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Abstract 
Supervisory Controllers are Discrete Event Dynamic 
Systems (DEDSs) forming the discrete core of a Hy- 
brid Control System. 

We address the problem of automatic synthesis of Op- 
timal Finite State Supervisory Controllers (OSCs). We 
show that Boolean First Order Logic (BFOL) and Bin- 
ary Decision Diagrams (BODS) are an effective meth- 
odological and practical framework for  Optimal Finite 
State Supervisory Control. Using BFOL programs (i.e. 
systems of boolean functional equations) and BDDs we 
give a symbolic (i.e. BDD based) algorithm for  auto- 
matic synthesis of OSCs. Our OSC synthesis algorithm 
can handle arbitrary sets of final states as well as plant 
transition relations containing loops and uncontrollable 
events (e.g. failures). W e  report on experimental res- 
ults on the use of our OSC synthesis algorithm to syn- 
thesize a Cprogram implementing a minimum fuel OSC 
f o r  two autonomous vehicles moving on a 4 x 4  grid. 

1 Introduction 
Automatic synthesis of reactive programs is gradually 

becoming a reality (e.g. see [a], [23]). Here we consider 
a particular class of reactive programs, namely Finite 
State Supervisory Controllers (SCs). SCs are the dis- 
crete core of a Hybrid Control System, whereas phys- 
ical plant and controllers form the continuous one (e.g. 
see [4], [13]). SCs are Discrete Event Dynamic Sys- 
tems (DEDSs) and as such have been widely studied. 
Automatic synthesis of SCs satisfying given specifica- 
tions (Supervisory Control Problem, SCP) was studied 
in [18], [24], [20] within an automata-theoretic frame- 
work; in [l , [5] within a language-theoretic framework; 
in [ll], [I71 within ,a process algebra framework; in [lo], 
[14], [15], [19] within a predicate calculus framework. 

In an SCP we measure performances using a 2-level 
cost scale: 0 (the SC satisfies the specifications), 00 (the 
SC does not satisfy the specifications). However quite 
often in control engineering one is interested in an SC 
that is as close as ,possible to given specifications. This 
leads us to look for an SC with minimum cost on a 
many-level cost scale. This is the Optimal Supervisory 
Control Problem, a generalization of SCP. Optimal su- 
pervisory control hlas been studied e.g. in [16], ral]. 

In this paper we address the problem of automatic 
synthesis of Optimal Finite State Supervisory Control- 
lers (OSCs). Informally the Optimal Finite State Super- 
visory Control Problem (OSCP) scenario is as follows. 
We are given a plant (i.e. a finite state transition sys- 
tem), a set of plant states (final states) and a cost for 
each plant transition. Plant transitions are triggered 
by events (or, using a process algebra terminology, ac- 
tions). The set of' events is finite and is divided into 
two disjoint subsets: controllable events (e.g. inputs) 
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and uncontrollable even.ts (e.g. outputs or failures). Su- 
pervisory control consi,sts in restricting the plant beha- 
vior by disabling some (possibly all) of the controllable 
events in a given plant state. Note that uncontrollable 
events are always enabled. Given a supervisory control 
law an objective functz:on (or cost index) associates to 
each plant state a cost on the base of plant transition 
costs and of the set of events enabled by the supervisor 
in a given plant state. The OSC is the least restrict- 
ive supervisor that drives the plant to a final state and 
minimizes a given objective function. 

The main obstructions to OSC synthesis are state ex- 
plosion and nonmonotonicity of the fixpoint computa- 
tions involved in all OSC synthesis algorithms. Termin- 
ation of such fixpoint computations strongly depend on 
OSCP data (i.e. object'ive function, plant transition re- 
lation, cost domain, final states, controllable events). 
To guarantee termination and correctness (of the com- 
puted result) all published OSC synthesis algorithms 
use an infinite domain (X?' = {z I z E X and z 2 0)) 
for costs and disallow loops and uncontrollable events 
in the plant transition ,relation. When these hypotheses 
are not satisfied such algorithms in general do not ter- 
minate or produce wrong results. 

Binary Decision Diagrams (BDDs, see [7])  are an ef- 
ficient canonical representation for boolean functions 
that has proved very efl:ective in contrasting state explo- 
sion in automatic verifiication via Model Checking (e.g. 
see [9], [SI) as well as in automatic synthesis of SCs 
satisfying given specifications (e.g. see [5]). However 
no symbolic (i.e. BDD based) algorithm for automatic 
synthesis of OSCs has been presented in the literature. 
BDDs can only handle finite domains. Thus to use them 
in an OSCP we must use a finite domain to represent 
costs. In an OSCP costs are only used to rank super- 
visory control laws. Usually only the top levels (small 
costs) of such ranking need to be faithfully represented. 
Thus restriction to a finite domain for costs is often 
quite reasonable. 

