
Proceedings of the 35th TM06 250
Conference on Decision and Control
Kobe, Japan December 1996

Optimal Finite State Supervisory Control
Enrico Troncil

Dipartimento di Matematica Pura ed Applicata, Universitd di L 'Aquila, Coppito 67100 L 'Aquila, Italy
tronciQunivaq.it

Abstract
Supervisory Controllers are Discrete Event Dynamic
Systems (DEDSs) forming the discrete core of a Hy-
brid Control System.

We address the problem of automatic synthesis of Op-
timal Finite State Supervisory Controllers (OSCs). We
show that Boolean First Order Logic (BFOL) and Bin-
ary Decision Diagrams (BODS) are an effective meth-
odological and practical framework for Optimal Finite
State Supervisory Control. Using BFOL programs (i.e.
systems of boolean functional equations) and BDDs we
give a symbolic (i.e. BDD based) algorithm for auto-
matic synthesis of OSCs. Our OSC synthesis algorithm
can handle arbitrary sets of final states as well as plant
transition relations containing loops and uncontrollable
events (e.g. failures). W e report on experimental res-
ults on the use of our OSC synthesis algorithm to syn-
thesize a Cprogram implementing a minimum fuel OSC
f o r two autonomous vehicles moving on a 4 x 4 grid.

1 Introduction
Automatic synthesis of reactive programs is gradually

becoming a reality (e.g. see [a], [23]). Here we consider
a particular class of reactive programs, namely Finite
State Supervisory Controllers (SCs). SCs are the dis-
crete core of a Hybrid Control System, whereas phys-
ical plant and controllers form the continuous one (e.g.
see [4], [13]). SCs are Discrete Event Dynamic Sys-
tems (DEDSs) and as such have been widely studied.
Automatic synthesis of SCs satisfying given specifica-
tions (Supervisory Control Problem, SCP) was studied
in [18], [24], [20] within an automata-theoretic frame-
work; in [l , [5] within a language-theoretic framework;
in [ll], [I71 within ,a process algebra framework; in [lo],
[14], [15], [19] within a predicate calculus framework.

In an SCP we measure performances using a 2-level
cost scale: 0 (the SC satisfies the specifications), 00 (the
SC does not satisfy the specifications). However quite
often in control engineering one is interested in an SC
that is as close as ,possible to given specifications. This
leads us to look for an SC with minimum cost on a
many-level cost scale. This is the Optimal Supervisory
Control Problem, a generalization of SCP. Optimal su-
pervisory control hlas been studied e.g. in [16], ral].

In this paper we address the problem of automatic
synthesis of Optimal Finite State Supervisory Control-
lers (OSCs). Informally the Optimal Finite State Super-
visory Control Problem (OSCP) scenario is as follows.
We are given a plant (i.e. a finite state transition sys-
tem), a set of plant states (final states) and a cost for
each plant transition. Plant transitions are triggered
by events (or, using a process algebra terminology, ac-
tions). The set of' events is finite and is divided into
two disjoint subsets: controllable events (e.g. inputs)

'This research has been partially supported by MURST funds.

0-7803-3590-2/96 $5.00 0 1996 IEEE 2237

and uncontrollable even.ts (e.g. outputs or failures). Su-
pervisory control consi,sts in restricting the plant beha-
vior by disabling some (possibly all) of the controllable
events in a given plant state. Note that uncontrollable
events are always enabled. Given a supervisory control
law an objective functz:on (or cost index) associates to
each plant state a cost on the base of plant transition
costs and of the set of events enabled by the supervisor
in a given plant state. The OSC is the least restrict-
ive supervisor that drives the plant to a final state and
minimizes a given objective function.

The main obstructions to OSC synthesis are state ex-
plosion and nonmonotonicity of the fixpoint computa-
tions involved in all OSC synthesis algorithms. Termin-
ation of such fixpoint computations strongly depend on
OSCP data (i.e. object'ive function, plant transition re-
lation, cost domain, final states, controllable events).
To guarantee termination and correctness (of the com-
puted result) all published OSC synthesis algorithms
use an infinite domain (X?' = {z I z E X and z 2 0))
for costs and disallow loops and uncontrollable events
in the plant transition ,relation. When these hypotheses
are not satisfied such algorithms in general do not ter-
minate or produce wrong results.

Binary Decision Diagrams (BDDs, see [7]) are an ef-
ficient canonical representation for boolean functions
that has proved very efl:ective in contrasting state explo-
sion in automatic verifiication via Model Checking (e.g.
see [9], [SI) as well as in automatic synthesis of SCs
satisfying given specifications (e.g. see [5]). However
no symbolic (i.e. BDD based) algorithm for automatic
synthesis of OSCs has been presented in the literature.
BDDs can only handle finite domains. Thus to use them
in an OSCP we must use a finite domain to represent
costs. In an OSCP costs are only used to rank super-
visory control laws. Usually only the top levels (small
costs) of such ranking need to be faithfully represented.
Thus restriction to a finite domain for costs is often
quite reasonable.

