.e., 0.1 mg on each day for up to 30 days, totalling up to 3 mg and never less than 2.8 mg, since the
required thresholds are never reached before day 7). As Figure 8 shows, the computed treatments save,
on average, 59.18% of the drug administered in the reference treatment (standard deviation: 13%).

In Figure 9, we show our computed treatments for the 21 patient clinical records during our multi-
arm ISCT. We note that, the majority of the computed drug administration sequences is close to the
reference downregulation treatment in terms of administration frequency and treatment duration, i.e.,
around 28 days. Besides this, there are also few computed treatments having a very light overall
amount of drug dose. This of course depends on the ability of the digital twins to capture patient
peculiarities and in general on the ability of the VPH model at hand to represent the human physiology
of interest.

6. Related work

Individualised treatments have the potential value to reduce costs and improve outcomes of standard
clinical treatments. In recent years data-driven techniques have been investigated thanks to the avail-
ability of big data [53]. For example, the knowledge-base approach in [54] has been used to optimise
treatment plans for lung cancer. Unfortunately, in presence of scarce clinical data for the patient at
hand, the above approaches cannot be applied. For example, in our case study hormones blood con-
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Figure 9: Personalised treatments computed through our multi-arm ISCT in 15 days.



306 S. Sinisi et al. / Optimal Personalised Treatment Computation through ISCT on Patient Digital Twins

centrations are not measured every day, since those measurements are costly and invasive.
Model-based approaches, exploiting PharmacoKinetics (PK), as e.g., [55], are used instead to

build populations of virtual phenotypes. Such populations are used to optimise and individualise
drug doses [56, 57]. PK-based models, however, do not define how administered drugs can affect
a Virtual Phenotype (VP) (namely, PharmacoDynamics, PD), i.e., possible side-effects due to drug
administrations are not taken into account.

In our model-based setting, we have to face with complex Virtual Physiological Human (VPH)
models, e.g., HumMod [19], Physiomodel [20], and GynCycle [6] defined through highly non-linear
differential equations modelling the underlying biological mechanisms (e.g., inhibitory and stimula-
tory effects). As outlined in Section 2.1, such VPH models are hybrid systems that can be defined by
systems of Ordinary Differential Equations (ODEs) (see, e.g., [58, 32, 33]) whose inputs are discrete
event sequences (see, e.g., [41, 44]). To find an optimal treatment means to find an optimal plan in
hybrid domains, where the behaviour of the given system is described by both discrete and continuous
quantities. In the literature, there are many techniques to model planning problems in hybrid domains,
e.g., PDDL+ [59, 60]. Most of PDDL+ planners can deal only with linear dynamics (e.g., [61]). [62]
proposed a Satisfiability Modulo Theories (SMT)-based approach for solving PDDL+ problems with
non-linear dynamics. Model checking techniques are also used to find plans. Examples in this direc-
tion are [63, 64], which exploits symbolic model checking, UPMurphi [65, 66], which given as input a
PDDL+ problem specification computes a universal plan, CGMurphi [67], an explicit model checker
used to compute optimal controllers, and [68, 69, 70, 71], which define methodologies to compute
controllers for non-linear hybrid systems. However, as outlined in Section 4.2, the typical complexity
of the differential equations of VPH models relevant for clinical practice makes such models out of
reach for symbolic approaches like those mentioned above, and appoints numerical integration as the
only viable means to compute (black-box) the model evolutions under a given input function.

In particular, even considering that clinical actions have constant and equal duration (as, e.g., in
[72]), no reasoning or inference can be made on action effects in a black-box setting as ours, because
the only way to interact with the models is through numerical simulation.

The automated synthesis of rational decisions and plans in black-box environments is common in
several other application domains of high industrial relevance, like smart grids (see, e.g., [73, 74, 75]),
games (see, e.g., [76]) and real-time manoeuvring of Unmanned Aerial Vehicles (see, e.g., [77]).