We show that a suitable monotonicity hypothesis on 
the objective function allows us to use a finite domain 
for costs and to have loops and uncontrollable events 
in the plant transition relation. This, in turn, yields 
a symbolic OSC synthesis algorithm handling arbitrary 
plant transition relations. 

To show termination (and correctness) of a symbolic 
OSC synthesis algorithm we need to study the effect of 
OSCP data on such s,ymbolic algorithm. To this end 
we need to represent in- the same language OSCP data 
and the OSC Synthesis algorithm under consideration. 
This can be done with ,a symbolic (i.e. BDD based) pro- 
gramming language. However none of the SC or OSC 
synthesis approaches 'described in the literature suits 
our needs since none of them is based on a symbolic 
programming language. In [22] it has been shown that 
Boolean First Order Logic (BFOL) can be used as a 
symbolic functional programming language well suited 



for automatic verification of Finite State Systems. Es- 
sentially a BFOL program is a system of boolean func- 
tional equations. Here we show that BFOL programs 
can also be used to define an OSCP and to give sym- 
bolic OSC synthesis algorithms. 

The main results in this paper are the followings. 
BFOL and BDDs are an effective methodological 

and practical framework to define and study OSCPs 
(sec. 4) in much the same way as calculus is for dy- 
namic systems on 2". 

Using BFOL programs we give (5.1) a symbolic 
(i.e. BDD based) OSC synthesis algorithm and show 
(5.2) its correctness when the objective function satisfies 
a suitable monotonzczty hypothesis. Note that no sym- 
bolic OSC synthesis algorithm has been presented in the 
literature. Using BFOL to represent both OSCP data 
and our OSC synthesis algorithm allows us to overcome 
the main difficulty in our correctness proof showing 
termination of the nonmonotone fixpoint computations 
involved in our symbolic algorithm. 

Our OSC synthesis algorithm (5.1) can handle 
arbitrary sets of final states as well as plant transition 
relations containing loops and uncontrollable events. 
No previously published OSC synthesis algorithm can 
handle such general case. Note however that our object- 
ive function only depends on costs for enabled events. 
Objective functions depending also on costs for disabled 
events have been considered in [a l l  for costs ranging on 
%2°, singleton sets of final states and plants without 
loops or uncontrollable events. 

Our symbolic algorithm can be effectively used 
for automatic OSC synthesis. We show (sec. 6) exper- 
imental results on its use to synthesize a C program 
implementing a minimum fuel OSC for two autonom- 
ous vehicles (AVs) moving on a 4x4  grid. A problem 
that cannot be solved with any of the previously pub- 
lished OSC synthesis algorithms because of loops and 
uncontrollable events (AV engine failures) in the plant 
transition relation. 

2 Basic Definitions 
In this section we review standard definitions from 

First Order Logic (FOL) and Logic Programming (e.g. 
see [la], [3]) and adapt them to our case: Boolean 
First Order Logic (BFOL). BFOL is simply FOL on 
the boolean domain ( 0 ,  1). BFOL syntax is the same 
as that for FOL with the following provisions: the only 
constants in BFOL alphabet are Q,L (proposit.lonal con- 
stants); there are no function symbols in BFOL alpha- 
bet; any BFOL term (a propositional constant or a vari- 
able) is a formula (this is because we are working on 
Booleans). FV F )  is the set of free variables in formula 
F .  Formula F i z := t]  is obtained from formula F by 
replacing all free occurrences of z in F with term t .  
Symbol E denotes syntactic equality between strings. 

We adopt the usual semantics for first order lan- 
guages. However our universe will always be the set 
Boole = ( 0 ,  1) of boolean values. Boolean value 0 
stands for f a l s e  and boolean value 1 stands for true.  
If b denotes a boolean value we also write b for b. Thus, 
e.g., symbols 0, 1 are overloaded since they may denote 
propositional constants, boolean values or j u s t  integers. 
The formal context will always make clear the intended 
meaning. In the following it, is always assiimed that an  
alphabet is given. 
2.1 Definition. An interpretation I on a given 
alphabet is a subset of the set { p ( t l , . .  .in) I p is an n- 

a ] ( F  A G )  = if [ I ,  a] F )  then [ I ,  a] G) else 0,  
u](F -+ G )  = if [ I ,  a!(F) then [ I ,  a\(G) else 7 