We show that a suitable monotonicity hypothesis on
the objective function allows us to use a finite domain
for costs and to have loops and uncontrollable events
in the plant transition relation. This, in turn, yields
a symbolic OSC synthesis algorithm handling arbitrary
plant transition relations.

To show termination (and correctness) of a symbolic
OSC synthesis algorithm we need to study the effect of
OSCP data on such s,ymbolic algorithm. To this end
we need to represent in- the same language OSCP data
and the OSC Synthesis algorithm under consideration.
This can be done with ,a symbolic (i.e. BDD based) pro-
gramming language. However none of the SC or OSC
synthesis approaches 'described in the literature suits
our needs since none of them is based on a symbolic
programming language. In [22] it has been shown that
Boolean First Order Logic (BFOL) can be used as a
symbolic functional programming language well suited

for automatic verification of Finite State Systems. Es-
sentially a BFOL program is a system of boolean func-
tional equations. Here we show that BFOL programs
can also be used to define an OSCP and to give sym-
bolic OSC synthesis algorithms.

The main results in this paper are the followings.
BFOL and BDDs are an effective methodological

and practical framework to define and study OSCPs
(sec. 4) in much the same way as calculus is for dy-
namic systems on 2".

Using BFOL programs we give (5.1) a symbolic
(i.e. BDD based) OSC synthesis algorithm and show
(5.2) its correctness when the objective function satisfies
a suitable monotonzczty hypothesis. Note that no sym-
bolic OSC synthesis algorithm has been presented in the
literature. Using BFOL to represent both OSCP data
and our OSC synthesis algorithm allows us to overcome
the main difficulty in our correctness proof showing
termination of the nonmonotone fixpoint computations
involved in our symbolic algorithm.

Our OSC synthesis algorithm (5.1) can handle
arbitrary sets of final states as well as plant transition
relations containing loops and uncontrollable events.
No previously published OSC synthesis algorithm can
handle such general case. Note however that our object-
ive function only depends on costs for enabled events.
Objective functions depending also on costs for disabled
events have been considered in [a l l for costs ranging on
%2°, singleton sets of final states and plants without
loops or uncontrollable events.

Our symbolic algorithm can be effectively used
for automatic OSC synthesis. We show (sec. 6) exper-
imental results on its use to synthesize a C program
implementing a minimum fuel OSC for two autonom-
ous vehicles (AVs) moving on a 4x4 grid. A problem
that cannot be solved with any of the previously pub-
lished OSC synthesis algorithms because of loops and
uncontrollable events (AV engine failures) in the plant
transition relation.

2 Basic Definitions
In this section we review standard definitions from

First Order Logic (FOL) and Logic Programming (e.g.
see [la], [3]) and adapt them to our case: Boolean
First Order Logic (BFOL). BFOL is simply FOL on
the boolean domain (0 , 1). BFOL syntax is the same
as that for FOL with the following provisions: the only
constants in BFOL alphabet are Q,L (proposit.lonal con-
stants); there are no function symbols in BFOL alpha-
bet; any BFOL term (a propositional constant or a vari-
able) is a formula (this is because we are working on
Booleans). FV F) is the set of free variables in formula
F . Formula F i z := t] is obtained from formula F by
replacing all free occurrences of z in F with term t .
Symbol E denotes syntactic equality between strings.

We adopt the usual semantics for first order lan-
guages. However our universe will always be the set
Boole = (0 , 1) of boolean values. Boolean value 0
stands for f a l s e and boolean value 1 stands for true.
If b denotes a boolean value we also write b for b. Thus,
e.g., symbols 0, 1 are overloaded since they may denote
propositional constants, boolean values or j u s t integers.
The formal context will always make clear the intended
meaning. In the following it, is always assiimed that an
alphabet is given.
2.1 Definition. An interpretation I on a given
alphabet is a subset of the set { p (t l , . . .in) I p is an n-

a] (F A G) = if [I , a] F) then [I , a] G) else 0,
u](F -+ G) = if [I , a!(F) then [I , a\(G) else 7

~~

I ' ;f[I,a](&) then [I ,a] (G) else [I,a](-G),
rz.ai(3zF\ =

0]] (F) then 1 else [I , U[. := 1]] (F) ,

if [I , ais := O]](F) then [I , I J [X := 1]] (F) else 0.
I Figure 1: I

ary predicate symbol in the alphabet and t l ,
propositional constants}. If G is a set of predicate sym-
bols we define I (G) = (p (t 1 , . . . t n) 1 p (t 1 , . . . tn) E I
and p E G}. We write I (p) for I ({ p }) . Let p be an n-
ary predicate symbol and w1 li, be boolean values.
We define the boolean value) (V I , . . . un) as follows:
I (p) (v l , . . . wn) = if (p (v t , . . . l i ,)~ I) then 1 else 0. If
n = 0 then symbol I (p) is overloaded since it may de-
note a set or a boolean value. The mathematical context
will always make clear the intended reading for I@) .