The works closest to ours are those in [76, 78] and citations thereof, where a simulator is used
to discover the effect of actions. In such works, the simulator is defined as a factored state model
where actions are (black-box) procedures and states are represented in terms of variables. Then an
algorithm, namely, Iterated Width (IW), is typically employed. It consists of iteratively calling a
breadth-first procedure, namely, IW(i), with i = 1, 2, 3, . . ., until the problem is solved or i becomes
greater than the number of state variables (see, e.g., [79]). During each call to IW(i), states are pruned
accordingly to how novel they are. A state is novel if and only if values for at most i state variables
have not seen before. Authors point out that IW is efficient for the majority of classical planning
problems where it is enough that i = 1, 2, i.e., actions change at most 2 state variables. However, in
our setting, our simulator state consists of the union of all state vectors, i.e., x(t), of each VP+monitor
within the input digital twin. Moreover, the most of variables within such state vectors consist of
real-valued biological quantities. Also, we remind that the dynamics of such model are defined by
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means of ODEs. Hence, when we apply a clinical action (and simulate our digital twin) the vast
majority of state variables change their value. In this setting, applying IW means nearly always to
call only IW(n), with n the overall number of variable of our simulator state. This behaviour makes
the pruning on which IW relies on quite ineffective as IW degenerates to prune truly duplicate states,
which are also extremely rare as our variables are real valued. Note that, in order to increase pruning
of duplicate states, one could think of simplifying the dynamics of the VPH model at hand (e.g.,
by discretising state variable domains). However, this is not a straightforward approach as it poses
several questions about accuracy, credibility, and trust of the entailed model predictions, which have
to be again experimentally assessed.

7. Conclusions

In this paper we presented methods and algorithms based on intelligent search aimed at synthesising
optimal personalised treatments by means of In Silico Clinical Trials (ISCT), exploiting quantitative
models of the physiology and drugs Pharmacokinetics/Pharmacodynamics (PKPD) of interest, and
clinical measurements on human patients from which we define their digital twins.

We applied our approach on a case study involving a complex state-of-the-art model of the human
female Hypothalamic–Pituitary–Gonadal (HPG) axis, in order to compute, for any given patient, a
personalised treatment for the downregulation phase of an assisted reproduction protocol, which is
effective on the patient at hand, but minimises the overall amount of drug used (hence, indirectly, the
associated cost as well as likelihood and severity of adverse effects).

The possibility to optimise in silico, in a few weeks of computation on a High Performance Com-
puting (HPC) infrastructure, a complex treatment for a given human patient before its actual admin-
istration shows the potential of artificial intelligence for model-based (in silico) precision medicine.
This however calls for trusted Virtual Physiological Human (VPH) models, which is currently one of
the major obstacles for the uptake of ISCT in clinical practice.

Indeed, the results of our ISCT (conducted using a state-of-the-art validated VPH model as Gy-
nCycle) are extremely promising, but must be taken with care. In particular, an in vivo evaluation of
the actual effectiveness of the personalised treatments generated by our algorithm is needed in order
to assess the accuracy of GynCycle in predicting the patient reactions to non-standard drug dosing
patterns, as those computed by our algorithm.
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Dainese L, Pallud J, Cartalat-Carel S, Delattre JY, Honnorat J, Grenier E, Ducray F. A Tumor Growth
Inhibition Model for Low-Grade Glioma Treated with Chemotherapy or Radiotherapy. Clinical Cancer
Research, 2012. 18(18):5071–5080. doi:10.1158/1078-0432.CCR-12-0084.

[8] Jackson P, Juliano J, Hawkins-Daarud A, Rockne R, Swanson K. Patient-Specific Mathematical Neuro-
Oncology: Using a Simple Proliferation and Invasion Tumor Model to Inform Clinical Practice. Bulletin
of Mathematical Biology, 2015. 77(5):846–856. doi:10.1007/s11538-015-0067-7.

[9] Roy P, Roy K. Molecular docking and QSAR studies of aromatase inhibitor androstenedione deriva-
tives. Journal of Pharmacy and Pharmacology, 2010. 62(12):1717–1728. doi:10.1111/j.2042-7158.2010.
01154.x.
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