~~ 

I ' ;f[I,a](&) then [ I ,a] (G)  else [I,a](-G),  
rz.ai(3zF\ = 

0 ] ] ( F )  then 1 else [ I ,  U[. := 1 ] ] ( F ) ,  

if [ I ,  ais := O]](F) then [ I ,  I J [ X  := 1 ] ] ( F )  else 0. 
I Figure 1: I 

ary predicate symbol in the alphabet and t l ,  
propositional constants}. If G is a set of predicate sym- 
bols we define I (G)  = ( p ( t 1 , .  . . t n )  1 p ( t 1 , .  . . tn) E I 
and p E G}. We write I ( p )  for I ( { p } ) .  Let p be an n- 
ary predicate symbol and w1 li, be boolean values. 
We define the boolean value ) ( V I , .  . . un )  as follows: 
I ( p ) ( v l  , . .  . wn) = if ( p ( v t , .  . . l i , )~ I )  then 1 else 0. If 
n = 0 then symbol I ( p )  is  overloaded since it may de- 
note a set or a boolean value. The mathematical context 
will always make clear the intended reading for I@) .  

An assignment is a map U assigning a boolean 
value g(z) to each variable z. If U is an assignment and 
d is a boolean value then ~ [ z  := d] is the assignment 
s.t.: u [ x  := d ] ( y )  = if (y z) then d else ~ ( y ) .  We 
also write z" for U ( $ ) .  An environment is a pair [ I ,  U ] ,  

where I is an interpretation and U is an assignment. An 
environment [ I ,  U] assigns boolean values to formulas as 
in fig. 1. 

Let P ,  S be set of formuhs and I be an interpret- 
ation. We say that I is a model for S (notation: I + s) 
iff for each formula F in S and for each assignment U 

we have [ I ,  u ] ( F )  = 1. We say that S is a logical con- 
sequence of P (notation P + S) iff for each interpreta- 
tion I we have: if I P then I S. If S = {F} then 
we write: I F ,  P + F for, respectively, 1 1 { F } ,  

A Model Checking Problem (MCP) is a pair 
( I ,  F ) ,  where I is an interpretation and F is a formula. 
Answer-MC is a function from MCPs to Boole s.t. 

0 

p t= I F } .  

Answer-MC(I ,  F )  = 1 iff I F .  0 

2.2 Notation. 0 We denote with [ ] the empty 
list and with [ao, . . . a,-l] the list with elements uo, 
. . . a,-l. We say that a is in list L (notation acL) iff a is 
an element of L .  We denote with [ L I the set of elements 
in list L.  If L1 = [ao ,  . . . a,,-l] and L2 = [bo, . . . b,-1] 
then L1 * L2 = [ag, . . . a,-l , bo,  . . . b,,-l]. 

I f f  is a partial recursive function we write f (z )  4 
[f(z) 1'1 for f (z )  terminates [does not terminate] on ar- 
gument z. 0 

2.3 Definition. A program statement is a 
formula of the form p ( z 1 , .  . . zn)  = F ,  where p is a 
predicate symbol and F is a formula. s.t. F V ( F )  C: 

zn} .  Formulas p ( z 1 , .  . . z n )  a.nd F are called, 
respect,ively, the head and the body of the statement. 

A (BFOL) program [module] is a finite nonempty 
list P of program st,atements s.t. for each predicate 
symbol p occurring in a program statement in P there 
is exactly [ut most] one program statement in P with p 
occurring in the head. Not,e that, we ca.11 program what, 
in logic programming is usually called (up to statement 
ordering) the completion of a logic program (e.g. see 
[ l a ]  sec. 17 or [ 3 ] ) .  Note that a program is a module, 
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but the converse is false. E.g. P = [I, = q] is a module 
but it is not a program since in P there is no program 
statement with q as head (i.e. q is not defined in P). 

0 Let P be a module. A predicate symbol p 
is zn P iff p occurs in a statement in P .  The set 
Alph(P)  of predicate symbols in P defines the alpha- 
bet of P.  The definztzon of p in P is the program 
statement (if any) in P in which p occurs in the head. 
We define: ezport(P)  = { p  I p E Alph(P)  and there 
is a program statement in P where p occurs in the 
head); import(P)  == Alph(P)  - ezport(P) .  Note that 
for a program P we have ezport(P)  = Alph(P) and 
impor f (P)  = 0. We denote with s i ze(P)  the number of 
symbols in P A model for (or a solutzon to) P is an 
interpretation I s.t.  1 P .  