An assignment is a map U assigning a boolean
value g(z) to each variable z. If U is an assignment and
d is a boolean value then ~ [z := d] is the assignment
s.t.: u [x := d] (y) = if (y z) then d else ~ (y) . We
also write z" for U ($) . An environment is a pair [I , U] ,

where I is an interpretation and U is an assignment. An
environment [I , U] assigns boolean values to formulas as
in fig. 1.

Let P , S be set of formuhs and I be an interpret-
ation. We say that I is a model for S (notation: I + s)
iff for each formula F in S and for each assignment U

we have [I , u] (F) = 1. We say that S is a logical con-
sequence of P (notation P + S) iff for each interpreta-
tion I we have: if I P then I S. If S = {F} then
we write: I F , P + F for, respectively, 1 1 { F } ,

A Model Checking Problem (MCP) is a pair
(I , F) , where I is an interpretation and F is a formula.
Answer-MC is a function from MCPs to Boole s.t.

0

p t= I F } .

Answer-MC(I , F) = 1 iff I F . 0

2.2 Notation. 0 We denote with [] the empty
list and with [ao, . . . a,-l] the list with elements uo,
. . . a,-l. We say that a is in list L (notation acL) iff a is
an element of L . We denote with [L I the set of elements
in list L. If L1 = [ao , . . . a,,-l] and L2 = [bo, . . . b,-1]
then L1 * L2 = [ag, . . . a,-l , bo, . . . b,,-l].

I f f is a partial recursive function we write f (z) 4
[f(z) 1'1 for f (z) terminates [does not terminate] on ar-
gument z. 0

2.3 Definition. A program statement is a
formula of the form p (z 1 , . . . zn) = F , where p is a
predicate symbol and F is a formula. s.t. F V (F) C:

zn} . Formulas p (z 1 , . . . z n) a.nd F are called,
respect,ively, the head and the body of the statement.

A (BFOL) program [module] is a finite nonempty
list P of program st,atements s.t. for each predicate
symbol p occurring in a program statement in P there
is exactly [ut most] one program statement in P with p
occurring in the head. Not,e that, we ca.11 program what,
in logic programming is usually called (up to statement
ordering) the completion of a logic program (e.g. see
[l a] sec. 17 or [3]) . Note that a program is a module,

2238

but the converse is false. E.g. P = [I, = q] is a module
but it is not a program since in P there is no program
statement with q as head (i.e. q is not defined in P).

0 Let P be a module. A predicate symbol p
is zn P iff p occurs in a statement in P . The set
Alph(P) of predicate symbols in P defines the alpha-
bet of P. The definztzon of p in P is the program
statement (if any) in P in which p occurs in the head.
We define: ezport(P) = { p I p E Alph(P) and there
is a program statement in P where p occurs in the
head); import(P) == Alph(P) - ezport(P) . Note that
for a program P we have ezport(P) = Alph(P) and
impor f (P) = 0. We denote with s i ze(P) the number of
symbols in P A model for (or a solutzon to) P is an
interpretation I s.t. 1 P .

Hygzene Conventzon. Let P , Q be modules. Un-
less otherwise stated when writing P*& it is understood
that, Alph(P) n export(&) = 8. This avoids us having
to worry about narne clashes. E.g. [p = q] * [g =. p]
(= = q , g = p]) is allowed by our hygiene convention

0

2.4 Notation. We denote with boldface charac-
ters vectors of predicate symbols or of formulas. We
use a vectorial notation in the expected way. E.g.
let p be an n-ary predicate symbol, q be an m-
ary predicate symbol and t z o l l , 1, y] a vector of
terms. Then (Vxp(x , t , z) V 3xp(x \ V V x q (x)) stands for

but [g = p] * [1, = q] is not.

zn-6,0, 1, 1, y, z) v 3x0,

We write C(X) or xu for [a(zo), . . . a(x,-1)]. If
G,-1] are vectors of formulas we

G,-1] for ((Fo = Go) A
. . . (Fn-l = Gn-l)). E.g. let p [PO,, . . p , -~] be
a vector of m-ary predicate symbols and x , u be vec-
tors of variables. ‘Then x = p(u) stands for ((EO =
~ o (. ~ o , . . . u ~ - I)) A . ..(z,-l = ~ n - l (~ ~ , . . . U m - l))) .

To efficiently carry out computations on BFOL in-
terpretations we need an efficient representation for
boolean functions. Binary Decision Diagrams (BDDs)
(see [7] for details:l are an efficient canonical repres-
entation for Boolean Functions. I.e. for each boolean
function f there is (<up to f argument ordering) exactly
one BDD, bdd(f) representing f. In the following we
assume that for each predicate symbol p (in the given
alphabet) an ordering on its arguments is given. Thus,
given an interpretakion I , bdd I (p)) is univocally de-
termined. Moreoveir size-bdd(G i denotes the number of
vertices in BDD G. We heavily rely on BDDs. However
in the following they can be replaced by any efficient ca-
nonical representatlion for boolean functions.

We liberally use C-like pseudo-code for our al-
gorithms. We omit proofs because of lack of space.

3 Standard Solution
In general a program may have one, many or no solu-

tion (model). To use BFOL as a BDD based program-
ming language we need to univocally associate a solu-
tion (if any) to a program. This gives an operational
semantics to BFOL and turns it into a (functional) pro-
gramming language. This is done in the present section
generalizing [22].
3.1 Definition. Let J be an interpretation and P
be a module. Inteirpretation stdsol(J, P) is defined as

interpretation stdsol(interpretati0n J , module P)
{ Let P = Cpo(x) = Fc,, . . .p , - l (x) = F,-1];

for all IC = 0 , . . . (n - 1) do I,, = 0; i = 0;
while (i < n) { I’ =: { p i (a (x)) I

[J(impor t (P)) U TO U . . . In- l , a](F,) = 1);
if (I’ == I i) { i := i + 1; } else { I; = 1’;

for all k = 0 , . . . (i - 1) do Ik = 0; i = 0; } }
return (Io U . . .In-l);)

Figure 2: Standard Solution

in figure 2. Note that the computation for stdsol(J, P)
may or may not terminate. If stdsol(J ,P) termin-
ates then stdsot(J ,P) P . We write stdsol(P) for
stdsol(0, P) . Let P be a program. The standard solu-
tzon to P is stdsol(P). If stdsol(P) .J then we write

3.2 Example. Let Pl = Cp = -p]. PI has no
solution (model) and stdsol(P1) 1‘. Let Pz = [P = ~p V
q, q = q]. P2 has exactly one solution (model) I = { p , q }
and stdsol(P2) f. Hence, in general, if stdsol(P) 1‘ we
cannot conclude that program P has no solution. Let
P3 = [p = i p V l q , q = q]. P3 has one solution I = { p
and stdsol(P3) = , { p } . Let P4 = Ep = p V i q , q = p II .
P4 has three solutions, namely 11 = { p } , I2 = { q } , I , =

b d d (P , p) for bdd(stdsol(P)(p)). 0

{ p , q } , and stdsol(P4) =I { p } .

3.3 Definition. A query is a pair (P ,g) , where
P is a program and g is a predicate symbol in P.
Answer-Query is a function from queries to Boole s.t.:
Answer-Query(P,g) = if stdsol(P) 1 then (if

Theorem 3.4 (essentially from [22]) shows that

Let P be a program with Alph(P)
There are BDD based algorithms

bdd-compile(P) = if stdsol(P) 1 then

0 Answer-&uery(P,g = if stdsol(P) 1 then

stdsol(P) g(x) then 1 else 0) else 1‘. 0

stdsol(P) can be computed using BDDs.

3.4 Theorem.
= { P O , . . .pk- l) .
bdd-compile, bdd-eval s t . :

[bdd(P,po), . . .bdd(P,p, t - l)] else 1‘.
bddsval(bdd-compile(P),g{ else 1‘. 0

4 Optimal Control
We show that BFOL can be effectively used to define

(4.3) an Optimal Finite State Supervisory Control Prob-
lem (OSCP) as well as a solution to it (4.7). Informally
the OSCP scenario has been defined in sec. 1.
4.1 Notation. We will use (with or without
subscripts) the following vectors of boolean variables.
x [zo, . . .z,-1] is a vector ranging over plant present
states. U 3 [uo, . . .U,.- 11 is a vect,or ranging over plant
events. x’ E [zb,. . . ~ h . - ~] is a vector ranging over plant
next states. v G [v o l . . . ~ k - ~] is a vector ranging over
plant transition costs. 0

To each pair (x,u) we need to associate a cost v
which is the cost to reach a final state from x by en-
abling event U in x. For this reason as usual in classical
supervisory control theory we restrict our attention to
plants s.t. for each state x , each transition from x leads
to a final state or to a state from which a final state can
he reached (4.2). Essentially this is the coaccessibility
hypothesis in [18] .

2239

4.2 Definition. Let I be an interpretation, p be
an (n + r + n)-ary predicate symbol (denoting our plant
transition relation) and end be an n-ary predicate sym-
bol (denoting our set of final states).

BR(p,en$) = ([q(x) = (end(x) V 3u,x’
(p(x, U , x’) A q(x))) 1, q) . Informally q denotes the set
of plant states that are final or from which it is possible
to reach a final state (backward reachable states).

0 Let BR(p,end) = (& , q) . The triple (I ,p ,end)
is said to be backward reachable iff (I U stdsol(1, Q)) I=
p(x,u,x’) --+ q(x’). Informally a triple (I ,p ,end) is
backward reachable iff each plant transition leads to a
backward reachable state.