Hygzene Conventzon. Let P ,  Q be modules. Un- 
less otherwise stated when writing P*& it is understood 
that, Alph(P) n export(&) = 8. This avoids us having 
to worry about narne clashes. E.g. [p = q] * [g =. p]  
(= = q ,  g = p ] )  is allowed by our hygiene convention 

0 

2.4 Notation. We denote with boldface charac- 
ters vectors of predicate symbols or of formulas. We 
use a vectorial notation in the expected way. E.g. 
let p be an n-ary predicate symbol, q be an m- 
ary predicate symbol and t z o l l ,  1, y]  a vector of 
terms. Then (Vxp(x ,  t ,  z )  V 3xp(x  \ V V x q ( x ) )  stands for 

but [g = p] * [1, = q] is not. 

zn-6,0, 1, 1, y, z )  v 3x0, 

We write C(X) or xu for [a(zo), . . .  a(x,-1)]. If 
G,-1] are vectors of formulas we 

G,-1] for ( (Fo = Go) A 
. . . (Fn-l = Gn-l)). E.g. let p [PO,, . . p , -~]  be 
a vector of m-ary predicate symbols and x , u  be vec- 
tors of variables. ‘Then x = p(u) stands for ((EO = 
~ o ( . ~ o , . . . u ~ - I ) ) A .  ..(z,-l = ~ n - l ( ~ ~ , . . . U m - l ) ) ) .  

To efficiently carry out computations on BFOL in- 
terpretations we need an efficient representation for 
boolean functions. Binary Decision Diagrams (BDDs) 
(see [7] for details:l are an efficient canonical repres- 
entation for Boolean Functions. I.e. for each boolean 
function f there is (<up to f argument ordering) exactly 
one BDD, bdd(f) representing f. In the following we 
assume that for each predicate symbol p (in the given 
alphabet) an ordering on its arguments is given. Thus, 
given an interpretakion I ,  bdd I ( p ) )  is univocally de- 
termined. Moreoveir size-bdd(G i denotes the number of 
vertices in BDD G. We heavily rely on BDDs. However 
in the following they can be replaced by any efficient ca- 
nonical representatlion for boolean functions. 

We liberally use C-like pseudo-code for our al- 
gorithms. We omit proofs because of lack of space. 

3 Standard Solution 
In general a program may have one, many or no solu- 

tion (model). To use BFOL as a BDD based program- 
ming language we need to univocally associate a solu- 
tion (if any) to a program. This gives an operational 
semantics to BFOL and turns it into a (functional) pro- 
gramming language. This is done in the present section 
generalizing [22]. 
3.1 Definition. Let J be an interpretation and P 
be a module. Inteirpretation stdsol(J, P )  is defined as 

interpretation stdsol(interpretati0n J ,  module P )  
{ Let P = Cpo(x) = Fc,, . . .p , - l (x)  = F,-1]; 

for all IC = 0 , .  . . (n - 1) do I,, = 0; i = 0; 
while ( i  < n )  { I’ =: { p i ( a ( x ) )  I 

[J( impor t (P))  U TO U . .  . In- l ,  a](F,) = 1); 
if (I’ == I i )  { i := i + 1; } else { I; = 1’; 

for all k = 0 , .  . . ( i  - 1) do Ik = 0; i = 0; } } 
return (Io U . . .In-l); ) 

Figure 2: Standard Solution 

in figure 2. Note that the computation for stdsol(J, P )  
may or may not terminate. If stdsol(J ,P)  termin- 
ates then stdsot(J ,P)  P .  We write stdsol(P) for 
stdsol(0, P ) .  Let P be a program. The standard solu- 
tzon to P is stdsol(P). If stdsol(P) .J then we write 

3.2 Example. Let Pl = Cp = -p]. PI has no 
solution (model) and stdsol(P1) 1‘. Let Pz = [P = ~p V 
q, q = q]. P2 has exactly one solution (model) I = { p ,  q }  
and stdsol(P2) f. Hence, in general, if stdsol(P) 1‘ we 
cannot conclude that program P has no solution. Let 
P3 = [p = i p  V l q ,  q = q]. P3 has one solution I = { p  
and stdsol(P3) = , { p } .  Let P4 = Ep = p V i q ,  q = p II . 
P4 has three solutions, namely 11 = { p } ,  I2 = { q } ,  I ,  = 

b d d ( P , p )  for bdd(stdsol(P)(p)). 0 

{ p ,  q } ,  and stdsol(P4) =I { p } .  

3.3 Definition. A query is a pair (P ,g ) ,  where 
P is a program and g is a predicate symbol in P. 
Answer-Query is a function from queries to Boole s.t.: 
Answer-Query(P,g) = if stdsol(P) 1 then (if 

Theorem 3.4 (essentially from [22]) shows that 

Let P be a program with Alph(P)  
There are BDD based algorithms 

bdd-compile(P) = if stdsol(P) 1 then 

0 Answer-&uery(P,g = if stdsol(P) 1 then 

stdsol(P) g(x) then 1 else 0) else 1‘. 0 

stdsol(P) can be computed using BDDs. 