0

4.3 Definition. An Optimal Fanate State Su-
peruzsory Control Problem (just Optzmal Superuzsory
Control Problem, OSCP, in the following) is a 10-tuple
(P , J , p , end, contr, leq, h, lh, j , f) s.t.:

P is a program s.t. predicates p , end, contr, leq,
h, lh are in P, stdsol(P) 4, j , f are not in P.

p is an (n + r + n)-ary predicate symbol denot-
ing our plant transition relation. Informally p(x, U, x’)
holds iff event U triggers a transition from state x to
state x‘.

end is an n-ary predicate symbol denoting our
set of final states. Informally end(x) holds iff x denotes
a final state.

The triple (stdsol(P),p, end) is backward reach-
able. I.e. each plant transition leads to a backward
reachable state (equivalently: each nonisolated state is
backward reachable).

contr is an r-ary predicate symbol denoting our
set of controllable plant events. Informally contr(u)
holds iff U denotes a controllable event.

leq is a (2k)-ary predicate symbol denoting a total
order on costs. We write (v 5 v’) for leq(v,v’). Pre-
dicat,e leq satisfies the following conditions (total order):

0

0

0

0

0

stdsol P VI < ~ 2)
stdsol[P{ E [ti <va)

0 h E [ho, . . . h k - 1 1 is a vector of (n+r)-ary predic-
ate symbols. Vector h(x, U) denotes the cost of enabling
event U in plant state x.

lh 2 [lho, . . .lhk-l] is a vector of (2k)-ary pre-
dicate symbols denoting our cost propagation function.
Informally vector lh(v1, v2) denotes the cost resulting
from incurring first cost VI and then cost v2. Vector lh
satisfies the following condition (leq-monotonicity):

0

A (vq = lh(v1, ~ 3)) A (~ 5 =

0 f is an (n + r)-ary predicate symbol denoting
our state feedback supervisory control law. I.e. f(x, U)
holds iff when the plant is in state x event U is enabled.

j is an (n + k)-ary predicate symbol denoting our
objective function (cost index). Informally j(x, v) holds
iff when applying control law f the cost index value in
x is v.

0 J is a module defining our objective function j .
Module J is defined as follows: J = [

b(x,v) = 3u,x’ (f(x,u) A p(x,u,x’) A end(x’)
(f(x,u) A p(x,u,x’) A
3 ~ 1 ((V I = h(x,u)) A

v) A vv’ (b(x, v’) -+ (v’ 5 v)) 1.
E.g. F as in fig. 3 is an OSCP. 0

= (PI J , P, end, contr, le% PI, [2hI,j, f) ,
x [Z O] , U = [U O] , s o zi [O], SI s [l], U0 G [O], U1 E [l].

P = [p(X, U , X’) = (X = So A U = U0 A X’ = S i)
V(X = So A U = U1 AX‘ = S I)

V(X = Si A U = Uo A X ’ = So)
V(X = Si A LI = U1 AX‘ = Si),

e n d (x) = (x = S I) ,

contr(u) = (u = uo),
Zeq(vo,vl) = (00 -+ VI),

= (x = S o A U = U i) ,
I h g x] = (U0 v u1) 3.

Adm: 11 = {f(so , U O) , f (s o , U I) , f(s1, U O) , f (s1 , ~1));
stdsol(11,P* J) (j) = { j (S O , l) , j (S l , l) } .
Opt: I2 = {f(so , UI), f(s1, u1));
stdsoZ(I2, p * J)(.?) = {3(SO, l) , j (S l , 0)) .
Mgo: 13 = { f (s o , U I) , SO, UO) , f(si, UI)};
stdsoZ(I3,P * J) (j) = {j(s0,1),~(s1,0)}.

Figure 3: An OSCP

4.4 Remark. 0 Informally module J in 4.3
works as follows. Formula b(x,v) holds iff from state
x with control law f we can reach with cost v a final
state. Formula j(x, v) holds iff v is the maximum cost
to reach a final state starting from state x when using
control law f . Thus, as in [21], we take as objective
function j the worst case performance of supervisor f.

Vector h in 4.3 plays the same role as the Hamilto-
nian in a classical optimal control problem for dynamic
systems on Sn whereas lh plays the role of cost sum-
mation (J or C) along state trajectories.

The leq-monotonicity hypothesis in 4.3 allows us
to use Bellman’s principle of optimality (e.g. see [SI)
when constructing a solution to an OSCP (5.1, 5.2).

Note that backward reachability for (stdsol(P), p ,
end) as well as the conditions on leq and lh in 4.3 can all
be automatically checked using BDDs. E.g. (stdsol(P),
p , end) is backward reachable iff Answer-&uery(P*

Vu,x’ (p(x,u,x’) -+ q(x ’))] , g) = 1. By theorem 3.4
this can be evaluated with BDDs.

0 Note that we use a static (memoryless) state feed-
back controller (f). Memory is only in the plant model
(p) . As in [14], [15] this is no loss of generality since
from a computational point of view memory can always
be modelled as part of the plant p . Note that, unlike
[18], [5] , we allow nondeterministic plants. When the
state is observable (as often the case) this makes our
results directly applicable to hybrid control for dynamic
systems on !Rn (e.g. see [4]). When the plant is determ-
inistic our approach is equivalent to the one in [18], [5].
Note also that all plant states are initial for us. Essen-
tially this is equivalent to the accessibility hypothesis
in [18] and is no loss of generality when studying SCPs

0

0

0

[dx) = (en+) v 3UIX’ (P(X1UiX’) A dx’))), g(x) =

([18]) or OSCPs ([all). D

4.5 Definition. Let F’ = (P , J , p , end, contr, leg,
h, lh, j , f) be an OSCP. An admissible solution to F is
an interpretation I satisfying the following conditions.

I = I(f). I.e. the only predicate symbol occur- 1.
. . - . -

ring in 1 is j .
2. I U s t d s d (P) (icontr(u)A3x’p(x,u,x’)) f

f(x, U) . I.e. uncontrollable events cannot be disabled.
This condition has been called controller completeness
in [5] , [18].

3 . I U stdsol(P) (contr(u) A f(x,u)) -+
3x‘p(x, U, x‘). I.e. a controllable event enabled by

2240

the controller can always be follomd (executed) by the
plant. This condition lias heen called plant complete-
1 7 ~ 5 . 5 in [5].
1. I’ U stdciol(1’. Q * Q’) + 3u.x’(p(x.u.x’) A

g(x’)) -+ 3u. x’(p’(x. U. x‘) A g’(x’)). n-here: I’ =
I U .dd.sol(I. P * LJ’(X. U . x’) = f (x . U) A p(x. U . x’)]).
BR(p. e n d) = (Q . g). BR(p’. e n d) = (Q’. g’). Inforn-
ally: if in the open-loop (uncontrolled) system p (the
plant) there is a t,ransit,ion from st.ate x leading to a
backward reachable state then in the closed-loop (con-
trolled) system p’ there is a transition from state x lead-
ing to a backward reachable state. This liveness hypo-
thesis ensures that the controller can drive the plant, to
a filial state. This hypothesis plays the saine role as the
nonblocking condition in [5]. [18].

E.g. an adinissiible solut,ion to the OSCP F in fig. 3
D

4.6 Definition. Let F = (P. J , p . en,d. contr, leq,
h. lh. j: f) be an OSCP. An optimal solution to 3 is
an interpretation 1 satisfying the following conditions.

is I1 in fig. 3 .

I is an a d n k i b l e solution to F.
For all admissible solutions I’ to F. for all assign-

ments U . c’ we have: if stdsol(1, P * J) I= j(x‘, vu) and
std.sol(I’. P * J) I= j(x0,vu’) then stdsol(P) + (v u 5
V U ‘) .

E.g. an optimal solution to the OSCP F in fig. 3 is
I? i n fig. 3 . 0

Informally an optimal solution to an OSCP F is ai1
admissible solution to F that minimizes F objective
fuiict’ion . . and satisfies the Dynamic Programming (DP) .
principle.

It is possible to show that the above notions (OSCP,
admissible solution. optimal solution) are all well
defined.

Xote tha.t for ut; all states are initial. As pointed out
in remark 4.4 this is equivalent t,o have one initial st,ate
and the accessibility hypot,hesis which is no loss of gen-
erality. Thus our definition of optimality is equivalent
t.0 the one in [2l].

In supervisory control we are interested in finding the
least restrictive supervisor (e.g. see [18], [24 , [5], [all).
This leads t,o the following definition.

4.7 Definition. Let F be an OSCP. A most gen-
eral optimal solution (mgo solution) to F is an optimal
solut,ioii I to F s.t. for all optimal solutions I’ to F
we have: I’ C I . I.e. I is the least restrictive optimal
solution to 3. Note that if I1 and 12 are mgo solutions
to F then I1 = i r z . Thus if an mgo solution exists it
is unique. We also refer to the mgo solution to 3 as
the Optimul Supervisory Controller (OSC) solving t,he
OSCP F. E.g.: the ingo solution to F in fig. 3 is 1, in
fig. 3. 0

5 Optimal Solution
We give (5.1) a, BFOL program to compute the mgo

solution to an OSCP. By 3.4 this gives a symbolic (i.e.
BDD based) algorithm for OSC synthesis. Note how (in
5.1) BFOL prograins allow a clear and succinct defini-
tion of quite complicated computations. In 5.2 we prove
the correctness of our symbolic algorithm. This also
shows that an OSCP has an mgo solution and thus (a
fortiori) an optimml solution.