3.4 Theorem. 
= { P O ,  . .  .pk- l ) .  
bdd-compile, bdd-eval s t . :  

[bdd(P,po), . . .bdd(P,p, t - l )]  else 1‘. 
bddsval(bdd-compile(P),g{ else 1‘. 0 

4 Optimal Control 
We show that BFOL can be effectively used to define 

(4.3) an Optimal Finite State Supervisory Control Prob- 
lem (OSCP) as well as a solution to it (4.7). Informally 
the OSCP scenario has been defined in sec. 1. 
4.1 Notation. We will use (with or without 
subscripts) the following vectors of boolean variables. 
x [zo, . . .z,-1] is a vector ranging over plant present 
states. U 3 [uo, . . .U,.- 11  is a vect,or ranging over plant 
events. x’ E [zb,. . . ~ h . - ~ ]  is a vector ranging over plant 
next states. v G [ v o l . .  . ~ k - ~ ]  is a vector ranging over 
plant transition costs. 0 

To each pair (x,u) we need to associate a cost v 
which is the cost to reach a final state from x by en- 
abling event U in x. For this reason as usual in classical 
supervisory control theory we restrict our attention to 
plants s.t. for each state x ,  each transition from x leads 
to a final state or to a state from which a final state can 
he reached (4.2). Essentially this is the coaccessibility 
hypothesis in [18] .  
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4.2 Definition. Let I be an interpretation, p be 
an (n  + r + n)-ary predicate symbol (denoting our plant 
transition relation) and end be an n-ary predicate sym- 
bol (denoting our set of final states). 

BR(p,en$) = ([ q(x) = (end(x) V 3u,x’ 
(p(x, U ,  x’) A q(x ))) 1, q ) .  Informally q denotes the set 
of plant states that are final or from which it is possible 
to reach a final state (backward reachable states). 

0 Let BR(p,end)  = ( & , q ) .  The triple ( I ,p ,end)  
is said to be backward reachable iff ( I  U stdsol(1, Q)) I= 
p(x,u,x’) --+ q(x’). Informally a triple ( I ,p ,end)  is 
backward reachable iff each plant transition leads to a 
backward reachable state. 

0 

4.3 Definition. An Optimal Fanate State Su- 
peruzsory Control Problem (just Optzmal Superuzsory 
Control Problem, OSCP, in the following) is a 10-tuple 
(P ,  J , p ,  end, contr, leq, h, lh, j ,  f )  s.t.: 

P is a program s.t. predicates p ,  end, contr, leq, 
h, lh are in P, stdsol(P) 4, j ,  f are not in P. 

p is an ( n  + r + n)-ary predicate symbol denot- 
ing our plant transition relation. Informally p(x, U, x’) 
holds iff event U triggers a transition from state x to 
state x‘. 

end is an n-ary predicate symbol denoting our 
set of final states. Informally end(x) holds iff x denotes 
a final state. 

The triple (stdsol(P),p, end) is backward reach- 
able. I.e. each plant transition leads to a backward 
reachable state (equivalently: each nonisolated state is 
backward reachable). 

contr is an r-ary predicate symbol denoting our 
set of controllable plant events. Informally contr(u) 
holds iff U denotes a controllable event. 

leq is a (2k)-ary predicate symbol denoting a total 
order on costs. We write (v 5 v’) for leq(v,v’). Pre- 
dicat,e leq satisfies the following conditions (total order): 

0 

0 

0 

0 

0 

stdsol P VI < ~ 2 )  
stdsol[P{ E [ti <va) 

0 h E [ho, . . . h k - 1 1  is a vector of (n+r)-ary predic- 
ate symbols. Vector h(x, U) denotes the cost of enabling 
event U in plant state x. 

lh 2 [lho, . . .lhk-l] is a vector of (2k)-ary pre- 
dicate symbols denoting our cost propagation function. 
Informally vector lh(v1, v2) denotes the cost resulting 
from incurring first cost VI and then cost v2. Vector lh 
satisfies the following condition (leq-monotonicity): 

0 

A (vq = lh(v1, ~ 3 ) )  A ( ~ 5  = 

0 f is an (n + r)-ary predicate symbol denoting 
our state feedback supervisory control law. I.e. f(x, U) 
holds iff when the plant is in state x event U is enabled. 

j is an ( n  + k)-ary predicate symbol denoting our 
objective function (cost index). Informally j(x, v) holds 
iff when applying control law f the cost index value in 
x is v. 