5.1 Definition. Let F = (P. J . 11. e n d . conf,*. l e g .
11. lh. j . , f) be an OSCP. iVe define module mgo(F) as
in fig. 4 . D

Essentially module mgo(F) defines a dynamic pro-
gramming algorithm which in our BFOL framework be-
comes a fixpoiiit computation.

Informally module m g o (F) works as follon-s. Formula
bo(x, U, v) holds iff froiii state x enabling event U we can
reach with cost v a fin.31 state. Formula adm(x. v) holds
iff v is an admissible i(w.r.t. 3 . 5 . 2) cost to reach a final
state from st,at.e x. Formula g(x. v) (cost-to-go) holds
iff v is the least admissible cost to reach a final state
froin state x. Formula . f (x . U) (defining our controller)
holds iff U is uncontrollable or the cost for enabling U
in x is less than or eqiial to the cost-to-go from st.ate x.

Note t’liat mgo(F) is not formally monotone. Thus,
in general. the fixpoint computation in\-olved in mgo(F)
will not, terminate.

5.2 Theorem. Let F be an OSCP. Then
stdsol(P * m g o (F)) (f) is the ingo solution to F.

E.g. let, F and 13 he as in fig. 3 . Then stdsol(P *

5.3 Remark. By theorem 5.2 and 3.4 given 3
we can coiiiput,e a BDD representabion for f . namely:
bdd(P * mgo(F): f) . This gives an efficientr syiithesis
algorithm for OSCs.

It, is possible to give count8er-examples to show
the following facts. (1) If we drop the leg-monotonicity
hypot,hesis 011 Ih them there may be no opt,iiiial solu-
tion to an OSCP F and stdsol(P * m g o (F)) may yield
wrong results. This is the case even when all evenbs are
controllable. (2) If we drop t,he l€q-iiioiiotoiiicit,y hypo-
thesis on lh then stdaol(P * mgo(F)) may not, terinin-
ate. (3) Leq-monotoi1icit.y is only a sufficient, condition
for termination of std!sol(P * m g o (F)) . (4) Because of
loops and uiicoiit,rollabie eve1it.s represeiit,iiig cost,s with
a lurge enough, word length does not. guarant,ee termin-
ation of stdsol(P * m!?o(F)) . A “global” hypothesis on
the behavior of lh is needed. Leg-monotonicity in 4.3
does t,he job. (5) When cask range on an infinite do-
main (the analogous cd) t,lieoreiii 5.2 fa.ils even when t,he
leq-monotonicity hyp’othesis is sat,isfied.

Not,e that our plant, is as general as it. can be
in supervisory control t.heory (e.g. see [18], [5]). In
particular our OSC synthesis algorit.lim (5.1) handles
arbitrary sets of final states as well a,s loops and un-
cont,rolla.ble events in the plant t.ransition rela.t,ion. No
previously published OSC! s j d i e s i s algorithm handles
such general ca.se.

Not,e that our cJ>ject,ive function only depends on
cost,s for enabled eve1it.s. Objective funct,ions depending
also on costs for disa.bled events lime been considered
in [21] for costs ranging on %f1>’, singleton set,s of final
states a.nd pla.nts without loops or uncontrollable events.
0

mgo(F)) = 13. 0

6 Experimental Results
BDDs size strongly depends on the boolean functions

that, we need to represent (e.g. see [‘i]). Thus, as usual
with BDDs, we need t,o run experiments to asses per-
formances of our algorit,hm. We iiiipleineiited (in C) a.
compiler for BFOL programs. In this sect.ion we report’
on experimental results using our compiler t,o synthesize
OSCs using the symbolic algorithm in 5.1.

2241

Grid size
2 x 2
4 x 4

Our plant is formed by an m x m grid with two
autonomous vehicles (AVs) moving on it. Each AV can
stay where it is or can move forward, backward, left or
right. Failures can occur.

Our goal is to find the OSC f s.t.: f satisfies given
safety constraints, f drives each AV to a given grid
region, f minimizes the fuel used to finish the job (both
AVs have reached their destinations).

Fig. 5 reports our experimental results. We use 6
bits to represent events (i.e, T in 4.1 is 6). Column
‘Max BDD’ gives the size of the larger BDD built dur-
ing the computation. Column ‘OSC’ gives the size of
the BDD representing OSC f. From such BDD our
tool can automatically generate a C program, say C (f) ,
implementing OSC f. C (f) closely follows the BDD
representation of f . Thus C (f) runs in time linear in
the number of arguments o f f , i.e. in this case O(n+r) .
Column ‘C lines’ reports the number of lines of C(f).

If we assume for the running time of our OSC syn-
thesis algorithm (5.1) an expression of form a s p , where
s is the size of the state space (i.e. s = 2”) from the table
in fig. 5 we get a running time of 35 . . s1 63. Note
that this is better than the running time of O(s2 logs)
for the algorithm in [21].

7 Conclusions
We addressed the problem (OSCP) of automatic syn-

thesis of Optzmal Fanzte State Superuasory Controllers
(OSCs). Our results (summarized in sec. 1) show that,
although OSC synthesis is computationally harder than
SC synthesis or automatic verification (Model Check-
ing), using BFOL programs and BDDs automatic syn-
thesis of OSCs is possible for small size plants.

To design OSC synthesis algorithms for larger plants
is the next step for our research.

Cost bits (k in 4.1) State bits (n in 4.1) State Space Size CPU (min) Max BDD OSC C lines
3 10 1024 2:45 220,418 87 180
5 14 16384 249:21 1,400,032 339 900

References
[l] A. Aziz, F. Balarin, R. K . Brayton, M. D. DiBenedetto,

A. Saldanha, A. L. Sangiovanni-Vincentelli, Supervisory
Control of Finite State Machines, CAV 95, LNCS 939,
Springer-Verlag
A. Anuchitanukul, Z. Manna, Realizability and Synthesis
of Reactive Modules, CAV 94, LNCS 818, Springer-
Verlag
K. R. Apt, Logic Programming, Handbook of Theoretical
Computer Science, Elsevier 1990
P. J. Antsaklis, J . A. Stiver, M. Lemmon, Hybrid Sys-
tem Modeling and Autonomous Control Systems, Hybrid
Systems, LNCS 736, Springer-Verlag, 1993
S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi,
G. F. Franklin, Supervisory Control of a Rapid Thermal
Multiprocessor, IEEE Trans. on Automatic Control, Vol.
38, N. 7, July 1993

[2]

[3]

[4]

[5]

[GI J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
L. J. Hwang, Symbolic model checking: 10’’ states and
beyond, Information and Computation 98, (1992)
R. Bryant, Graph-Based Algorithms for Boolean Func-
tion Manipulation, IEEE Transaction on Computers,
Vol. C-35, N.8, Aug. 1986

[SI L.C. Cooper, M. W. Cooper, Introduction to Dynamic
Programming, Pergamon Press, 1981

[9] E. A. Emerson, Temporal and Modal Logic, Handbook
of Theoretical Computer Science, Elsevier 1990

[lo] R. Kumar, V. Garg, S. I. Marcus, Predicates and Pre-
dicate Transformers for Supervisory Control of Discrete
Event Dynamical Systems, IEEE Trans. on Automatic
Control, Vol. 38, N.2, 1993

[ll] B. Jonsson, K. G. Larsen, On the complexity of Equation
Solving in Process Algebra, TAP-SOFT 91, LNCS 493,
1991, Springer-Verlag

[la] J. W. Lloyd, Foundations of Logic Programming,
Springer-Verlag, 1987

[13] M. Lemmon, J. A. Stiver, P. J. Antsaklis, Event Identi-
fication and Intelligent Hybrid Control, Hybrid Systems,
LNCS 736, Springer-Verlag, 1993

[14] Y. Li, W. M. Wonham, Control of Vector Discrete-Event
Systems I-The Base Model, IEEE Trans. on Automatic
Control, Vol. 38, N.8, 1993

[15] Y. Li, W. M. Wonham, Control of Vector Discrete-Event
Systems 11-Controller Synthesis, IEEE Trans. on Aut.0-
matic Control, Vol. 39, N.3, 1994

[lG] K. M. Passino, P. J. Antsaklis, On the Optimal Con-
trol of Discrete Event Systems, Proc. 28th IEEE Conf.
Decision and Control, 1989

[17] J. Parrow, Submodule Construction as Equation Solving
in CCS, Theor. Computer Science, 68, Elsevier 1989

[18] P. J. Ramadge, W. M. Wonham, Supervisory Control of
a Class of Discrete Event Processes, SIAM J. Control
and Optimization, Vol. 25, N. 1, Jan. 1987

[19] P. J. Ramadge, W. M. Wonham, Modular Feedback Lo-
gic for Discrete Event Systems, SIAM J. Control and
Optimization, Vol. 25, N. 5, pp. 1202-1218, 1987

[ZO] P. J. Ramadge, W. M. Wonham, The Control of Discrete
Event Systems, Proceedings of the IEEE, 77(1):81-98,
Jan. 1989,

[Zl] R. Sengupta, S. Lafortune, A Graph- Theoretic Optimal
Control Problem f o r Terminating Discrete Event Pro-
cesses, Discrete Event Dynamic Systems: Theory and
Applications 2, (1992): 139-172, Kluwer

[22] E. Tronci, Hardware Verification, Boolean Logic Pro-
gramming, Boolean Functional Programming, LICS
1995, IEEE Computer Society, 1995

[23] M. Y . Vardi, A n Automata-Theoretic Approach to
Fair Realizability and Synthesis, CAV 95, LNCS 939,
Springer- Verlag

[24] W. M. Wonham, P. J. Ramadge, On the Supremd Con-
trollable Sublanguage of a given Language, SIAM J. Con-
trol and Optimization, Vol. 25, N. 1, Jan. 1987

[7]

2242