0 J is a module defining our objective function j .  
Module J is defined as follows: J = [ 

b(x,v) = 3u,x’ (f(x,u) A p(x,u,x’) A end(x’) 
(f(x,u) A p(x,u,x’) A 
3 ~ 1  ( ( V I  = h(x,u)) A 

v) A vv’ (b(x, v’) -+ (v’ 5 v)) 1. 
E.g. F as in fig. 3 is an OSCP. 0 

= (PI J ,  P, end, contr, le% PI, [2hI,j, f ) ,  
x [ Z O ] ,  U = [ U O ] ,  s o  zi [O], SI s [l], U0 G [O], U1 E [l]. 

P = [ p(X, U ,  X’) = (X = So A U = U0 A X’ = S i )  
V(X = So A U = U1 AX‘  = S I )  

V(X = Si  A U = Uo A X ’  = So) 
V(X = Si A LI = U1 AX‘ = Si), 

e n d ( x )  = (x = S I ) ,  

contr(u) = ( u =  uo), 
Zeq(vo,vl) = (00 -+ VI), 

= ( x = S o A U = U i ) ,  
I h g x ]  = (U0 v u1) 3. 

Adm: 11 = {f(so ,  U O ) ,  f ( s o ,  U I ) ,  f(s1, U O ) ,  f ( s1 ,  ~1)); 
stdsol(11,P* J ) ( j )  = { j ( S O , l ) , j ( S l , l ) } .  
Opt: I2 = {f(so ,  UI), f(s1,  u1)); 
stdsoZ(I2, p * J)(.?) = {3(SO, l ) , j (S l ,  0) ) .  
Mgo: 13 = { f ( s o ,  U I ) ,   SO, UO) ,  f(si, UI)}; 
stdsoZ(I3,P * J ) ( j )  = {j(s0,1),~(s1,0)}. 

Figure 3: An OSCP 

4.4 Remark. 0 Informally module J in 4.3 
works as follows. Formula b(x,v) holds iff from state 
x with control law f we can reach with cost v a final 
state. Formula j(x, v) holds iff v is the maximum cost 
to reach a final state starting from state x when using 
control law f .  Thus, as in [21], we take as objective 
function j the worst case performance of supervisor f. 

Vector h in 4.3 plays the same role as the Hamilto- 
nian in a classical optimal control problem for dynamic 
systems on Sn whereas lh plays the role of cost sum- 
mation (J or C )  along state trajectories. 

The leq-monotonicity hypothesis in 4.3 allows us 
to use Bellman’s principle of optimality (e.g. see [SI) 
when constructing a solution to an OSCP (5.1, 5.2). 

Note that backward reachability for (stdsol(P), p ,  
end) as well as the conditions on leq and lh in 4.3 can all 
be automatically checked using BDDs. E.g. (stdsol(P), 
p ,  end) is backward reachable iff Answer-&uery(P* 

Vu,x’ (p(x,u,x’) -+ q(x ’ ) ) ] ,  g) = 1. By theorem 3.4 
this can be evaluated with BDDs. 

0 Note that we use a static (memoryless) state feed- 
back controller (f). Memory is only in the plant model 
( p ) .  As in [14], [15] this is no loss of generality since 
from a computational point of view memory can always 
be modelled as part of the plant p .  Note that, unlike 
[18], [ 5 ] ,  we allow nondeterministic plants. When the 
state is observable (as often the case) this makes our 
results directly applicable to hybrid control for dynamic 
systems on !Rn (e.g. see [4]). When the plant is determ- 
inistic our approach is equivalent to the one in [18], [5]. 
Note also that all plant states are initial for us. Essen- 
tially this is equivalent to the accessibility hypothesis 
in [18] and is no loss of generality when studying SCPs 

0 

0 

0 

[dx) = (en+) v 3UIX’ (P(X1UiX’) A dx’))), g(x) = 

([18]) or OSCPs ([all). D 

4.5 Definition. Let F’ = ( P ,  J ,  p ,  end, contr, leg, 
h, lh, j ,  f) be an OSCP. An admissible solution to F is 
an interpretation I satisfying the following conditions. 

I = I(f). I.e. the only predicate symbol occur- 1. 
. . - .  - 

ring in 1 is j .  
2. I U s t d s d ( P )  (icontr(u)A3x’p(x,u,x’)) f 

f(x, U ) .  I.e. uncontrollable events cannot be disabled. 
This condition has been called controller completeness 
in [ 5 ] ,  [18]. 

3 .  I U stdsol(P) (contr(u) A f(x,u)) -+ 
3x‘p(x, U, x‘). I.e. a controllable event enabled by 
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the controller can  always be follomd (executed) by the 
plant. This condition lias heen called plant complete- 
1 7 ~ 5 . 5  in  [5]. 
1. I’ U stdciol(1’. Q * Q’) + 3u.x’(p(x.u.x’) A 

g(x’)) -+ 3u. x’(p’(x. U. x‘) A g’(x’)). n-here: I’ = 
I U .dd.sol(I. P * LJ’(X. U .  x’) = f (x .  U )  A p(x. U .  x’)]). 
BR(p.  e n d )  = ( Q .  g).  BR(p’. e n d )  = (Q’. g’). Inforn- 
ally: if in  the open-loop (uncontrolled) system p (the 
plant) there is a t,ransit,ion from st.ate x leading to a 
backward reachable state then in  the closed-loop (con- 
trolled) system p’ there is a transition from state x lead- 
ing to a backward reachable state. This liveness hypo- 
thesis ensures that the controller can drive the plant, to 
a filial state. This hypothesis plays the saine role as the 
nonblocking condition in [5]. [18]. 

E.g. an adinissiible solut,ion to the OSCP F in fig. 3 
D 

4.6 Definition. Let F = (P. J ,  p .  en,d. contr, leq,  
h. lh. j: f )  be an OSCP. An optimal solution to 3 is 
an interpretation 1 satisfying the following conditions. 

is I1 in fig. 3 .  

I is an a d n k i b l e  solution to F. 
For all admissible solutions I’ to F. for all assign- 

ments U .  c’ we have: if stdsol(1,  P * J )  I= j(x‘, vu)  and 
std.sol(I’. P * J )  I= j(x0,vu’) then stdsol(P) + ( v u  5 
V U ‘ ) .  

E.g. an optimal solution to the OSCP F in fig. 3 is 
I? i n  fig. 3 .  0 

Informally an optimal solution to an OSCP F is ai1 
admissible solution to F that minimizes F objective 
fuiict’ion . .  and satisfies the Dynamic Programming (DP) . 
principle. 

It is possible to show that the above notions (OSCP, 
admissible solution. optimal solution) are all well 
defined. 

Xote tha.t for ut; all states are initial. As pointed out 
in remark 4.4  this is equivalent t,o have one initial st,ate 
and the accessibility hypot,hesis which is no loss of gen- 
erality. Thus our definition of optimality is equivalent 
t.0 the one in [2l]. 

In supervisory control we are interested in finding the 
least restrictive supervisor (e.g. see [18], [24 ,  [5], [all). 
This leads t,o the following definition. 

4.7 Definition. Let F be an OSCP. A most gen- 
eral optimal solution (mgo solution) to F is an optimal 
solut,ioii I to F s.t. for all optimal solutions I’ to F 
we have: I’ C I .  I.e. I is the least restrictive optimal 
solution to 3. Note that if I1 and 12 are mgo solutions 
to F then I1 = i r z .  Thus if an mgo solution exists it 
is unique. We also refer to the mgo solution to 3 as 
the Optimul Supervisory Controller (OSC) solving t,he 
OSCP F. E.g.: the ingo solution to F in fig. 3 is 1, in 
fig. 3.  0 

5 Optimal Solution 
We give (5.1) a, BFOL program to compute the mgo 

solution to an OSCP. By 3.4 this gives a symbolic (i.e. 
BDD based) algorithm for OSC synthesis. Note how (in 
5.1) BFOL prograins allow a clear and succinct defini- 
tion of quite complicated computations. In 5.2 we prove 
the correctness of our symbolic algorithm. This also 
shows that an OSCP has an mgo solution and thus (a  
fortiori) an optimml solution. 

5.1 Definition. Let F = (P. J .  11. e n d .  conf,*.  l e g .  
11. lh. j .  , f )  be an OSCP. iVe define module mgo(F) as 
in  fig. 4 .  D 

Essentially module mgo(F) defines a dynamic pro- 
gramming algorithm which in our BFOL framework be- 
comes a fixpoiiit computation. 

Informally module m g o ( F )  works as follon-s. Formula 
bo(x, U,  v )  holds iff froiii state x enabling event U we can 
reach with cost v a fin.31 state. Formula adm(x. v)  holds 
iff v is an admissible i(w.r.t. 3 . 5 . 2 )  cost to reach a final 
state from st,at.e x. Formula g(x. v)  (cost-to-go) holds 
iff v is the least admissible cost to reach a final state 
froin state x. Formula . f ( x .  U) (defining our controller) 
holds iff U is uncontrollable or the cost for enabling U 
in x is less than or eqiial to the cost-to-go from st.ate x. 

Note t’liat mgo( F) is not formally monotone. Thus, 
in general. the fixpoint computation in\-olved in mgo(F) 
will not, terminate. 

5.2 Theorem. Let F be an OSCP. Then 
stdsol(P * m g o ( F ) ) ( f )  is the ingo solution to F. 

E.g. let, F and 13 he as in fig. 3 .  Then stdsol(P * 

5.3 Remark. By theorem 5.2 and 3.4 given 3 
we can coiiiput,e a BDD representabion for f .  namely: 
bdd(P * mgo(F):  f ) .  This gives an efficientr syiithesis 
algorithm for OSCs. 

It, is possible to give count8er-examples to show 
the following facts. (1) If we drop the leg-monotonicity 
hypot,hesis 011 Ih them there may be no opt,iiiial solu- 
tion to an OSCP F and stdsol(P * m g o ( F ) )  may yield 
wrong results. This is the case even when all evenbs are 
controllable. (2) If we drop t,he l€q-iiioiiotoiiicit,y hypo- 
thesis on lh then stdaol(P * mgo(F))  may not, terinin- 
ate. (3) Leq-monotoi1icit.y is only a sufficient, condition 
for termination of std!sol(P * m g o ( F ) ) .  (4)  Because of 
loops and uiicoiit,rollabie eve1it.s represeiit,iiig cost,s with 
a lurge enough, word length does not. guarant,ee termin- 
ation of stdsol(P * m!?o(F)) .  A “global” hypothesis on 
the behavior of lh is needed. Leg-monotonicity in 4.3  
does t,he job. (5) When cask range on an infinite do- 
main (the analogous cd) t,lieoreiii 5.2 fa.ils even when t,he 
leq-monotonicity hyp’othesis is sat,isfied. 

Not,e that our plant, is as general as it. can be 
in supervisory control t.heory (e.g. see [18], [5]). In 
particular our OSC synthesis algorit.lim (5.1) handles 
arbitrary sets of final states as well a,s loops and un- 
cont,rolla.ble events in the plant t.ransition rela.t,ion. No 
previously published OSC! s j d i e s i s  algorithm handles 
such general ca.se. 

Not,e that our cJ>ject,ive function only depends on 
cost,s for enabled eve1it.s. Objective funct,ions depending 
also on costs for disa.bled events lime been considered 
in [21] for costs ranging on %f1>’, singleton set,s of final 
states a.nd pla.nts without loops or uncontrollable events. 
0 

mgo(F)) = 13. 0 

6 Experimental Results 
BDDs size strongly depends on the boolean functions 

that, we need to  represent (e.g. see [‘i]). Thus,  as usual 
with BDDs, we need t,o run experiments to asses per- 
formances of our algorit,hm. We iiiipleineiited (in C) a. 
compiler for BFOL programs. In this sect.ion we report’ 
on experimental results using our compiler t,o synthesize 
OSCs using the symbolic algorithm in 5.1. 
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Grid size 
2 x 2  
4 x 4  

Our plant is formed by an m x m grid with two 
autonomous vehicles (AVs) moving on it. Each AV can 
stay where it is or can move forward, backward, left or 
right. Failures can occur. 

Our goal is to find the OSC f s.t.: f satisfies given 
safety constraints, f drives each AV to a given grid 
region, f minimizes the fuel used to finish the job (both 
AVs have reached their destinations). 

Fig. 5 reports our experimental results. We use 6 
bits to represent events (i.e, T in 4.1 is 6). Column 
‘Max BDD’ gives the size of the larger BDD built dur- 
ing the computation. Column ‘OSC’ gives the size of 
the BDD representing OSC f. From such BDD our 
tool can automatically generate a C program, say C ( f ) ,  
implementing OSC f. C ( f )  closely follows the BDD 
representation of f .  Thus C ( f )  runs in time linear in 
the number of arguments o f f ,  i.e. in this case O(n+r) .  
Column ‘C lines’ reports the number of lines of C(f). 

If we assume for the running time of our OSC syn- 
thesis algorithm (5.1) an expression of form a s p ,  where 
s is the size of the state space (i.e. s = 2”) from the table 
in fig. 5 we get a running time of 35 . . s1 63. Note 
that this is better than the running time of O(s2  logs) 
for the algorithm in [21]. 

7 Conclusions 
We addressed the problem (OSCP) of automatic syn- 

thesis of Optzmal Fanzte State Superuasory Controllers 
(OSCs). Our results (summarized in sec. 1) show that, 
although OSC synthesis is computationally harder than 
SC synthesis or automatic verification (Model Check- 
ing), using BFOL programs and BDDs automatic syn- 
thesis of OSCs is possible for small size plants. 

To design OSC synthesis algorithms for larger plants 
is the next step for our research. 

Cost bits ( k  in 4.1) State bits ( n  in 4.1) State Space Size CPU (min) Max BDD OSC C lines 
3 10 1024 2:45 220,418 87 180 
5 14 16384 249:21 1,400,032 339 900 
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